
International Journal of Engineering Trends and Technology (IJETT) – Volume 12 Number 2 - Jun 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 105

Speed-up Extension to Hadoop System
Sayali Ashok Shivarkar,

Computer Network, Sinhgad College of Enginnering
Pune, India

Abstract— For storage and analysis of online or streaming data
which is too big in size most organization are moving toward
using Apaches Hadoop- HDFS. Applications like log processors,
search engines etc. using Hadoop Map Reduce for computing
and HDFS for storage. Hadoop is most popular for analysis,
storage and processing very large data but there need to be lots
of changes in hadoop system. Here problem of data storage and
data processing try to solve which helps hadoop system to
improve processing speed and reduce time to execute the task.
Hadoop application requires streaming access to data files.
During placement of data files default placement of Hadoop does
not consider any data characteristics. If the related set of files is
stored in the same set of nodes, the efficiency and access latency
can be increased. Hadoop uses Map Reduce framework for
implementing large-scale distributed computing on unpredicted
data sets. There are potential duplicate computations being
performed in this process. No mechanism is to identify such
duplicate computations which increase processing time.
Solution for above problem is to co-locate related files by
considering content and using locality sensitive hashing
algorithm which is a clustering based algorithm will try to co -
locate related file streams to the same set of nodes without
affecting the default scalability and fault tolerance properties of
Hadoop and for avoiding duplicate computation processing
mechanism is developed which store executed task with result
and before execution of any task stored executed tasks are
compared if task find then direct result will be provided . By
storing related files in same cluster which improve data locality
mechanism and avoiding repeated execution of task improves
processing time, both helps to speed up execution of Hadoop.

Key term — Hadoop, Hdfs, MapReduce, Hashing Algorithm.

I. INTRODUCTION

Apaches Hadoop is open source implementation of Google
Map/Reduce framework, it enables data intensive, distributed
and parallel applications by diving massive job into smaller
tasks and massive data sets into smaller partition such that
each task processes a different partition in parallel. Map tasks
that process the partitioned data set using key/value pairs and
generate some intermediate result. Reduce tasks merged all
intermediate values associated with keys. Hadoop uses
Hadoop Distributed File System (HDFS) which is distributed
file system, used for storing large data files. Each file is
divided into numbers of blocks and replicated for fault
tolerance. HDFS cluster is based on master/slave architecture.
Name Node work as master which manages and store the file
system namespace and provide access to the client. The slaves
are number of Data Nodes. HDFS provides a file system name
space and allows user data to be stored in files. File is divided
into number of block; size of block is normally 64MB which
is too large.

The default placement of Hadoop does not consider any data
characteristics during placement. If related files are kept in
same set of data nodes, the access latency and efficiency will
be increased. The file similarity will be calculated by
comparing content of it and to reduce comparison, a Locality
Sensitive Hashing will be used. Hash function hash the points
using different hash function in such way that probability of
collision will be higher for similar points. Client is controlling
overall process and providing sub-clusterid where file will be
placed otherwise default placement strategy is used. Data
aware cache is introduced for avoiding execution of repeated
task, which requires each data object indexed by its content
and also implement cache request and reply protocol. The rest
of this paper is organized as follows: Section II gives
overview of related work done before; Section III describes
programmer’s design which include mathematical model;
Section IV discuses result and discussion and Section V
conclude with conclusion.

II. RELATED WORK
Performance of Hadoop system will be improved if related
files are placed in similar set of nodes. Considering past work
some techniques are used which provides some degree of
collocation but needs lots of changes in framework. Co-
locating related file in HDFS, Co-Hadoop[1],provides solution,
which helps the application to control data placement at file
system level. For achieving this, one new file level property is
added to HDFS called Locator, which gives information
where file will be place. File locator table is added to Name
Node to store locator information. If files are having same
locator value then all files are placed on same set of node but
if locator information is not provided then default placement
strategies of Hadoop is used. Co-Hadoop is best for
applications which continuously consume data and it
improves performance without effecting Hadoop framework.
But Co- Hadoop requires detailed knowledge of input to place
file with correct locator value.

