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Abstract— Square Root operation has found its prominence in 
many digital signal processing but it is very elusive to implement 
on FPGA due to its complicated computations. Many iterative 
algorithms which include restoring and non-restoring 
algorithms, SRT were proposed. Most of them implement with 
slow or large components which are less suitable for real-time 
applications than the addition or multiply components.  
This paper deals with the novel algorithm of square root 
computation of double precision floating point division. Verilog 
Code is written and implemented on Virtex-5 FPGA series.  
 
Keywords— Double precision, Binary square root, Vedic, Virtex, 
FPGA, Dvanda, IEEE-754. 

I. INTRODUCTION 
The term floating point implicates that there is no fixed 

number of digits before and after the decimal point; i.e. the 
decimal point can float. Floating-point representations are 
slower and less accurate than fixed-point representations, but 
can handle a larger range of numbers.[1] Because mathematics 
with floating-point numbers requires a great deal of 
computing power, many microprocessors come with a chip, 
called a floating point unit (FPU ), specialized for performing 
floating-point arithmetic. FPUs are also called math 
coprocessors and numeric co-processors. Floating-point 
representation has a complex encoding scheme with three 
basic components: mantissa, exponent and sign. Usage of 
binary numeration and powers of 2 resulted in floating point 
numbers being represented as single precision (32-bit) and 
double precision (64-bit) floating-point numbers. Both single 
and double precision numbers as illustrated in Fig. 1 are 
defined by the IEEE 754 standard.  

 
For a single precision format, 8-bits are reserved for 

exponent thereby having a bias value of +127 and 23 bits are 

reserved for mantissa. When sign bit is 1, it indicates negative                               
number and when it is 0, it argues as a positive number.  

The similar explanation is extended for double precision 
format where exponents are biased to +1023.   

Division and square root are important operators in many 
digital signal processing (DSP) applications including matrix 
inversion, vector normalization, and Cholesky decomposition. 
The floating-point divide and square root operators support 
many different floating-point formats including IEEE standard 
formats. Both modules demonstrate a good trade-off between 
area, latency and throughput. They are also fully pipelined to 
aid the designer in implementing fast, complex, and pipelined 
designs. [2] [3] 

It is the most important goal of a designer to enhance the 
performance of the ALU thereby reducing its design 
complexity to have better figure of merit. Due to the latency 
gap between addition/multiplication and division/square root, 
the latter operations increasingly become performance 
bottlenecks. As the performance gap widens between 
addition/subtraction/multiplication and division/square root, 
many signal and image processing algorithms involving 
floating-point operations have been rewritten to avoid the use 
of division and square root. Moreover, it is difficult to 
implement square root on hardware. [4] Therefore, poor 
implementations of floating-point division and square root 
results in severe performance degradation.  

Vedic math is known to more optimised and efficient than 
algorithms based on conventional logic. [5] The sutras defined 
can be used in digital design to improve the performance of 
ALUs based on conventional logic. Dvanda Yoga Sutra deals 
with the division [6]. These sutras find its limitations when 
number of bits are increased as this paper deals with IEEE-
754 floating-point representation. 

II. VARIOUS SQUARE ROOT ALGORITHMS  
Researchers have proposed many algorithms and 

procedural architectures to carry out square root in order to 
reduce the computational time and thus enhancing the 
performance. 

 

A. Radix-2 SRT Algorithm  
Named for its creators (Sweeney, Robertson, and Tocher), 

SRT for radix-2 is an iterative method to compute square root 
of a number. Each iteration deals with left-shift and addition 

Fig. 1  IEEE-754 Floating-point Representation Standards 
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Fig. 3: Paper and Pencil Method for Square Root: Stepwise Computation 

of a digit. The algorithm is rather complex especially for more 
precision. Also, it may generate a wrong resulting value. 

B. Use of Look-up Table 
Algorithms such as Newton-Raphson’s method as depicted 

in Eq. 1, is used to carry out computation, which is pretty 
faster, but due to presence of single precision division makes 
it tedious and performance degrading. [7] 

푥 = 푥 −
푓(푥 )
푓′(푥 ) 

To get rid of complex computation of division, use of                  
look-up table is incorporated. Taylor series/Maclaurin series 
expansion for square root is considered as formulated in Eq. 
2.[7] 

√푥 = 푥 +
푥 − 푥

2푥
 

									=
푥
2 +

1
2 푥

푥 

Then, a range of possible values of fraction f (0 to ~1) is 
divided into n sub-ranges by using 푙표푔  bits of f as an index 
into a table which contains the first two co-efficients of the 
Taylor expansion of the square root of the mantissa (1.0 to ~2) 
over that the sub-range. 

