Dc Side Low Frequency Harmonic Elimination of Quasi Z Source Inverter

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2017 by IJETT Journal
Volume-43 Number-7
Year of Publication : 2017
Authors : Shegna P.S, Krishnakumar. M
  10.14445/22315381/IJETT-V43P264

MLA 

Shegna P.S, Krishnakumar. M " Dc Side Low Frequency Harmonic Elimination of Quasi Z Source Inverter ", International Journal of Engineering Trends and Technology (IJETT), V43(7),384-387 January 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract
In the existing inverter topologies quasi Z source inverters are the best solution for PV applications. When the quasi z source inverters are used for delivering power to the grid, the second harmonic fluctuating power will be present at the dc side of the inverter. Huge capacitor banks are required to eliminate the ripple, resulting bulky quasi Z source network. In this paper a new filter integrated method is introduced to eliminate the ripple at the dc side. Considerably the quasi z source impedance will be reduced. The operation principle, control mechanism of the filter, design procedures are explained. The simulation results verify the improved results using a filter integrated quasi z source.

 References

[1]. Baoming Ge, Member, IEEE, Yushan Liu, Member, IEEE, Haitham Abu-Rub, Senior Member, IEEE,Robert S. Balog, Senior Member, IEEE, Fang Zheng Peng, Fellow, IEEE,Hexu Sun,Senior Member, IEEE, and Xiao Li “An Active Filter Method to Eliminate DC-Side Low-Frequency Power for a Single-Phase Quasi-Z-Source Inverter” IEEE Trans. Ind. Electron., vol. 63, no. 8 Aug2016.
[2]. B. Ge, H. Abu-Rub, F. Z. Peng, Q. Lei, De Almeida, A. Ferreira, F. D. Sun, and Y. Liu, “An energy stored quasi-Z-source inverter for applica-tion to photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4468–4481, Oct. 2013.
[3]. J. Liu, S. Jiang, D. Cao, and F. Z. Peng, “A digital current control of quasi-Z-source inverter with battery,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 928–937, Apr. 2013.
[4]. B. Ge, F. Z. Peng, H. Abu-Rub, F. J. T. E. Ferreira, and A. T. de Almeida, “Novel energy stored single-stage photovoltaic power system with con-stant DC-link peak voltage,” IEEE Trans. Sustain. Energy, vol. 5, no. 1, 28–36, Jan. 2014.
[5]. Y. Zhou and H. Li, “Leakage current suppression for PV cascaded multi-level inverter using GaN devices,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 15–19, 2013, pp. 1304–1310.
[6]. D. Sun, B. Ge, F. Z. Peng, H. Abu-Rub, D. Bi, and Y. Liu, “A new grid-connected PV system based on cascaded H-bridge quasi-Z source inverter,” in Proc. IEEE Int. Symp. Ind. Electron., May 28–31, 2012, 951–956.
[7]. Y. Zhou, L. Liu, and H. Li, “A high-performance photovoltaic module-integrated converter (MIC) based on cascaded quasi-Z-source inverters (qZSI) using eGaN FETs,” IEEE Trans. Power Electron., vol. 28, no. 6, 2727–2738, Jun. 2013.
[8]. R. Ahmadi, M. Aleenejad, H. Mahmoudi, “A fault-tolerant strategy based on fundamental phase shift compensation for three phase multilevel con-verters with quasi-Z-source networks with discontinuous input current,” IEEE Trans. Power Electron., to be published.
[9]. Y. Liu, B. Ge, H. Abu-Rub, and F. Z. Peng, “An effective control method for quasi-Z-source cascade multilevel inverter based grid-tie single-phase photovoltaic power system,” IEEE Trans. Ind. Informat., vol. 10, no. 1, 399–407, Feb. 2014.
[10]. D. Sun, B. Ge, W. Liang, H. Abu-Rub, and F. Z. Peng, “An energy stored quasi-Z-source cascade multilevel inverter-based photovoltaic power gen-eration system,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5458–5467, Sep. 2015.
[11]. Y. Yu, Q. Zhang, B. Liang, and S. Cui, “Single-phase Z-source inverter: Analysis and low-frequency harmonics elimination pulse width modula-tion,” in Proc. Energy Convers. Congr. Expo., 2011, pp. 2260–2267.
