A Compact Double Phase-Shifted Photonic Crystal Filter

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2015 by IJETT Journal
Volume-19 Number-5
Year of Publication : 2015
Authors : Divya Singh, Niraj Kumar, Prashant Singodiya, Bhawana Singh
  10.14445/22315381/IJETT-V19P242

MLA 

Divya Singh, Niraj Kumar, Prashant Singodiya, Bhawana Singh "A Compact Double Phase-Shifted Photonic Crystal Filter", International Journal of Engineering Trends and Technology (IJETT), V19(5), 240-243 Jan 2015. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract

This document present a simple 2D filter structure build up of a narrow ridge waveguide with high lateral index contrast and equipped with a 2D photonic crystal consisting of a single row of air holes. The structure is investigated using finite difference time domain method. The classical high-Q transmission filter design is considered with a double phase-shifted photonic crystal waveguide grating. In order to improve the filter characteristic of a phase-shifted grating filter multiple phase-shift sections can be used. The phase-shift region is introduced by the insertion of an unmodulated waveguide region which is 0.5a long. This phase-shift is placed in the center of the photonic crystal waveguide grating. Three cases with the outer waveguide grating lengths of 8a, 9a, and 10a are used.

References

[1] J.D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade,“Photonic crystals molding the flow of light,” Princeton: Princeton University Press, 2007.
[2] J. M. Lourtioz, “Photonic crystals and metamaterials,” Comptes Rendus Physique, vol. 9, no. 1, pp. 4–15, 2008.
[3] J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gerard, D. Maystre,and A. Tchelnokov, “Photonic crystals towards nanoscale photonic devices,” Berlin: Springer- Verlag Berlin Heidelberg, 2008.
[4] S. Olyaee and F. Taghipour, “Ultra-flattened dispersion hexagonal photonic crystal fiber with low confinement loss and large effective area,” IET Optoelectronics, vol. 6, no. 2, pp. 82–87,2012.
[5] C. Chen, X. Li, H. Li, K. Xu, J. Wu, J. Lin, "Bandpass Filters Based on Phase-shifted Photonic Crystal Waveguide Gratings", Opt. Express 15, 11278-11284 (2007)
[6] R. Costa, A. Melloni, M. Martinelli, "Bandpass Resonant Filters in Photonic-Crystal Waveguides", IEEE Photon. Technol. Lett. 15, 401-403 (2003)
[7] A. S. Jugessur, P. Pottier, R. M. De la Rue, "One-dimensional Periodic Photonic Crystal Microcavity Filters with Transition Mode-matching Features Embedded in Ridge Waveguides", Electron. Lett 39, 367-368 (2003)
[8] D. Park, S. Kim, I. Park, H. Lim, "Higher Order Optical Resonant Filters Based on Coupled Defect Resonants in Photonic Crystals", J. Lightwave Technol. 23, 1923-1928 (2005)
[9] N. Yokoi, T. Fujisawa, K. Saitoh, M. Koshiba, "Apodized Photonic Crystal Waveguide Gratings", Opt. Express 14, 4459-4468 (2006)
[10] A. R. M. Zain, M. Gnan, H. M. H. Chong, M. Sorel, R. M. De la Rue, "Tapered Photonic Crystal Microcavities Embedded in Photonic Wire Waveguides with Large Resonance Quality-Factor and High Transmission", IEEE Photon. Technol. Lett. 20, 6-8 (2008)
[11] X. H. Zou, W. Pan, B. Luo, W. L. Zhang, M. Y. Wang, "One-dimensional Photonic Crystal-Based Multichannel Filters Using Binary Phase-Only Sampling Aproach", J. Lightwave Technol. 25, 2482-2486 (2007)
[12] R. Zengerle, O. Leminger, "Phase-shifted Bragg-Grating Filters with Improved Transmission Characteristics", J. Lightwave Technol. 13, 2354-2358 (1995)
[13] H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, NJ: Prentice-Hall (1984)

Keywords
photonic crystal; filters; phase sift region; microcavity; finite difference time domain; resonance; waveguide