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Abstract— In medical imaging, image interpolation is a key aspect. 
Some interpolation approaches are proposed to overcome the problem 
of low resolution in medical imaging. MRI is an invaluable modality 
in the medical field. Particularly, neuro imaging with MRI helps 
physicians to study the internal structure and functionality of the 
human brain. In these cases, high resolution and isotropic images are 
important because higher isotropic resolution could theoretically 
reduce partial volume artifacts, leading to better accuracy/precision in 
deriving volumetric measurement and decreasing considerable errors 
in registration . In this case, invaluable information will be lost in the 
latter direction. The objective is to recover and fill in this missing 
information in order to enable the physicians to obtain a more accurate 
perspective of the underlying structure available in the data by 
optimizing the choice of interpolation techniques. Therefore, this 
paper focuses on investigating the effect of various polynomial based 
interpolation functions on zooming low resolution images.  

Keywords— Pixel, Quantization, Sampling, zooming and 
interpolation. 

I. INTRODUCTION 
 

        Many applications now a days rely on digital image 
interpolation. Some examples are simple spatial magnification 
of images or video sequences (e.g. printing low resolution 
documents on high resolution (hr) printer devices, digital 
zoom in digital cameras or displaying Standard Definition 
video material on High Definition television (HDTV)), 
geometric transformation and registration (e.g. affine 
transformations or computer-assisted alignment in modern X-
ray imaging systems), demosaicing (reconstruction of color 
images from CCD samples), etc. Many interpolation methods 
already have been proposed in the literature, but all suffer 
from one or more artifacts. Linear or non-adaptive 
interpolation methods deal with aliasing (e.g. jagged edges in 
the up scaling process), blurring and/or ringing effects. Well-
known and popular linear interpolation methods are nearest 
neighbour, bilinear, bicubic and interpolation with higher 
order (piece-wise) polynomials, b-splines, truncated or 
windowed sinc functions, etc. [7,10]. Non-linear or adaptive 
interpolation methods incorporate a priori knowledge about 
images. Dependent on this knowledge, the interpolation 
methods could be classified in different categories. This paper 
focuses on zooming low resolution MRI digital images. The 
captured images are usually processed by digital image 
processors which render an image in a two-dimensional grid 
of pixels; characterized by a discrete horizontal and vertical 
quantization resolution. This finite resolution, especially for 

low resolution images, often results in visual artifacts, known 
as “aliasing” artifacts. These are very common in low 
resolution images and usually these aliasing artifacts either 
appear as zigzag edges called jaggies or produce blurring 
effects. Another type of aliasing artifacts is variation of color 
of pixels over a small number of pixels (termed pixel region). 
This type of aliasing artifacts produces noisy or flickering 
shading. A typical example of these artifacts is shown in Fig.1. 
These artifacts can be reduced by increasing the resolution of 
an image. This can be done using image interpolation, which 
is generally referred as a process of estimating a set of 
unknown pixels from a set of known pixels in an image. In 
this paper different polynomial based interpolation techniques 
are discussed which include ideal interpolation, nearest 
neighbour, bilinear, bicubic, high resolution cubic spline, 
Lagrange and Lanczos interpolation. These functions are then 
applied on MRI image of brain and evaluate the performance 
of each interpolation function discussed in paper. This paper, 
therefore, is divided into two parts. The first part presents the 
analytical model of various interpolation functions. The 
second part investigates the various quality measures of image 
like SNR, PSNR, MSE, SSIM, time taken of the zoomed 
images using these functions.  
 