RCFile[2], is data placement structure introduced for
MapReduce based data warehouse like HDFS. It combines
advantage of row and column structure. RCFile is based on
principal if data is in one row then that will be placed on same
set of nodes.

Performance of data intensive application is enhanced if data
is placed near to the computation node this mechanism is used
in DARE[3]. High degree of data locality is achieved in
DRAE using data replication mechanism, in which each node
executes algorithm for creating replicas of heavily accessed

International Journal of Engineering Trends and Technology (IJETT) – Volume 12 Number 2 - Jun 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 106

files in short interval of time. Usually when map task requires
data on remote node, that data will be fetched and used
without storage but in DARE that remote data will be stored
locally by increasing number of replication factor by one.
DARE improves data locality without network overhead but
requirement of storage is very high. Considering data in
HDFS can be classified into three data access patterns:

1. Hot data, data having concurrent access
2. Cold data, data having rarely access or unpopular data and
3. Normal data, rest of data other than hot and cold.

Data in HDFS is replicated three times by default, replication
of hot data only on three machines is not adequate at same
time replicating cold data on three machines introduces
storage wastage. Considering all this ERMS[4], uses
active/standby model where some node working as active
node where hot data is replicated on more and more machine
and at same time cold data are removed. In non-dedicated
distributed computing environment host could be interrupted
randomly and potentially leaves system. When host leaves
system, task running on host will fail to execute. An
interrupted task can be re-executed on different host or on
same host if it returns after interruption.

Considering this ADAPT[5], works to achieve high reliability
without need of additional data replication facility . Based on
availability of host ADAPT distribute data blocks dynamically
which improves data locality and reduces network traffic.
ADAPT guarantees that all host finishes processing of their
allocated job at same time which improve execution time.
When there are large numbers of small files, each having less
than size of block size of HDFS then that file size become
block size. Hence the corresponding metadata stored at Name
Node is considerably high and accessing these files lead to
network overhead. To solve this problem of small files,
solution is developed called Extended Hadoop (EHadoop) [6],
in which set of related files combined into one large file to
reduce a file count and job of finding related files is done by
client. Indexing mechanism is used to access single file from
set of related and combined file which improves I/O
performance and minimizes load on Name Node.

Another way to find data relation is to analyze log file which
provides information of commonly access files, this technique
is used in DRAW[7]. DRAW dynamically scrutinizes data
access from system log files. It extracts optimal data grouping
and re organizes data to achieve maximum parallelism per
group. DRAW work as follow: first, data access history graph
is generated to exploit system log files to learn data grouping
information. In second step weight of file is calculated and
generates the optimized file grouping and finally it uses
optimal data placement algorithm to form optimal data
placement. With the development in social network the
amount of image and video upload on internet site is
increasing day by day. HDFS is not designed for storing such
small mass files so Hadoop Image Processing

Interface(HIPI)[8], is developed, which provides interface for
computer vision with MapReduce technology. Hadoop
Multimedia Processing Interface based on HIPI, aiming to
solve problems of storage of small multimedia files effectively
and provides interface for user. Here HMPT finds small image
and video files automatically and combined into one large file.
Clustering is the classification of object like data, articles, and
documents etc. into different groups in such way that object in
the group have some same characteristics. Conventional
clustering can be divided into hierarchical and partitional
clustering. Hierarchical clustering finds new cluster using
previously created cluster and partitional clustering finds the
clusters all at once.

III. PROGRAMMER’S DESIGN

Data placement and data processing modified in such way that
it does not affect default characteristics of hadoop and also
improves data placement and processing speed of hadoop. For
placing related files clustering algorithm is used. Conventional
clustering methods are inadequate because these methods may
requires multiple iteration and whenever an new object arrive
it need to be compare with all existing clusters to find similar
one but it requires much delay because cluster is very large.

