
International Journal of Engineering Trends and Technology (IJETT) – Volume 10 Number 12 - Apr 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 590

A Strategic Review of Exploratory Testing
Techniques.
Syed Shujauddin Sameer#1

Lecturer,Department of Computer Science ,King Khaled University,Abha
Saudi Arabia

Abstract— Building quality software is always an important part
of SDLC stages. Testing builds a confidence to examine the
quality of software developed. Exploratory testing requires the
use of knowledge of the testers. There is a requirement to reduce
the involved in the testing .we provide an overview of
exploratory testing with the basic knowledge to the introduction
of heuristics for efficient testing.

Keywords— Testing, Exploratory Testing, Knowledge,
Heuristics .

I. INTRODUCTION
Software development gives rise to software bugs .Bugs

have always been a part of software development .They keep
on their interference with every new software. Bug prevention
techniques are developer oriented. Writing code reviews,
running tool analysis ,unit testing are some of the techniques.
Developers are good at writing the bug detection programs but
if they were why would the software develop bugs. Every
software needs some input and output data .The accumulation
of data over a large amount of time leads to the development
of bugs. Humans can test manually the software by
themselves. Test-case design techniques are for ensuring
coverage, and finding of different types of error [2], [3],

Event though manual testing finds many of the software
bugs when compared with automated testing [13].Many
manual testers are guided by scripts, written in advance, that
guide input selection and dictate how the software’s results are
to be checked for correctness. When the scripts are removed
entirely, the process is called exploratory testing. The testers
are free to interact with the application in whatever way they
want to find the flaws in the system. A Documentation is
often required for the Testers using exploratory methods. Test
results, test cases, and test documentation are generated as
tests are being performed instead of being documented ahead
of time in a test plan. Exploratory testing is especially suited
to modern web application development in agile environment.

.

II. EXPLORATORY SOFTWARE TESTING
The Exploratory testing risk’s wasting a great deal of

time wandering around an application looking for things to
test and trying to find bugs. This may result in a lot of time
being spent finding no good results. To understand avoiding
such situation we need to know Exploratory testing in small,
large and hybrid environment

A. Exploratory Testing in Small Domain
Exploratory testing is an experience-based testing approach

that differs from the highly document-driven test-case-based
testing approach [1].Exploratory testing can be defined as a
simultaneous learning approach that includes test design, and
test execution. The tests are not defined in advance in an
established test plan, but are dynamically designed, executed,
and modified [6]. The term exploratory testing was introduced
by Kaner et al. [4]. The Exploratory Testing approach is in
software testing books since the 1970s [2], but mostly referred
to as an “ad hoc approach” or error detection without any
description of how to perform it. Exploratory Testing in small
can be broken into parts like inputs, state, code paths, user
data, and execution environment. An input is a stimulus
generated from an environment that causes the application to
respond in some manner. Accepting an arbitrarily large
number of inputs is usually done in many applications. These
may vary from tens to hundreds. Software testers must decide
in selecting one input as a better test than another input .It can
often team up on software to cause it to fail. The first way that
testers can decide over this problem is based on what the
developers think constitutes an illegal input. Developers have
three basic mechanisms to define error handlers: input filters,
input checks, and exceptions. A State refers to the
environment of the system. We need to understand the way in
which the input travels from one stage to the other stage in the
system. This will help us to find the error if caused at a certain
point in the system. This can simply be understood as the state
may change in a mobile system as to whether the operator is
in within the range, or the device does not receive the calls. A
code path is a sequence of code statements beginning with
invocation of the software. Branching condition like If then
else, switch statements can also cause a tester to be mislead in
understanding the fault.

Whenever software is expected to interact with large data
stores, such as a database or complex set of user files, testers
have the unenviable task of trying to replicate those data
stores in the test lab. Now a days the data is increasing in
large amounts and stores in large data bases like data
warehouses. Real user databases evolve over months and
years as data is added and modified, and they can grow very
large. We may also need to maintain the privacy for the
sensitive data, as most of the data may turn out to be personal
data which should not be relieved to the outside world .Finally
the environment also holds a major part for the system in
which the application is developed.