 
Fig. 1. Typical example showing the effects of aliasing on the sharp corners, 
when zooming operation is performed. 
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II. RELATED WORK 
   The key interpolation methods include sinc, nearest 
neighbor, Bilinear, Bicubic, Lagrange, Lanczos and high 
resolution cubic spline. All these interpolation techniques are 
polynomial based. Dimitri V. et. al.[1] presented an approach 
which minimizes the loss of information, in a least-squares 
sense, while resampling between orthogonal and hexagonal 
lattices. Authors implemented the proposed resampling 
method for a gravure printing application. Chung K.H. [2] et. 
al. presented a fractal-based image enlargement technique to 
reduce the degradation  problem. The technique can preserve 
the details in edge regions while maintaining the smoothness 
in flat regions, which is superior to conventional image 
enlargement techniques such as bilinear interpolation and 
cubic convolution. Hadhoud M.M. et. al. [3] suggested an 
adaptive warped distance method for image interpolation. This 
method depends on modifying the warped distance technique 
for image interpolation taking into consideration the level of 
activity in local regions of the image. The method is 
performed by weighting the pixels used in the interpolation 
process with different adaptive weights. The adaptation can be 
extended to different traditional interpolation techniques such 
as bilinear, bicubic and cubic spline techniques as well as to 
the warped distance technique. Malvar H. S. et. al. [4] 
introduced a new interpolation technique for demosaicing of 
color images produced by single-CCD digital cameras. 
Authors showed that the proposed simple linear filter can lead 
to an improvement in PSNR of over 5.5 dB when compared to 
bilinear demosaicing. Down sampling is widely applied to 
reduce the size of large images and improve the processing 
speed. Zhen Y. et. al. [5]  presented the performance 
evaluations among several interpolation techniques (bilinear, 
bicubic, wavelet and lanczos) for ultrasound breast phantom 
data. Two major metrics: The Hausdorff Distance Measure 
(HDM) and Polyline Distance Measure (PDM) were applied 
to measure the performance of the segmentation. Authors 
showed that without scarifying the quality of ultrasound 
images, the speed of system processing using down sampling 
strategies is increased. By analyzing the deterministic 
relationship between the lower-resolution and the 
corresponding higher resolution images, Shen D.F. et. al. [6] 
proposed two core techniques namely MLF (Modified 
Laplacian Filter) and IC (Intensity Correction) for image 
resolution enhancement, by which the image size can be 
increased revealing better details of the image contents. The 
simple 3x3 MLF is designed for properly restoring the 
frequency components attenuated in the averaging and down-
sampling degradation process. For accurate image processing, 
it is critical to best maintain the image resolution during the 
image conversion. Xiangjian H. et. al. [7] presented a bilinear 
interpolation algorithm that is used to convert an image from 
square structure to hexagonal structure. Gharavi H. et. al. [8] 
presented a spatial interpolation algorithm for Intra-Frame 
error concealment. The method aims at interpolating areas in 
the image, which have been affected by packet loss. Authors 
proposed an edge detection technique to aid the bilinear 

interpolation. The edge-detection scheme is based on 
designing a robust Hough transform-based technique that is 
capable of systematically connecting edges irrespective of the 
number of edge points surrounding missing areas. The 
connected edges are used to divide the missing areas into 
different regions for interpolation along the directions of each 
detected line. Prasantha H. S. et. al. [9] highlights the 
universal quality index by comparing with error measures 
such as MSE and PSNR for different interpolation techniques 
such as nearest neighbor, bilinear and bicubic interpolation 
and the comparison is done for different interpolation schemes 
using universal image quality index. Majority of the 
interpolation mechanisms enhance both smooth and detailed 
regions which degrades the image quality. Bera D. et. al. [10] 
presented a warped distance based adaptive bilinear 
interpolation technique with selective sampling. This 
algorithm enhances the detail regions and preserves the 
smooth regions. Zhiwei L. et. al. [11] presented an 
interpolation algorithm for magnifying images based on the 
relative color difference of pixels (RCD), with its basic 
principle and implementation method. Uma G. et. al. [12] 
presented a  lossy  image compression  algorithm  for  
DICOM  (  Digital  Imaging  and Communications  in  
Medicine)  images  using  Bilinear interpolation.  This  
method  presents  a  technique  for classification  of  the  
image  blocks  on  the  basis  of  threshold value  of  
variance.Image resizing is widely applied in many fields such 
as medical image processing, consumer electronics and space 
application. Jie L. et. al . [13]  presented a two-phase adaptive 
image zooming method for gray-scale images. For each local 
area under processing, the first work is trying to find a best-
matched remote window within the image based on the 
structural similarity. The second step is then applying the 
relationship of pixels in the remote window for evolving 
interpolation functions, which is then used to calculate the 
expected values of pixels for filling the enlarged grid. The 
interpolation function varies as the sample window moving 
across the whole image.  M. P. et. al. [14]  presented a new 
method for image resizing based on Bessel transform . The 
performance of image resizing based on BT is compared to 
that of spatial domain based resizing techniques. Sheu P. et. al. 
[15] presented a novel omni-image interpolation technique. 
Omni-images are taken by non-linear catadioptric camera and 
offer important scientific and engineering benefits but often at 
the expense of the reduced visual accuracy.  
 