Instead of using above method for data placement, we propose
a method for clustering related files incrementally in Hadoop-
HDFS using locality sensitive hashing. The idea behind
locality sensitive hashing is that similar files will have similar
signature which helps to easily find similar files. If similar
files are stored in same nodes then data locality mechanism of
hadoop system is improved.

Avoiding execution of duplicate task which waste time but
also processing time will be increased. To solve this problem
data aware cache aims at extending MapReduce framework by
implementing cache description scheme and cache request and
reply protocol. Cache description scheme need to identify
source input from which a cache item and the operation is
obtained.

Cache refers to the intermediate result that is produced by
worker node during the execution of a MapReduce phase. A
piece of cached data is stored in a distributed file system. The
content of cache items describe by two tuple: origin and
operation where origin is name of file and operation is
operation performed on file and also result is stored. When
map task is executed name of file and operation and result are
stored in cache. After some time if same task need to be
executed then it scan the cache first if same file name and
same operation is found then direct result will be provided.
After comparing file name and operation if file is not found in
cache then the normal map execution take place. Here not
only file name and operation are compared but also splitting
of file is also need to compare for correct result.

By modifying two modules of hadoop which is most
important that helps to improves speed up of hadoop.

International Journal of Engineering Trends and Technology (IJETT) – Volume 12 Number 2 - Jun 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 107

A. Design of System
Data is everywhere now. The amount of information available
now is very huge for analysis, storage and process such huge
information Apaches Hadoop tool is much popular. Hadoop
uses HDFS for storage and MapReduce for analysis. If default
placement of Hadoop is considered then it places file
anywhere in cluster. Hadoop is uses principal of data locality
means tasks are executed where data are placed but in
practices this will not be true for all data files. If needed files
are placed on different nodes then that files need to be copied
to worker node for task execution. But when placing files data
characteristics are considered then related files are stored in
same node which improve data locality and reduce network
traffic.

MapReduce does not have any mechanism to find whether
task is executed before so that result can be re used but result
of executed task is not stored so if task is executed again then
there is no mechanism is available to find task and reuse the
result.
The purpose of the experiment is to extend Hadoop system by
improving the data placement and execution policies of
Map/Reduce. The file similarity will be calculated based on its
content and similar file will be placed in same data node or
nearby data nodes (sub- cluster). The result of Map/Reduce
will be stored in cache as framework to access them again if
same task is executed on same data repeatedly.

Fig 2. System Architecture

Overall system architecture is shown fig 2. Suppose user
wants to upload a file then client finds a cluster which contain
similar file. To find cluster client executes following modules:
1. Preprocessing File: File contain collection of words, file is
pre-process means words like stop words are removed, stop
word are word like ‘a ’, ‘of ’, ‘the’ etc. and also stemming
(historical is replace with history) and many techniques are
used to pre-process a file. After preprocessing file will contain
collection of word which related to particular file and which
can be use to represent that file.
2. File Vector: after preprocessing file which contains
collection of words from that words which are presenting that
file need to find, this is done using TFIDF technique. TF-
IDF(Term Frequencies-Inverse Document Frequencies)
technique finds words in file that come many times compare
to all remaining files, which indicate that word is representing

