Analysis of Coplanar Capacitive Coupled Wideband Microstrip Antennas

Analysis of Coplanar Capacitive Coupled Wideband Microstrip Antennas

  IJETT-book-cover           
  
© 2021 by IJETT Journal
Volume-69 Issue-9
Year of Publication : 2021
Authors : Veeresh G. Kasabegoudar
DOI :  10.14445/22315381/IJETT-V69I9P206

How to Cite?

Veeresh G. Kasabegoudar, "Analysis of Coplanar Capacitive Coupled Wideband Microstrip Antennas," International Journal of Engineering Trends and Technology, vol. 69, no. 9, pp. 45-50, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-V69I9P206

Abstract
In this paper, input impedance analysis of rectangular, modified rectangular (one side fractal/staircase shaped), triangular, and semi-elliptical capacitive coupled coplanar microstrip antennas have been presented. The proposed models presented here are for capacitive coupled suspended geometries. These models are developed based on the simple circuit theory approaches, which also include the coaxial feed and capacitively coupled feed strip placed outside the radiator patch. In all cases presented, the calculated results fairly agree with the experimental and simulated data. The proposed models help in finding the input impedance of the capacitively coupled antennas through computer-aided (CAD) models.

Keywords
Capacitive coupling, Input impedance, Semi- Elliptical MSA, ETMSA

Reference
[1] Nikita Kothari, Aman Saraf, Manoj Singh Rawat, Design of Compact Coaxial-Fed Meander Slot Multiband Antenna for Wireless Applications, International Journal of Engineering Trends and Technology, 58(1) (2018) 20-24.
[2] Fath Elrahman I. Khalifa, Ahmed A. Ibrahim, Mamdouh Z. Ibrahim, Mohamed M. Fathalrahman, Muayad A. Alhassan, Design of Dualband Microstrip Antenna with U-shaped slot, International Journal of Engineering Trends and Technology, 55(1) (2018) 35-40.
[3] Rhea Nath, Pramod Singh, Designing and Analysis of MIMO Antenna for UWB Applications, International Journal of Engineering Trends and Technology, 56(1) (2018) 25-30.
[4] A.K. Bhattacharjee, S.R.B. Chaudhuri, A. Mukherjee, D.R. Poddar, and S.K. Chowdhury, Input impedance of rectangular microstrip antennas, IEE Proc Pt. H. 135(5) (1988) 351-352.
[5] Y.T. Lo, D. Solomon, and W.F. Richards, Theory and experiment on microstrip antennas, IEEE Trans. Antennas Propagat., 27(2) (1979) 137-145.
[6] A. L. Buzov, M. A. Buzova, D. V. Mishin, and A. M. Neshcheret, Calculating the input impedance of a microstrip antenna with a substrate of a chiral metamaterial, Journal of Communications Technology Electronics Letters, 63 (2018) 1259-1264.
[7] D. F. Mona, E. S. Sakomura, and D. C. Nascimento, Circularly polarized rectangular microstrip antenna design with arbitrary input impedance, IET Microwaves, Antennas and Propagation, 12(9) (2018) 1532-1540.
[8] A. A. Baba, M. A. Zakariya1, Z. Baharudin, M. Z. U. Rehman, M. F. Ain, and Z. A. Ahmad, Equivalent lumped-element circuit of aperture and mutually coupled cylindrical dielectric resonator antenna array, Progress in Electromagnetic Research C, 45 (2013) 15-31.
[9] S. Singhal, Ultra-wideband elliptical microstrip antenna for terra- Hertz applications, Microw. Opt. Technol. Lett., 61(10) (2019) 2366- 2373.
[10] A. Majumdar, S. K. Das, and A. Das, Ultra-wideband CPW fed patch antenna with fractal elements and DGS for wireless applications, Progress in Electromagnetic Research C, 94 (2019) 131-144.
[11] E.H. Newman and T. Pravit, Analysis of microstrip antennas using moment methods, IEEE Trans. Antennas Propagat., 29(1) (1981) 47- 53.
[12] M. P. Joshi and V. J. Gond, Design and analysis of microstrip patch antenna for WLAN and vehicular applications, Progress in Electromagnetic Research C, 97(2019) 163-176.
[13] J.P. Damiano, J. Bennegueouche, and A. Papiernik, Study of multilayer microstrip antennas with radiating elements of various geometries, IEE Proc Pt. H. 137(3) (1990) 163-170.
[14] J.P. Damiano and A. Papiernik, Survey of analytical and numerical models for probe-fed microstrip antennas, IEE Proc. Microw. Antennas Propagat., 141(1) (1994) 15-22.
[15] V.K. Pandey and B.R. Vishvakarma, Analysis of an E-shaped patch antenna, Microw. Opt. Technol. Lett., 49(1) (2007) 4-7.
[16] J.A. Ansari and R.B. Ram, Analysis of a compact and broadband microstrip patch antenna, Microw. Opt. Technol. Lett., 50(8) (2008) 2059-2063.
[17] A.K. Verma, N.V. Tyagi, and D. Chakraverty, Input impedance of probe fed multilayer rectangular microstrip patch antenna using the modified Wolff model, Microw. Opt. Technol. Lett., 31(3) (2001) 237-239.
[18] G. Mayhew-Ridgers, J.W. Odondaal, and J. Joubert, Efficient fullwave modeling of patch antenna arrays with new single-layer capacitive feed probes, IEEE Trans. Antennas Propagation, 53(2005) 3219-3228.
[19] V.G. Kasabegoudar, D.S. Upadhyay, and K.J. Vinoy, Design studies of ultra-wideband microstrip antennas with a small capacitive feed, Int. J. Antennas Propagat., (2007) 1-8.
[20] V.G. Kasabegoudar and K.J. Vinoy, A wideband microstrip antenna with symmetric radiation patterns, Microw. Opt. Technol. Lett., 50(8) (2008) 1991-1995.
[21] V. G. Kasabegoudar, Low profile suspended microstrip antennas for wideband applications. J. Electromagn. Waves Appl. 25(2011) 1795– 1806.
[22] V.G. Kasabegoudar and K.J. Vinoy, A wideband microstrip antenna with symmetric radiation patterns, IEEE Trans. Antennas Propagat., 58(10) (2010) 3131-3138.
[23] D. K. Singh, B. K. Kanujia, S. Dwari, and G. P. Pandey, Modeling of a dual circularly polarized capacitive-coupled slit loaded truncated microstrip antenna, Journal of Computational Electronics, 19(4) (2020) 1564-1572.
[24] K.C. Gupta, R. Garg, I. bahl, and P. Bhartia Microstrip Lines and Slotlines, 2nd Edition, Artech House, London, (1996).
[25] W. C. Chew and J. A. Kong, Effects of fringing fields on the capacitance of circular microstrip disc, IEEE Trans. Microw. Theo. Tech., 28(2) (1980) 98-104.
[26] P. Mythili and A. Das, Simple approach to determine resonant frequencies of microstrip antennas, IEE Proc.-Microw. Antennas Propgat., 45(2) (1998) 159-162.