
International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 6 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 294

Double Precision Floating Point
Square Root Computation

Najib Ghatte #1, Shilpa Patil#2, Deepak Bhoir#3
Fr. Conceicao Rodrigues College of Engineering

Fr. Agnel Ashram,
Bandstand, Bandra (W), Mumbai: 400 050, India

Abstract— Square Root operation has found its prominence in
many digital signal processing but it is very elusive to implement
on FPGA due to its complicated computations. Many iterative
algorithms which include restoring and non-restoring
algorithms, SRT were proposed. Most of them implement with
slow or large components which are less suitable for real-time
applications than the addition or multiply components.
This paper deals with the novel algorithm of square root
computation of double precision floating point division. Verilog
Code is written and implemented on Virtex-5 FPGA series.

Keywords— Double precision, Binary square root, Vedic, Virtex,
FPGA, Dvanda, IEEE-754.

I. INTRODUCTION
The term floating point implicates that there is no fixed

number of digits before and after the decimal point; i.e. the
decimal point can float. Floating-point representations are
slower and less accurate than fixed-point representations, but
can handle a larger range of numbers.[1] Because mathematics
with floating-point numbers requires a great deal of
computing power, many microprocessors come with a chip,
called a floating point unit (FPU), specialized for performing
floating-point arithmetic. FPUs are also called math
coprocessors and numeric co-processors. Floating-point
representation has a complex encoding scheme with three
basic components: mantissa, exponent and sign. Usage of
binary numeration and powers of 2 resulted in floating point
numbers being represented as single precision (32-bit) and
double precision (64-bit) floating-point numbers. Both single
and double precision numbers as illustrated in Fig. 1 are
defined by the IEEE 754 standard.

For a single precision format, 8-bits are reserved for

exponent thereby having a bias value of +127 and 23 bits are

reserved for mantissa. When sign bit is 1, it indicates negative
number and when it is 0, it argues as a positive number.

The similar explanation is extended for double precision
format where exponents are biased to +1023.

Division and square root are important operators in many
digital signal processing (DSP) applications including matrix
inversion, vector normalization, and Cholesky decomposition.
The floating-point divide and square root operators support
many different floating-point formats including IEEE standard
formats. Both modules demonstrate a good trade-off between
area, latency and throughput. They are also fully pipelined to
aid the designer in implementing fast, complex, and pipelined
designs. [2] [3]

It is the most important goal of a designer to enhance the
performance of the ALU thereby reducing its design
complexity to have better figure of merit. Due to the latency
gap between addition/multiplication and division/square root,
the latter operations increasingly become performance
bottlenecks. As the performance gap widens between
addition/subtraction/multiplication and division/square root,
many signal and image processing algorithms involving
floating-point operations have been rewritten to avoid the use
of division and square root. Moreover, it is difficult to
implement square root on hardware. [4] Therefore, poor
implementations of floating-point division and square root
results in severe performance degradation.

Vedic math is known to more optimised and efficient than
algorithms based on conventional logic. [5] The sutras defined
can be used in digital design to improve the performance of
ALUs based on conventional logic. Dvanda Yoga Sutra deals
with the division [6]. These sutras find its limitations when
number of bits are increased as this paper deals with IEEE-
754 floating-point representation.

II. VARIOUS SQUARE ROOT ALGORITHMS
Researchers have proposed many algorithms and

procedural architectures to carry out square root in order to
reduce the computational time and thus enhancing the
performance.

A. Radix-2 SRT Algorithm
Named for its creators (Sweeney, Robertson, and Tocher),

SRT for radix-2 is an iterative method to compute square root
of a number. Each iteration deals with left-shift and addition

Fig. 1 IEEE-754 Floating-point Representation Standards

International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 6 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 295

 (1)

 (2)

Fig. 3: Paper and Pencil Method for Square Root: Stepwise Computation

of a digit. The algorithm is rather complex especially for more
precision. Also, it may generate a wrong resulting value.