a file and it is important word in file. If word is representing
that file then that word can be use to find similar files.
3. Create Signature - To find similar file it should be
compared with content of each and every files available but
there are millions of files which makes process time
consuming. So to make process faster compact bit
representation of each file vector is created, Signature. To
create Signature f bit vector is used and this vector initialized
to zero first then it hashed with file vector and comparing
value is 0 or 1 weight of word will be incremented or
decremented. Advantage of Signature is that similar file will
have same Signature which makes process faster.
4. Use Locality Sensitive Hashing to find nearest neighbor- In
large clustering environment to compare file Signature to each
and every cluster is time consuming to avoid comparing each
and every cluster locality sensitive hashing technique is used
which ensures that only nearest neighbour need to be checked
to place file. For this hashing function is used which query file
Signature to find nearest neighbour and m number of
neighbour is returned to client.
5. Store file with related files- If m neighbour is return to
client then only that m neighbour will be compared and after
finding cluster where file will be placed, this subclusterid will
be given to Name Node. Name Node maintains
subclustertable which store subclusterid and file placed on that
cluster. If Name Node finds entry then that file will be placed
on subclusterid but if subclusterid is not found then new
subcluster will be created, file will be stored on newly created
cluster and file and cluster Signature will be calculated and
this information will be updated to subclustertable.
Now suppose client want execute map task and system should
not execute repeated map task for this, cache will be
implemented. Cache table will be created which stores file
name, operation perform on that file and result file name.
1. Map task execution: when client wants to execute any map
task first then it request cache manager to find file name and
operation. If file name and operation performed on that file is
same then result file name will be given to directly to reduce
phase which completely save execution time of task.
2. Lifetime of cache item fixed size cache will be used and if
cache is full then older entry will be deleted.

The project requires various data structure to perform various
modules in proposed system which is listed below: Data
structure for locality sensitive hashing function, Data structure
for SubCT, Data structure for storing mapping information,
Data Structure for CacheTable, Data Structure for storing
intermediate result. All above structure will be either array of
structure or linked list or object of classes.
The internal data structures will be used to store result
obtained by map task it need to store locally because it
improves data locality. The data structure to create mapping
information at client will contain 1) clusterid, 2) Signature of
cluster ids 3) cluster centroids 4) file name 5) Signature of file.
The data structure require to store hash table at client side
which store cluster Signature as key and cluster information as
value.

International Journal of Engineering Trends and Technology (IJETT) – Volume 12 Number 2 - Jun 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 108

The global data structures use for maintaining Subclusterid
table for indexing of Sub-cluster id and file which is having
same subclusterid. etc. The structure of Sub-cluster is as
follow:

TABLE I SUB-CLUSTER TABLE

Sub-clusterid Files

1 A,B

2 C

N O

The data structures will be structure used to data structure to
create CacheTable will contain 1) name of file, 2) type of
operation performed on file 3) result file name.

TABLE II CACHE TABLE

Sr. No . Origin Operation resultfilename

1 ab.txt Sort Db.txt

2 cd.pdf Count Jk.txt

3 Hg.html Sort Io.txt

All the above mentioned data structures will be used only for
a particular module, hence they need not be declared globally.
The storage requirement is less.

IV. RESULTS

The proposed system “Speed up Extension to Hadoop system”
is currently in its development phase. We intend to record the
test performance of the system based on following parameter:

1. File Placement: file should be placed in correct and related
cluster so that all related file can be access easily which
improves data locality.
2. Comparison to cluster should be less: given m cluster is
correct so only m cluster need to compare.
3. Access time should be less: Related files are placed in same
cluster so access time should be less.
4. Performance of MapReduce should be increase: Because of
data locality is improved and avoiding execution of
duplication of MapReduce task increases performance of
MapReduce.

V. CONCLUSION

“Speedup extension to Hadoop system” is the modification in
the input format and task management of the map reduce
framework. The applications, using this modified Hadoop
need not to change at all. The proposed system shows that it
can eliminate all the duplicate tasks and new approach for
incremental file clustering is proposed for HDFS which will
cluster similar files in the same set of data nodes with minimal
changes to the existing framework.

For faster clustering operations bit wise representation of the
feature vectors called Signature are used. To reduce the
number of cluster centroid comparisons, only the nearest
neighbours are considered using the technique of Locality
Sensitive Hashing.
In this experiment two modules are combined first is data
placement modified with clustering and second is map/reduce
tasks execution time is reduce and processing is done faster.
So this experiment speeds up hadoop system by changing data
placement and task execution.

