Electrical and Structural Transport characteristics of Ni/Ti Schottky contacts to ntype Indium Phosphide (InP)

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2017 by IJETT Journal
Volume-47 Number-3
Year of Publication : 2017
Authors : Nagaraj M K, Y. Munikrishna Reddy


Nagaraj M K, Y. Munikrishna Reddy "Electrical and Structural Transport characteristics of Ni/Ti Schottky contacts to ntype Indium Phosphide (InP)", International Journal of Engineering Trends and Technology (IJETT), V47(3),183-186 May 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

This article mainly studies about the current transport mechanism of Ni/Ti bilayer contact on n-InP Schottky barrier Diode. At −1 V, the reverse leakage current of the as-deposited Ni/Ti Schottky contact is 8.829×10-10A. For contacts annealed at 200 C, 300 C and 400 C, the reverse leakage current increases. The corresponding values are 1.111 X 10-9, 1.329 X 10-9 and 1.649 X 10-9A at - 1 V. The investigated value of SBH of the asdeposited Ni/Ti Schottky contact is 0.81 eV. On observation, it is found that there is decrease of SBH for contacts annealed at 200 C and 400 C. At the same time, the relevant values are 0.80 eV, 0.79 eV and 0.78 eV, respectively. The calculations show that 0.85 eV is the SBH of as-deposited ni/Ti//n-InP Schottky diodes. The same are 0.83 eV at 200 C and 0.79 eV at 400 C annealed contacts respectively. It is observed that the as-deposited Ni/Ti/n-InP contact has the highest SBH as compared to SBH of annealed contacts. Also, these values are in good agreement with the values arrived from the I-V method. The annealing effects on electrical and structural properties are employed for this study.


[1] E.H. Roderick, T.H. Williams, Metal-Semiconductor Contacts, Oxford, 1988.
[2] M.S. Tyagi, Introduction to Semiconductor materials and Devices, New York: John Wiley, 1991.
[3] T.P. Chow, R. Tyagi, Wide Bandgap Compound Semiconductors for Superior High Voltage Unipolar Power Devices, IEEE Trans. Electron. Dev. 41 (1994) 1481-1486.
[4] J.L. Freeouf and J.M. Woodall, Schottky barriers: An effective work function model, Appl. Phys. Lett., 39 (1981) 727-729.
[5] Y. Sun, X.M. Shen, J. Wang, D.G. Zhao, G. Feng, Y. Fu, S.M. Zhang, Z.H. Zhang, Z.H. Feng, Y.X. Bai and H. Yang, Thermal annealing behaviour of Ni/Au on n-GaN Schottky contacts , J. Phys. D: Appl. Phys., 35 (2002) 2648-2653.
[6] J.Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz, V. Harle, O. Briot, B. Gil and R.L. Aulombard, Influence of Surface Defects on the Characteristics of GaN Schottky Diodes, Mater. Res. Soc. Symp. Proc., 449 (1996) 1085- 1089.
[7] T. Sands, Stability and epitaxy of NiAl and related intermetallic films on III‐V compound semiconductors, Appl. Phys. Lett. 52 (1988) 197-201.
[8] H. Dogan, N. Yildirim and A. Turut, Thermally annealed Ni/n-GaAs(Si)/In Schottky barrier diodes, Microelectron. Eng., 85 (2008) 655-658.
[9] H.S. Soliman, A.A.M. Farag, N. M. Khosifan and T. S. Solami, Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction, J. Alloys Compd., 530 (2012) 157-163.
[10] A. Klein, F. Sauberlich, B. Spath, T. Schulmeyer and D. Kraft, Non- stoichiometry and electronic properties of interfaces,J. Mater. Sci, 42 (2007)1890-1900.
[11] V. Lakshmi Devi, I. Jyothi, V. Rajagopal Reddy and C.-J. Choi, Schottky Barrier Parameters and Interfacial Reactions of Rapidly Annealed Au/Cu Bilayer Metal Scheme on N-type InP, Open Appl. Phys. J., 5 (2012) 1-9.
[12] H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance, J. Appl. Phys., 50 (1979) 5052- 5053.

Schottky barrier Diodes; Ni/Ti/n-InP; I-V Studies; XRD analysis.