C. Vedic Approach : Dvanda Yoga Sutra  
Vedic Sutra which is used as an alternative for simplified 

mathematical computation. Fig. 2 shows the computational 
steps to evaluate square root of 17689 which comes out as 133. 

1. Group terms in a pair of 2 from right to left. Since it has 
5 digits, 1st group will have 1 digit (1).  
Write down as shown besides.  

2. Find the perfect square of leftmost number (1)                        
which is 1.  
To left of 1st vertical line write 1 and add same to it. So 
add = 2.  
Below 1, write same square root (1) and carry forward 
the difference between above number and perfect 
square  (i.e. 1 - 1 = 0) 

3. Now divide underline 07 by obtained 2 = {Quotient = 3 
and Remainder = 1}.  
Write Quotient (3) below and carry forward Remainder 
(1). 

4. Calculate Dvanda of numbers present after 2nd vertical 
line D (3) = 9.  
Subtract above 9 from underlined 16 (=7). 
Divide 7 by 2 = {Quotient = 3 and Remainder = 1}. 
Write Quotient {3} below and carry forward               
Remainder (1). 

5. Calculate Dvanda of numbers present after 2nd vertical 
line D (33) = 18. 
Subtract above 18 from underlined 18 = (0).  
Divide 0 by 2 = {Quotient = 0 and Remainder = 0}.  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2: Dvanda Yogi Sutra for Square Root: Stepwise Computation 

Due to increased complexity with increase in the bits (52-
bit mantissa), this sutra found some limitations with its 
implementation. 

D. Paper and Pencil Method  
It is one of the most orthodox and traditional method to 

compute square root [8].Fig. 3 illustrates the square root of 16 
(100002) of which answer comes out as 4 (1002).The stepwise 
algorithm for binary numbers is extended as follows: 

1. Group the bits from right towards left. Since, it has 5 
bits, the first group is of single bit (1). 

2. Find the perfect square of leftmost number (1)                        
which is 1.  
Write 1 in the quotient as well down below and add it 
to get 10. 

3. Find the number suffixing 10 to get the product of it 
less than or equal to the partial difference and next 
group of bits.  

4. Repeat the procedure till all the group of bits are done.  
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Fig. 5 Double Precision Square Root Computation: Block Diagram  

III. PROPOSED SQUARE ROOT ALGORITHM  
This paper deals with the efficient algorithm which 

incorporates the positive attributes of the square root 
computational method. The square root algorithm find its 
limitations with the  wide increase in the number of bits as this 
paper deals with the floating point representation where 
mantissa is of 52-bit wide.                                                  

The basic algorithm for the proposed design as follows:  

1)  Sign Bit 
Sign bit of the result is same as the sign bit of the original 

number. 

2)  Exponent Computation 
Exponent of the result depends on the biased exponent of 

the number. If biased exponent is odd, then 1023 is added to it 
and final sum is right shifted (divide by 2 operation). 

Er =   
If biased exponent is even, then 1022 is added and final 

sum is right shifted (divide by 2 operation). In addition, shift 
flag is set to indicate that the mantissa should be shifted to the 
left by 1 bit before computing its square root 

Er =   

3)  Mantissa (Square Root) Evaluation 
The block of code which carry out square-root computation 

is based on iterative approach where it deals with two registers 
namely temp and ANS of 56-bit wide and Mr of 55 bit wide. 

Consider an example of evaluating square root of 16 
(100002).  

Initialize TEMP as 0000…0000 and ANS as 0100…0000. 
The iteration process is carried out.  

On first iteration, TEMP is loaded with mantissa and then is 
compared with ANS, shift operation is carried out depending 
on the comparison results.  

If it is greater or equal to ANS, the contents of TEMP are 
subtracted from those of ANS, shifted to the left, and stored in 
TEMP. The contents of ANS are shifted to the left by one bit 
starting from the current pointer position. Then, a 1 is inserted 
in the current bit position in ANS.  Note that in each iteration, 
a pointer points to the current bit that will be replaced in ANS. 

If TEMP is less than ANS, its contents are shifted to the left 
and stored in TEMP. The contents of ANS are shifted to the 
right by one bit starting from the current pointer position. 
Then, a 0 is inserted in the current bit position bit in ANS.  