REFERENCES
[1] Eltabakh, ”CoHadoop: Flexible Data Placement and Its Exploitation in
Hadoop, ” proceedings of the vldb endowment, june 2011, 4 (9), pp. 575-585.
[2] Yongqiang He; Rubao Lee; Yin Huai; Zheng Shao; Jain, N.; Xiaodong
Zhang; Zhiwei Xu, ”RCFile: A fast and space-efficient data placement
structure in MapReduce-based warehouse systems,” Data Engineering (ICDE),
2011 IEEE 27th International Conference on , vol., no., pp.1199,1208, 11-16
April 2011.
[3] Abad, C.L.; Yi Lu; Campbell, R.H., ”DARE: Adaptive Data Replication
for Efficient Cluster Scheduling,” Cluster Computing (CLUSTER), 2011
IEEE International Conference on , vol., no., pp.159,168, 26-30 Sept. 2011.
[4] Zhendong Cheng; Zhongzhi Luan; You Meng; Yijing Xu; Depei Qian;
Roy, A.; Ning Zhang; Gang Guan, ”ERMS: An Elastic Replication
Management System for HDFS,” Cluster Computing Workshops (CLUSTER
WORKSHOPS), 2012 IEEE International Conference on , vol., no., pp.32,40,
24-28 Sept. 2012.
[5] Hui Jin; Xi Yang; Xian-He Sun; Raicu, I., ”ADAPT: Availability-Aware
MapReduce Data Placement for Non-dedicated Distributed Computing,”
Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International
Conference on , vol., no., pp.516,525, 18-21 June 2012.
[6] Bo Dong; Jie Qiu; Qinghua Zheng; Xiao Zhong; Jingwei Li; Ying Li, ”A
Novel Approach to Improving the Efficiency of Storing and Accessing Small
Files on Hadoop: A Case Study by PowerPoint Files,” Services Computing
(SCC), 2010 IEEE International Conference on , vol., no., pp.65,72, 5-10 July
2010.
[7] Pengju Shang; Qiangju Xiao; Jun Wang, ”DRAW: A new DatagRouping-
AWare data placement scheme for data intensive applications with interest
locality,” APMRC, 2012 Digest , vol., no., pp.1,8, Oct. 31 2012-Nov. 2 2012
[8] Jia Li; Kunhui Lin; Jingjin Wang, ”Design of the mass multimedia files
storage architecture based on Hadoop,” Computer Science and Education
(ICCSE), 2013 8th International Conference on , vol., no., pp.801,804, 26-28
April 2013
[9] Shvachko, K.; Hairong Kuang; Radia, S.; Chansler, R., ”The Hadoop
Distributed File System,” Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on , vol., no., pp.1,10, 3-7 May 2010
[10] Kala Karun, A.; Chitharanjan, K., ”A review on hadoop HDFS
infrastructure extensions,” Information and Communication Technologies
(ICT), 2013 IEEE Conference on , vol., no., pp.132,137, 11-12 April 2013
[11] Kala, K.A.; Chitharanjan, K., ”Locality Sensitive Hashing based
incremental clustering for creating affinity groups in Hadoop HDFS - An
infrastructure extension,” Circuits, Power and Computing Technologies
(ICCPCT), 2013 International Conference on , vol., no., pp.1243,1249, 20-21
March 2013
[12] Yaxiong Zhao; Jie Wu, ”Dache: A data aware caching for big-data
applications using the MapReduce framework,” INFOCOM, 2013
Proceedings IEEE , vol., no., pp.35,39, 14-19 April 2013
[13] Juan Ramos, Using TF-IDF to Determine Word Relevance in Document
Queries, Department of Computer Science, Rutgers University, 23515 BPO
Way, Piscataway, NJ, 08855
[14] Gurmeet Singh Manku, Arvind Jain, Anish Das Sarma, “Detecting
NearDuplicates for Web Crawling”by google
[15] Tom white,”Hadoop definitive guide” o’Reilly ,yahoo,2010
[16] http://hadoop.apache.org/core