III. VARIOUS INTERPOLATION FUNCTIONS 
 

The description of various polynomial based interpolation 
techniques; ideal, nearest neighbour, linear, B-spline, high 
resolution cubic splines, Lagranges and Lanczos interpolation 
are presented below in Table I. 
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INTERPOLATING FUNCTIONS DESCRIPTION  

Ideal  

ℎ௦௜௡௖(ݔ) = 	
sin(ݔߨ)
ݔߨ =  (ݔ)ܿ݊݅ݏ

The ideal interpolating function has constant one value in the pass band and zero value 
in stop band in frequency domain. A closely ideal interpolating function is sinc 
function, which has infinite length in space domain and is sinusoidal in behavior. This 
feature makes the interpolation usually not practical; as it is difficult to convolve signal 
with such infinite function. Intuitively, one solution is to truncate the sinc function to a 
shorter length. However, truncating the sinc function in space domain will make the 
frequency domain representation no longer a perfect rectangle. The response in pass 
band will not be flat like before and there will be some irregular pattern over the stop 
band.  
 
 

Nearest Neighbor  

ℎ(ݔ) = ቄ |ݔ|							1 	< 0.5
 ݁ݎℎ݁ݓ݁ݏ݈݁							0		

The nearest-neighbor interpolation function has a rectangular shape in space domain. 
The nearest-neighbor method is usually reported as the most efficient from the 
computation point of view; but, at the cost of poor quality as can be observed from its 
frequency domain. It is because the Fourier Transform of a square pulse is equivalent 
to a sinc function; with its gain in pass band falls off quickly. In addition, it has 
prominent side lobes as illustrated in the logarithmical scale. These side-lobes usually 
results in blurring and aliasing effects in the interpolated image. When applying 
nearest-neighbor algorithm for image interpolation, the value of the new pixel is made 
the same as that of the closest existing pixel.  
 
 

Linear  

ℎ(ݔ) = 	 ቄ 1	 − |ݔ|								|ݔ| < 1
ݎℎ݁ݓ݁ݏ݈݁															0	  ݁

The linear interpolation function has a triangle shape in space domain. Comparing to 
the nearest-neighbor function, this function is closer to the ideal square shape function 
so that more energy can be passed through. The side lobes in the stop band are also 
much smaller, though still considerable. Therefore, the performance of linear 
interpolation is reported better than the nearest-neighbor interpolation. However in 
frequency domain, this method is still attenuating the high frequency components and 
is aliasing data around the cutoff frequencies. This interpolation method has been 
reported to work better for image reduction, rather than image enlargement. 
 
 

B-splines  

(ݔ)௞௡ߚ	 = ∑ (ିଵ)ೖ	(௡	ାଵ)
(௡	ାଵି௞)!௞!

	(௡ାଵ
ଶ

+ ݔ	 − ݇)௡௡ାଵ
௞ୀ଴                                 

∀௫∈ ܴ,∀௡	∈ 	 ∗ܰ	, 
And,         
       (ܺ)ା௡ = 	 (max	(0, 	௡((ݔ 		݊	 > 0   

The image interpolated by nearest-neighbor method usually exhibits jaggedness while 
linear interpolator causes blurring Basis spline (B-spline) interpolations have, 
therefore, been introduced. The concept of splines and their mathematical 
representations were first described by Schoenberg in 1946 [6]. By definition, splines 
can be referred as piecewise polynomials with pieces that are smoothly connected 
together . B-splines are one of the most commonly used family of spline functions. 
These can be derived by several self-convolutions of a so called basis function.  
 
 

High resolution cubic splines  

(ݔ)ଷߚ

= ൜ܽଷ଴ݔ
ଷ + 	 ܽଶ଴ݔଶ + ܽଵ଴ݔ + ܽ଴଴				ݔଵ ≤ ݔ < ଶݔ

ܽଷଵݔଷ + 	 ܽଶଵݔଶ + ܽଵଵݔ + ܽ଴ଵ				ݔଶ ≤ ݔ < ଷݔ
 

 
 
 

The cubic spline has better response in both pass band and stop band comparing with 
the nearest-neighbor and linear functions. However, the function is positive over the 
whole interval in the space domain which will smooth more than is necessary below 
the cut-off frequency. Therefore, the cubic B-spline function needs to be modified to 
have negative values in the space domain. This is called high resolution cubic spline 
function [8] which is symmetrical about zero. The constant a will be negative, in order 
to have the function positive in the interval (ݔଵ,ݔଶ)  and negative in the interval 
,ଶݔ)  ଷ). It can be observed that the same provides a better high-frequency performanceݔ
than the cubic B-spline described above. The value of a is taken over the interval       
(-2,0). When the value of a is increased from -2 to 0, then the frequency response 
matches more closely to the ideal rectangular function in the pass band and the 
transition between the pass band and stop band gets more sharper. In addition, the 
amplitude of the side band is also decreased.  
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Lagrange  
௛௡(௫)ܽݎ݃ܽܮ

= ቐ
ෑ

݊− ݅ − ݔ
݊ − ݅

ேିଵ

௝ୀ଴,௝ିேଶାଵஷ௡
,݊ − 1 ≤ ݔ ≤ ݊

݁ݎℎ݁ݓ݁ݏ݈݁																																																					,0
 

where ݅ = ݆ − ே
ଶ

+ 1				ܽ݊݀		݊ ∈ ቄ− ே
ଶ

+ 1,−ே
ଶ

+

2,⋯ ,ே
ଶ
ቅ are the Lagrange kernels. 