International Journal of Engineering Trends and Technology (IJETT) – Volume 10 Number 12 - Apr 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 591

B. Exploratory Testing in Larger Domain
Feature interaction, data flows, and choosing paths are

some of the larger decisions that testers are to make through
the user interface .Here we need to gain an understanding
about how the application works, how bugs can be detected,
and how to force the software to express its capabilities.
Metaphors can be a powerful guide for software testers. A
metaphor will act as a guide to help testers choose the right
input, data, states, code paths, and environment settings to get
the most out of their testing time and budget. The name of the
metaphors itself helps us understand the reality behind it
which is very useful in testing.

Some examples include tourist metaphor is just as a tourist
travels around different places exploring, entering in
mysterious lanes finding new routes will help them a lot. This
requires a lot of planning, Just like it Exploratory testing also
should be applied as if we do not know where to end .We keep
on testing the things as they turn up till we reach our
solution .Like a tourist who finds new routes we also end up
finding new faults in the system. Some of the tours may be
through business districts, historical districts, tourist districts,
entertainment districts, hotel districts , Landmark tour,
intellectual tour[14] . Tours give a structure to testing and help
guide testers to more interesting and relevant scenarios than
they would ordinarily come up with using only freestyle
testing. A goal is required to be set for the testers, by giving a
goal to testers, the tours help guide them through interesting
usage paths that tend to be more sophisticated than traditional
feature-oriented testing where an individual tester will try to
test a single feature in isolation.

A tester can also create his own strategies to be applied to
the application to find the faults. The inputs should be handled
very carefully not giving rise to new bugs.

C. Hybrid Exploratory Testing
Here we try and explore some traditional scenarios to be

induced to the strict working strategy of testing. Based on the
above two environments of testing in small and large we may
include describing the requirements of domain ,demonstrate
how the feature works ,demonstrating integration with new
data, demonstrating things that could go wrong. Scenario
operators are constructs that operate on steps within a scenario
to inject variation into the scenario. When we apply a scenario
operator to an existing scenario, we get a new scenario that we
call a derived scenario. The tester here can increase the
number of records to be tested, repeat some of the records
many number of times, make use of additional
inputs ,optional steps can be removed, finding more than one
way to do the step with the optimal one .Few tours that can
be included may be landmark tour like selecting a specific
feature landmarks out of the scenario. Now randomize the
order of the landmarks so that it is different than the original
scenario. Run some tests with the new order of landmark
features and repeat this process as often as you think is
necessary. Scenarios can represent an excellent starting point
for exploration, and exploration can add valuable variation to

otherwise limited scenarios. When I implement such strategy
on my students they all end up wandering as a new tourist and
really finding the flaws. But they stick up to the type of data in
the input box, Length of the data, size of the data.

D. Heuristic Knowledge
One way of applying knowledge in software testing is to

use it as a test oracle. A test oracle is a concept referring to a
method used to distinguish between a correct and an incorrect
result during software testing [3], [6], [7], [8].Recognizing
failure is one of the most crucial activities in testing, and the
existence of a test oracle is recognized as a fundamental
requirement in all kinds of testing [7], [8],[9], [10].

The main idea of Exploratory testing is that a tester uses
any available source of information available at the context
of the system. We need to discuss the different types of
knowledge and search for their application in different parts of
the system. Faults have to be identified within the system and
rectification should be carried on. Searching a strong
Hypothesis is essential in Exploratory Testing . Analysis
revealed three types of knowledge that testers utilized to
recognize failures in the observed sessions.[1]. There is also a
question of application of knowledge to exploratory testing.
Based on analysis, there are two main approaches. First, the
most common way of applying knowledge was using
knowledge as a test oracle . A predefined set of assumptions
of results .In real testing, the outcome is predicted and
documented before the test is run [3]. In practice,
requirements, specifications, and test cases, are not more
perfect in terms of accuracy. The test results are evaluated in
practice using the human oracle [11], [12].

Applying knowledge as an oracle differs clearly from the
traditional test-case based paradigm in which the expected
result is specified prior to test execution. Knowledge can be
categorized into domain knowledge, system knowledge, and
generic software engineering knowledge.

