An Overview on Properties, Production Mechanisms and Applications of Graphene

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2018 by IJETT Journal
Volume-61 Number-3
Year of Publication : 2018
Authors : Diogo José Horst, Charles Adriano Duvoisin, Rogério de Almeida Vieira
DOI :  10.14445/22315381/IJETT-V61P225

Citation 

MLA Style: Diogo José Horst, Charles Adriano Duvoisin, Rogério de Almeida Vieira "An Overview on Properties, Production Mechanisms and Applications of Graphene" International Journal of Engineering Trends and Technology 61.3 (2018): 156-160.

APA Style:Diogo José Horst, Charles Adriano Duvoisin, Rogério de Almeida Vieira (2018). An Overview on Properties, Production Mechanisms and Applications of Graphene. International Journal of Engineering Trends and Technology, 61(3), 156-160.

Abstract
Recent years have witnessed a revolution in graphene and its applications. Today, it is a hot topic in science and engineering circles, and attracts more and more interest. This short review article presents the main contributions of research on graphene and its properties, production mechanisms and potential applications. The bibliographic review was performed searching in the Scopus, Web of Science, ScienceDirect, SciELO and Google Scholar scientific databases. As can be seen, the optimal properties of graphene makes it a revolutionary precursor keymaterial for research and development (R&D) to be applied in many fields such as: energy storage, electronics, purification and decontamination, oil and gas, catalysis, thin films, sensors and biosensors, composite materials among many others applications to be discovered.