Lagrange interpolation is a famous, classical technique for interpolation. The Lagrange 
interpolation is way to pass a kernel of degree N-1 through N x N points and is defined 
in X direction (for 2D image, adds Y direction). The Lagrange kernel for N=1 equals 
the nearest neighbor interpolation. In this case, N=2 equals the linear interpolation. The 
Lagrange kernels for N=4 and N=5 supporting points result in cubic and quartic 
polynomials. 

Lanczos  

݊;ݔ)ܮ > 0)

= ൜(ݔ)ܿ݊݅ݏ ∙ ݔ)ܿ݊݅ݏ ݊⁄ |ݔ|ݎ݋݂					( ≤ ݊
݁ݏ݅ݓݎℎ݁ݐ݋																																					0

 

Where     

(ݔ)ܿ݊݅ݏ = ቐ
ݔ	ݎ݋݂																									1 = 0
(ݔߨ)݊݅ݏ
ݔߨ ݁ݏ݅ݓݎℎ݁ݐ݋													

 

Lanczos interpolation has the best properties in terms of detail preservation and 
minimal generation of aliasing artifacts for geometric transformations not involving 
strong downsampling. These algorithms provide an accuracy of 1/216 and are about 
three times faster than their function evaluation counterparts. As happens with bicubic 
spline interpolation, the main drawback of Lanczos interpolation is undershoot, more 
commonly known as ringing, are caused by negative lobes of the interpolation 
functions falling over bright isolated pixels or high-contrast edges. This is a drawback 
of the Lanczos and bicubic spline interpolation algorithms. 
 

For image processing, the one-dimensional interpolation 
function mentioned in Table I need to be transformed into 
two–dimensional function. The general approach is to define a 
separable interpolation function as the product of two one-
dimensional functions as: 

௜ݔ)݂ (௜ݕ, =
௜ݔ − ଶݔ
ଵݔ − ଶݔ

௜ݕ − ଶݕ
ଵݕ − ଶݕ

(ଵݕ,ଵݔ)݂

+
௜ݔ − ଵݔ
ଶݔ − ଵݔ

௜ݕ − ଶݕ
ଵݕ − ଶݕ

(ଵݕ,ଶݔ)݂

+
௜ݔ − ଶݔ
ଵݔ − ଶݔ

௜ݕ − ଵݕ
ଶݕ − ଵݕ

(ଶݕ,ଵݔ)݂

+
௜ݔ − ଵݔ
ଶݔ − ଵݔ

௜ݕ − ଵݕ
ଶݕ − ଵݕ

 (ଶݕ,ଶݔ)݂

 
 
 
(1) 

This 2D interpolation function is termed as bilinear Lagrange 
form equations[12-14].Using this method, the cubic 
interpolation (Table I) in two dimensions [9-11] can be 
written as: 

(ݕ,ݔ)݂ =
1

6ܶ
൛ ሚ݂௟ିଵ(ݔ)[(3 + ଷ(ݕ − 4(2 + ଷ(ݕ

+ 6(1 + ଷ(ݕ − [ଷݕ4
+ ሚ݂ଵ(ݔ)[(2 + ଷ(ݕ
− 4(1 + ଷ(ݕ + [ଷݕ6
+ ሚ݂௟ାଵ(ݔ)[(1 + ଷ(ݕ − [ଷݕ4
+ ሚ݂௟ାଶ(ݔ)ݕଷൟ		 

 
 
 
(2) 

Where,0 ≤ ݔ ≤ 1; 		0 ≤ ݕ ≤ 1,T= sampling duration, 
ሚ݂௝(ݔ) = ଵ

଺்
∑ ܾ௜௝ ∗ ଷି௜ݔ , ݆ = ݈ − 1, ݈ + 1, ݈ +ଷ
ூ

2,								  

(3) 

and,  

௝ܾ = ܷ ∗ ௝ܿ ; 	and	ܷ = ቎
−1 		3 −3 	1
		3 −6 				3 	0
−3
		1

		0
			4	 				3 	0

1 	0

቏ 
 
(4) 

where ௝ܾ = [ܾ଴௝ ,ܾଵ௝ ,ܾଶ௝ , ܾଷ௝]்   and 
௝ܿ = [ܿ௞ିଵ,௝ , ܿ௞,௝ , ܿ௞ାଵ,௝ , ܿ௞ାଶ,௝]் 

 

The values of b & c matrix[15-16] can be computed by 
substituting x=0 and y=0 in equation (2) above. These 
functions are then applied to MRI image of brain. The results 

obtained are shown in Fig. 2 & 3. A discussion on the results 
obtained is presented in next section.  

