A Novel Geo-coding and Cache Based Approaches for Spatial Queries

  ijett-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2013 by IJETT Journal
Volume-4 Issue-10                      
Year of Publication : 2013
Authors : R.Subbarao , K.Srikanth

MLA 

R.Subbarao , K.Srikanth. "A Novel Geo-coding and Cache Based Approaches for Spatial Queries". International Journal of Engineering Trends and Technology (IJETT). V4(10):4408-4410 Oct 2013. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group.

Abstract

This paper proposes an efficient algorithm for spatial databases, various approaches are delivered by the various researchers for finding the result based on the keywords, and usually spatial query is a combination of a location and set of features. In our approach we are handling the spatial queries jointly and returns the only user specified number of optimal results, we implemented a cache based approach for efficient results.

References

[1] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic web search engines. In SIGMOD, pp. 277–288, 2006.
[2] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant spatial web objects. In VLDB, pp. 337–348, 2009.
[3] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In ICDE, pp. 656–665, 2008. [4] M. Duckham and L. Kulik. A formal model of obfuscation and negotiation for location privacy. In PERVASIVE, pp. 152–170, 2005.
[5] A. Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD, pp. 47–57, 1984.
[6] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In SSDBM, p. 16, 2007.
[7] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing of spatial joins using R-trees. Proc. SIGMOD, pages 237–246, 1993.
[8] G. Cong, B. Ooi, K. Tan, and A. Tung. Go green: recycle andreuse frequent patterns. In Data Engineering, 2004. Proceedings. 20th International Conference on, pages 128–139.
[9] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair queries in spatial databases. Proc. SIGMOD, pages 189–200, 2000.
[10] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In Proc. ICDE International Conference on Data Engineering,2008.
[11] A. Guttman. R-trees: A dynamic index structure for spatial searching. Proc. SIGMOD, pages 47–57, 1984.
[12] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial keyword(sk) queries in geographic information retrieval (gir) systems. In SSDBM, page 16, 2007.
[13] G. Hjaltason and H. Samet. Incremental distance join algorithms forspatial databases. Proc. SIGMOD, pages 237–248, 1998.
[14] H. Jagadish, R. Ng, B. Ooi, and A. Tung. ItCompress: An IterativeSemantic Compression Algorithm. In Proceedings of the 20th International Conference on Data Engineering (ICDE04), volume 1063, pages 20–00.
[15] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multidimensional indexing for strings. Proc. SIGMOD, pages 403–414, 2000.
[16] K. Koperski and J. Han. Discovery of spatial association rules ingeographic information databases. Proc. SSD, pages 47–66, 1995.
[17] N. Mamoulis and D. Papadias. Multiway spatial joins. Proc. TODS,26(4):424–475, 2001.
[18] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range query performance in spatial data structures. In PODS, pages 214–221, New York, NY, USA, 1993. ACM.
[19] D. Papadias and D. Arkoumanis. Approximate processing of multiway spatial joins in very large databases. Proc. EDBT, pages 179–196, 2002.
[20] D. Papadias, N. Mamoulis, and B. Delis. Algorithms for querying by spatial structure. Proc. VLDB, pages 546–557, 1998.
[21] D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing and optimization of multiway spatial joins using R-trees. Proc. PODS, pages 44–55, 1999.