After the last iteration, the contents of ANS, with the 
exception of the two least significant bits are the bits which 
considered as final result.   

Fig. 4 shows the architectural block diagram of the square 
root computation.  

IV. DESIGN IMPLEMENTATION 
Verilog HDL code for Square Root Computation of                    

IEEE-754 Double Precision Numbers is being developed and 
then is simulated using ModelSim SE Plus 6.5.  

Verilog HDL code was break down into modules which 
deals with the exponent computation (11-bit) and mantissa 
evaluation (52-bit).Top module connects all of them as shown 
in Fig. 5. 

Various sets of inputs are fed to the top modular block to 
get the results. The further part of the document deals with 
simulation and synthesis results. 

 

 

A. ModelSim Simulation 

Consider square root computation of a number, a = 16 (0 
10000000011 
00000000000000000000000000000000000000000000000000
00) were fed to the algorithm to get the desired output as b = 4 
(0 10000000001 
00000000000000000000000000000000000000000000000000
01) as shown in Fig. 6. 

 

B. Xilinx ISE Synthesis 

Verilog HDL Code for square root computation of IEEE-
754 Double Precision (64-bit) numbers are then synthesized 
for device XC5VLX30 having  package  as FF324 of 
VirtexTM-5 FPGA family. From the datasheet cited in [9], this 
device has following attributes manifests in Table I. 

TABLE I 
XILINX VIRTEXTM-5 XC5VLX30 ATTRIBUTES 

Device CLB Array 

(One CLB = Four Slices × 2 

Total 

Slices 

Max. 

User 

I/O Rows  Column Total 

xc5vlx30 80   30 4800 19,200 220 

 
Table II shows the Device Utilisation Summary of the 

Verilog HDL code, so written, it is been observed that number 
of device parameters used are very less. Hence, an optimum 
Device Utilisation is obtained. 

From the timing report obtained, it is found that the 
maximum combinational path delay is 129.684 ns. Maximum 
combinational path delay is only for paths that start at an input 
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TABLE II 
FLOATING POINT SQUARE ROOT COMPUTATION (DOUBLE PRECISION):                     

   DEVICE UTILISATION SUMMARY 
 

to the design and go to an output of the design without being 
clocked along the way.  

 

 

V. PERFORMANCE ANALYSIS: VEDIC VERSUS CONVENTIONAL 
It can be easily deduced from the Table III which shows the 

performance analysis of the proposed square root computation 
with that of conventional algorithm based square root 
computational block that proposed algorithm is more 
optimistic.  

TABLE III 
PERFORMANCE ANALYSIS: 

PROPOSED WORK (VEDIC) VERSUS CONVENTIONAL 
 

The proposed algorithm is not able to optimise with the 
area utilisation with that of other algorithms. But it can be 
found out, that there is a significant improvement in the time 
required for computation which is nearly 126 nanoseconds 
compared to other algorithms, which suffer time delay of 
nearly 165 nanoseconds. Thus, there is nearly 23 % 
enhancement in the speed at which square root computation 
can be carried out.  

VI. CONCLUSION 
The importance and usefulness of floating point format 

nowadays does not allow any discussion. Any computer or 
electronic device, which operates with real numbers, 
implements this type of representation and operation.  

Square Root is one of the most important arithmetic 
operation and difficult to implement in terms of hardware. 
Various architectures were proposed which include recursive 
iterations to increase the computational performance of the 
ALU.  

 
The proposed design uses algorithm which makes the 

system more efficient as it enhances the speed at which device 
can operate. It is found that this work works nearly 23% faster 
than the prior algorithmic design where synthesis carried on              
Virtex – 5 platform. 

Thus, proposed design is more efficient than traditional 
ALUs and serve as better optimisation technique as per 
today’s need and wants. 
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Parameters This Work 
 

[2] 
 

[10] 
 

Floating point 
Precision 52 52 52 

Target Device 
Virtex 5 

XC5VLX30 
-3 FF324 

Virtex-II 
XC2V6000 

Virtex-II 
XC2V6000 

Number of 
Slices 1576 1572 405 

Number of    
4-input LUTs 4789 --- --- 

Number of 
IOBs 128 --- --- 

Estimated 
Time Delay  

(nanosecond) 
129.684 165 532 
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Fig. 6  Floating Point Square Root Computation (Double Precision): Timing Diagram   

√ퟏퟔ = ퟎퟒ	 

Fig. 4  Floating Point Square Root Computation (Double Precision):  Architectural Block Diagram 

 
 
 

 

 