IV. RESULTS AND DISCUSSIONS 
       For evaluating the performance of various interpolation 
functions they are implemented in Matlab. To investigate the 
effects of interpolation functions, a MRI image of 
brain(342x390 pixels) is taken Fig. 2(a). This image is 
downsampled or resized to 50% Fig. 2(b). This reduced size 
image is then zoomed equal to its original size using different 
interpolation functions discussed aboveThe Signal to noise 
ratio(SNR), Peak signal-to-noise (PSNR), Mean Square 
Error(MSE), structural similarity index(SSIM) and time taken 
of these images is computed with respect to the original image 
and is tabulated in Table II. From the results it is found that 
the SNR, PSNR and SSIM in case of  High resolution cubic 
spline with a=-0.5 is higher. This implies that, the high 
resolution cubic spline functions have shown the best response 
in the pass band. The response is found to be flat at the 
intermediate frequencies for the parameter a=-0.5. MSE is 
minimum in case of High resolution cubic spline with a=-0.5. 
Time taken to zoom the image to its original size is minimum 
in case of Lanczos interpolation and maximum in high 
resolution cubic spline  a=-2.0, which confirms the theoretical 
results as well. The nearest neighbor function shows  better 
response than ideal and linear functions  in the pass band but 
suffers from the drawback that  it offers more attenuation even 
at very low frequencies. The linear and nearest neighbor 
interpolating functions have poor stop band performances; 
which means that resampling after interpolation with either of 
these two functions will result in a large amount of aliasing. 
Fig. 3 shows the results of resampling (zooming) an image 
with nearest neighbor, bilinear, bicubic, Lagrange, Lanczos 
and high resolution cubic spline function with a=-2, -1.5, -1, -
0.5 and 0.  From the results, it is found that the SNR, PSNR 
and SSIM in case of  High resolution cubic spline with a=-0.5 
is higher.  
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(a)Original Image (b)Reduced Image 

 

 

Fig.2 (a) Original MRI image of Brain (b) Downsampled  by 50% 

V CONCLUSION 
     MRI is an invaluable modality in the medical field. In 
these cases, high resolution and isotropic images are important 
because higher isotropic resolution could theoretically reduce 
partial volume artifacts, leading to better accuracy/precision in 
deriving volumetric measurement and decreasing considerable 
errors in registration. So to interpret low resolution MRI 
images various polynomial based interpolation functions are 
applied on MRI image with zooming factor 2.From the results, 
it is found that high-resolution cubic spline have a better 
frequency response than all other functions discussed above. 
When these functions are applied for the purpose of zooming 
digital images, the best response was obtained with the high-
resolution cubic spline functions; however, at the expense of 
increase in computation time.  

 
TABLE II COMPARISON OF RESULTS OF VARIOUS 

INTERPOLATION FUNCTION 
 

Interpolati
on 

SNR PSNR 
(dB) 

MSE SSIM Time 
Taken 
(sec) 

Nearest 
Neighbor 

8.2899 21.4887 461.5425 0.8482 0.0420 

Bilinear 8.0332 23.2518 307.5412 0.8796 0.0209 
Bicubic 8.2160 23.1760 312.9563 0.8888 0.0143 
Lagrange 8.1503 23.1666 313.6288 0.8884 0.0127 
Lanczos 9.7373 24.1048 252.6989 0.9080 3.7195 
High 
resolution 
cubic        
(a=-2.0) 

9.2900 24.6444 223.1709 0.9122 4.2224 

High 
resolution 
cubic       
(a=-1.5) 

9.6230 25.4557 185.1423 0.9266 4.1984 

High 
resolution 
cubic        
(a=-1.0) 

10.2364 26.0135 162.8293 0.9355 4.1732 

High 
resolution 
cubic        
(a=-0.5) 

10.3829 26.1477 157.8756 0.9375 4.2169 

High 
resolution 
cubic 
(a=0) 

9.9984 25.7989 171.0762 0.9309 4.1779 
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                                Fig. 3 MRI image of brain zoomed equal to its original size by different polynomial based interpolation functions  

 