These issues can still be enhanced by the application of
heuristics .Heuristics can be defined as the process that
requires a number of testers to find the usability problems in
various scenario’s of interfaces and also most important
require less amount of time .It is one of most important
mechanism and used in both industry and academics .The
testers should become familiar with the environment first.
This will help them to understand the purpose of their work.
The domain should be made familiar to the testers. The testers
should add new heuristics as they get deep in their effort and
most important they should validate them whenever required.
Usability testing in makes use of end user representatives who
perform a set of carefully designed task. The heuristical
approach finds more usablity problems when compared to
other testing strategies .The testers are free to use their
knowledge in many scenarios and find new ways to explore
faults.It is the responsibility of the tester to ensure that no path
is lead unexplored. Heuristic approach would help him in a lot
of extent.

International Journal of Engineering Trends and Technology (IJETT) – Volume 10 Number 12 - Apr 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 592

Fig 1.Classification of Exploratory Testing.

The above Figure aids us in understanding Exploratory

Testing in various domains.

III.CONCLUSION
Exploratory testing is an essential approach from the low

levels to the high levels. It is efficient way to understand the
domain knowledge. Software failures aid in developing an
efficient product at the end. Exploratory testing has many
more aspects to be explored .Experience and knowledge play
a very important role in it. Here we have focused on some
basic aspects of Exploratory testing with a application of
knowledge ,failure recognition .Application of heuristical
approach should be at a greater depth to analyse exploratory
testing with results. Further this study will help the
researchers to get an overview of the exploratory testing
techniques helping them to perform better analysis of
software.

REFERENCES

[1] The Role of the Tester’s Knowledge in Exploratory Software Testing Juha
Itkonen,Member, IEEE,MikaV.Ma¨ntyla ,̈ Member, IEEE, and Casper
Lassenius,Member, IEEE. IEEE Trans on Software Engineering, vol.
39, No. 5, May 2013

[2] G.J. Myers,The Art of Software Testing.John Wiley & Sons, 1979.
[3] B. Beizer,Software Testing Techniques.Van Nostrand Reinhold,1990
[4] C. Kaner, J. Falk, and H.Q. Nguyen,Testing Computer Software.John

Wiley & Sons, Inc., 1999
[5] J.B. Goodenough and S.L. Gerhart, “Toward a Theory
 of Test Data Selection,”IEEE Trans. Software Eng., vol.1, no. 2,

pp. 156-173,Mar 1975
[6] A. Abran, J.W. Moore, P. Bourque, R. Dupuis, and L.L.
 Tripp,Guide to the Software Engineering Body of
 Knowledge.IEEE CS, 2004.
[7] W. Howden, “Theoretical and Empirical Studies of
 Program Testing,”IEEE Trans. Software

 Eng.,vol. 4, no. 4, pp. 293-298, July 1978.
[8] L. Baresi and M. Young, “Test Oracles,” Technical
 Report CISTR-01-02, Dept. of Computer and
 Information Science, Univ. of Oregon, Eugene, Aug.
 2001
[9] J.A. Whittaker, “What Is Software Testing? and Why Is
 It So Hard?”IEEE Software,vol. 17, no. 1, pp. 70-79,
 Jan./Feb. 2000.
[10] A. Memon, I. Banerjee, and A. Nagarajan, “What Test
 Oracle Should I Use for Effective GUI Testing?”Proc.
 18th Int’l Conf. Automated Software Eng.,pp. 164-173,
 2003.
[11] D. Martin, J. Rooksby, M. Rouncefield, and I.
 Sommerville,‘Good’ Organisational Reasons for
 ‘Bad’ Software Testing: An Ethnographic Study of
 Testing in a Small Software Company,”Proc. Int’l
 Conf. Software Eng.,pp. 602-611, 2007.
[12] J. Rooksby, M. Rouncefield, and I. Sommerville,
 “Testing in the Wild: The Social and Organisational
 Dimensions of Real WorldPractice,”Computer
 Supported Cooperative Work,vol. 18, nos. 5/6,
 pp. 559-580, 2009.
[13] Defect Detection Efficiency: Test Case Based vs. Ex-p
 loratory Testing Juha Itkonen, Mika V. Mäntylä, and
 Casper Lassenius Proceedings of International
 Symposium on Empirical Soft-ware Engineering and
 Measurement, 2007, pp. 61–70.
[14] Exploratory Software Testing ,James A.Whittaker.
 1965.

Exploratory Testing

Small domain

Larger Domain

Hybrid Testing

Heuristics