Reference
[1] 2010. The Nobel Prize in Physics. The Nobelprize.org website. [Online]. Available: http://nobelprize.org/nobel/
[2] G.A.K. Geim, & K.S. Novoselov, The rise of graphene. Nature Materials, 6:183-191, 2007.
[3] N.A.A. Ghany, S.A. Elsherif, H.T. Handal, Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 9:93-106, 2017.
[4] T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nature Photonics, 4:297-301, 2010.
[5] Y. Wu, Y-M. Lin, A.A. Bol, K.A. Jenkins, F. XIA, et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472:74-78, 2011.
[6] R.R. Nair, P. Blake, A.N., Grigorenko, K.S., Novoselov, T.J. Booth, T., Stauber, M.R., Peres, A.K Geim, Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320(5881):1308, 2008.
[7] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nature Photonics, 4:611-622, 2010.
[8] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321(5887):385-388, 2008.
[9] A.A. Baladin, S. Gosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lao, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3):902-907, 2008.
[10] P. Avouris, F. Xia, Graphene applications in electronics and photonics. MRS Bulletin, 37(12):1225-1234, 2012.
[11] J. Kinaret, A.C. Ferrari, V. Fal´ko, J. Kivioja, Graphene-Driven Revolutions in ICT and Beyond. Procedia Computer Science, 7:30–33, 2011.
[12] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy & Environmental Science, 4:1113-1132, 2011.
[13] T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang, C.M. Lieber, Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Letters, 10(3):1098-1102, 2010.
[14] Y. Huang, X. Dong,; Y. Shi, C.M Li, L.J. Li, P. Chen, Nanoelectronic biosensors based on CVD grown graphene. Nanoscale, 2(8):1485-1488, 2010.
[15] Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, H. Zhang, Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano, 4(6):3201-3208, 2010.
[16] M. Larisika, J. Huang, A. Tok, W. Knoll, C. Nowak, An improved synthesis route to graphene for molecular sensor applications. Materials Chemistry and Physics, 136:304-308, 2012.
[17] C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. Zhao, S.Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 6:1388-1414, 2013.
[18] D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chemical Society Reviews, 39:3157-3180, 2010.
[19] J.E.D. Vieira Segundo, & E.O. Vilar, Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos, 11(2):54–57, 2016.
[20] D. Wei, & J. Kivioja, Graphene for energy solutions and its industrialization. Nanoscale, 7;5(21):10108-26, 2013.
[21] F. Yao, Carbon-based nanomaterials as an anode for lithium ion battery [thesis]. Micro and nanotechnologies/Microelectronics. Palaiseau: École Polytechnique X, Sungkyunkwan University Department of Energy Science (DOES) IBS Center for Integrated Nanostructure Physics, 173 p. 2013.
[22] Y. Ma, J. Han, M. Wang, X.S. Chenjia, Electrophoretic deposition of graphene-based materials: A review of materials and their applications. Journal of Materiomics, 4(2):108-120, 2018.
[23] J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics. 13:15384-15402, 2011.
[24] S.K. Tiwari, R.K. Mishra, S.K. Ha, A. Huczko, Evolution of Graphene Oxide and Graphene: From Imagination to Industrialization. Chem. Nano. Mat., 4(7):598:620, 2018.
[25] F. Schwierz, Industry-compatible graphene transistors. Nature, 472, 41-42, 2011.
[26] A. Veligura, P. J. Zomer, I. J. Vera-Marun, C. Józsa, P. Gordiichuk, B. van Wees, Relating Hysteresis and Electrochemistry in Graphene Field Effect Transistors. Journal of Applied Physics, 110, 113708, 2011.
[27] N. Neuberger, H., Adidharma, M. Fan, Graphene: A review of applications in the petroleum industry. Engineering, 167:152-159, 2018.
[28] H. Lee, K. Paeng, I.S. Kim, A review of doping modulation in graphene. Synthetic Metals, 244:36-47, 2018.
[29] T. Mahmoudi, Y. Wang, Y-B. Hahn, Graphene and its derivatives for solar cells application. Nano Energy, 47:51-65, 2018.
[30] L.L. Zhang, R., Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 20:5983–5992, 2010.
[31] Y.B. Tan, & J.M. Lee, Graphene for supercapacitor applications. Journal of Materials Chemistry A, 1:14814-14843, 2013.
[32] X. Zhang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, H. Zhu, Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials. Journal of Applied Physics, 115, 024305, 2014.
[33] W.R. Liu, S.L. Kuo, C.Y. Lin, Y.C. Chiu, C.Y. Su, H.C. Wu, C.T. Hsieh, Characterization and electrochemical behavior of graphene-based anode for Li-ion batteries. The Open Materials Science Journal, 5(Suppl 1: M6):236-241, 2011.
[34] G. Zhou, D. Wang, F. Li, L. Zhang, N. Li, Z. Wu, L. Wen, G. Lu, H. Cheng, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of Materials, 22:5306-5313, 2010.
[35] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Advanced Materials, 10(10):725-763, 1998.
[36] M. Liang, & L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. Journal of Materials Chemistry, 19:5871-5878, 2009.
[37] P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 55:3909-3914, 2010.
[38] D.A.C. Brownson, & C.E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst, 135:2768–2778, 2010.
[39] M. T. Byrne, & Y. K. Gun’ko, Recent advances in research on carbon nanotube-polymer composites. Adv. Mater., 8;22(15):1672-1688, 2010.
[40] C.F. Matos, F. Galembeck, A.J.G. Zarbin, Nanocompósitos Multifuncionais de Látex de Borracha Natural e Nanoestruturas de Carbono. Revista Virtual de Química, 9(1):73-96, 2017.
[41] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future. Prog. Mater. Sci., 56, 1178, 2011.
[42] C.E. Cava, R.V. Salvatierra, D.C.B Alves, A.S Ferlauto, A.J.G. Zarbin, L.S. Roman, Self-assembled films of multi-wall carbon nanotubes used in gas sensors to increase the sensitivity limit for oxygen detection. Carbon, 50(5):1953-1958, 2012.
[43] L.P. Souza, F. Calegari, A.J.G. Zarbin, L.H. Marcolino-Junior, M.F.J. Bergamini, Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode. Agric. Food Chem., 59(14):7620-7625
[44] A.J.G. Zarbin, & M.M. Oliveira, Nanoestruturas de Carbono (Nanotubos, Grafeno): Quo Vadis? Quim. Nova, 36(10):1533-1539, 2013.
[45] R.V. Salvatierra, C.E. Cava, L.S. Roman, A.J.G. Zarbin, ITO-Free and Flexible Organic Photovoltaic Device Based on High Transparent and Conductive Polyaniline/Carbon Nanotube Thin Films, Advanced Functional Materials, 23(12):1490-1499, 2013.
[46] I.N. Kholmanov, S.H. Domingues, H. Chou, X. Wang, C. Tan, J-Y. Kim, H. Li, R. Piner, A.J.G. Zarbin, R.S. Ruoff, Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes. ACS Nano, 7(2):1811–1816, 2013.
[47] M.F.L. De Volder, S. H. Tawfick, R. H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science, 339(6119):535-539, 2013.
[48] V.K Gupta, & T.A. Saleh. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ. Sci. Pollut. Res. Int., 20(5):2828-2843, 2013.
[49] X. An, & J.C. Yu, Graphene-based photocatalytic composites. RSC Advances, 1:1426-1434, 2011.
[50] J. Zhu, A. Holmen, D. Chen, Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences, Special Issue: The World of Catalysis. ChemCatChem, 5(2):357-357, 2013.

Keywords
Graphene, Carbon nanotubes, Nanotechnology, Nanosciences, Nanoengineering.