[12]. D. Sun, B. Ge, X. Yan, D. Bi, H. Zhang, Y. Liu, H. Abu-Rub, L. Ben-Brahim, and F. Z. Peng, “Modeling, impedance design, and efficiency anal-ysis of quasi-Z source module in cascade multilevel photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6108–6117, Nov. 2014.
[13]. Y. Liu, B. Ge, H. Abu-Rub, and D. Sun, “Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low-frequency voltage and current ripple,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4194–4202, Jul. 2015.
[14]. Y. Liu, B. Ge, H. Abu-Rub, and H. Sun, “Hybrid pulsewidth modulated single-phase quasi-Z-source grid-tie photovoltaic power system,” IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 621–632, Apr. 2016.
[15]. V. V. S. Pradeep Kumar and B. G. Fernandes, “Active power decoupling topology with fault tolerant ability for a single phase grid connected inverter,” in Proc. 41st Annu. Conf. IEEE Ind. Electron. Soc., Nov. 9– 12, 2015, pp. 3423–3428.
[16]. X. Cao, Q. Zhong, and W. Ming, “Ripple eliminator to smooth DC-bus voltage and reduce the total capacitance required,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2224–2235, Apr. 2015.
[17]. R. Wang, F. Wang, D. Boroyevich, R. Burgos, R. Lai, P. Ning, and K. Rajashekara, “A high power density single-phase PWM rectifier with active ripple energy storage,” IEEE Trans. Power Electron., vol. 26, no. 5, a. 1430–1443, May 2011.
[18]. H. Li, K. Zhang, H. Zhao, S. Fan, and J. Xiong, “Active power decou-pling for high-power single-phase PWM rectifiers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1308–1319, Mar. 2013.
[19]. M. Su, P. Pan, X. Long, Y. Sun, and J. Yang, “An active power-decoupling method for single-phase AC–DC converters,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 461–468, Feb. 2014.
[20]. G. Zhu, H. Wang, B. Liang, S.-C. Tan, and J. Jiang, “Enhanced single-phase full-bridge inverter with minimal low-frequency current ripple,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 937–943, Feb. 2016.
[21]. W. Qi, H. Wang, X. Tan, G. Wang, and K. D. T. Ngo, “A novel ac-tive power decoupling single-phase PWM rectifier topology,” in Proc. 29th Annu. IEEE Appl. Power Electron. Conf. Expo., Mar. 16–20, 2014, pp. 89–95.
[22]. C. B. Barth, I. Moon, Y. Lei, S. Qin, C. N. Robert, and P. Podgurski, “Experimental evaluation of capacitors for power buffering in single-phase power converters,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 20–24, 2015, pp. 6269–6276.
[23]. Y. Sun,Y. Liu, M. Su, W. Xiong, and J. Yang, “Review of active power decoupling topologies in single-phase systems,” IEEE Trans. Power Elec-tron., vol. 31, no. 7, pp. 4778–4794, Jul. 2016.
[24]. W. Ming, Q. Zhong, and X. Zhang, “A single-phase four-switch rectifier with significantly reduced capacitance,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1618–1632, Feb. 2016.
[25]. Y. Tang and F. Blaabjerg, “Power decoupling techniques for single-phase power electronics systems—An overview,” in Proc. IEEE Energy Convers. Cong. Exp., Sep. 20–24, 2015, pp. 2541–2548.
[26]. S. Li, W. Qi, S.-C. Tan, and S.Y. R. Hui, “Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4121– 4137, Jun. 2016.
[27]. Y. Ohnuma, K. Orikawa, and J.-I. Itoh, “A single-phase current-source PV inverter with power decoupling capability using an active buffer,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 531–538, Jan./Feb. 2015.
[28]. V. M. Iyer and V. John, “Low-frequency dc bus ripple cancellation in single phase pulse-width modulation inverters,” IET Power Electron., vol. 8, no. 4, pp. 497–506, Apr. 2015.
[29]. Y. Tang, W. Yao, C. L. Poh, and F. Blaabjerg, “Highly reliable trans-formerless photovoltaic inverters with leakage current and pulsating power elimination,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1016–1026, Feb. 2016.

Keywords
Quasi Z Source Inverter, Second Harmonic Fluctuating Power.