B. Use of Look-up Table
Algorithms such as Newton-Raphson’s method as depicted

in Eq. 1, is used to carry out computation, which is pretty
faster, but due to presence of single precision division makes
it tedious and performance degrading. [7]

푥 = 푥 −
푓(푥)
푓′(푥)

To get rid of complex computation of division, use of
look-up table is incorporated. Taylor series/Maclaurin series
expansion for square root is considered as formulated in Eq.
2.[7]

√푥 = 푥 +
푥 − 푥

2푥

									=
푥
2 +

1
2 푥

푥

Then, a range of possible values of fraction f (0 to ~1) is
divided into n sub-ranges by using 푙표푔 bits of f as an index
into a table which contains the first two co-efficients of the
Taylor expansion of the square root of the mantissa (1.0 to ~2)
over that the sub-range.

C. Vedic Approach : Dvanda Yoga Sutra
Vedic Sutra which is used as an alternative for simplified

mathematical computation. Fig. 2 shows the computational
steps to evaluate square root of 17689 which comes out as 133.

1. Group terms in a pair of 2 from right to left. Since it has
5 digits, 1st group will have 1 digit (1).
Write down as shown besides.

2. Find the perfect square of leftmost number (1)
which is 1.
To left of 1st vertical line write 1 and add same to it. So
add = 2.
Below 1, write same square root (1) and carry forward
the difference between above number and perfect
square (i.e. 1 - 1 = 0)

3. Now divide underline 07 by obtained 2 = {Quotient = 3
and Remainder = 1}.
Write Quotient (3) below and carry forward Remainder
(1).

4. Calculate Dvanda of numbers present after 2nd vertical
line D (3) = 9.
Subtract above 9 from underlined 16 (=7).
Divide 7 by 2 = {Quotient = 3 and Remainder = 1}.
Write Quotient {3} below and carry forward
Remainder (1).

5. Calculate Dvanda of numbers present after 2nd vertical
line D (33) = 18.
Subtract above 18 from underlined 18 = (0).
Divide 0 by 2 = {Quotient = 0 and Remainder = 0}.

Fig. 2: Dvanda Yogi Sutra for Square Root: Stepwise Computation

Due to increased complexity with increase in the bits (52-
bit mantissa), this sutra found some limitations with its
implementation.

D. Paper and Pencil Method
It is one of the most orthodox and traditional method to

compute square root [8].Fig. 3 illustrates the square root of 16
(100002) of which answer comes out as 4 (1002).The stepwise
algorithm for binary numbers is extended as follows:

1. Group the bits from right towards left. Since, it has 5
bits, the first group is of single bit (1).

2. Find the perfect square of leftmost number (1)
which is 1.
Write 1 in the quotient as well down below and add it
to get 10.

3. Find the number suffixing 10 to get the product of it
less than or equal to the partial difference and next
group of bits.

4. Repeat the procedure till all the group of bits are done.

International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 6 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 296

Fig. 5 Double Precision Square Root Computation: Block Diagram

III. PROPOSED SQUARE ROOT ALGORITHM
This paper deals with the efficient algorithm which

incorporates the positive attributes of the square root
computational method. The square root algorithm find its
limitations with the wide increase in the number of bits as this
paper deals with the floating point representation where
mantissa is of 52-bit wide.

The basic algorithm for the proposed design as follows:

1) Sign Bit
Sign bit of the result is same as the sign bit of the original

number.

2) Exponent Computation
Exponent of the result depends on the biased exponent of

the number. If biased exponent is odd, then 1023 is added to it
and final sum is right shifted (divide by 2 operation).

Er =
If biased exponent is even, then 1022 is added and final

sum is right shifted (divide by 2 operation). In addition, shift
flag is set to indicate that the mantissa should be shifted to the
left by 1 bit before computing its square root

Er =

3) Mantissa (Square Root) Evaluation
The block of code which carry out square-root computation

is based on iterative approach where it deals with two registers
namely temp and ANS of 56-bit wide and Mr of 55 bit wide.

Consider an example of evaluating square root of 16
(100002).

Initialize TEMP as 0000…0000 and ANS as 0100…0000.
The iteration process is carried out.

On first iteration, TEMP is loaded with mantissa and then is
compared with ANS, shift operation is carried out depending
on the comparison results.

If it is greater or equal to ANS, the contents of TEMP are
subtracted from those of ANS, shifted to the left, and stored in
TEMP. The contents of ANS are shifted to the left by one bit
starting from the current pointer position. Then, a 1 is inserted
in the current bit position in ANS. Note that in each iteration,
a pointer points to the current bit that will be replaced in ANS.

If TEMP is less than ANS, its contents are shifted to the left
and stored in TEMP. The contents of ANS are shifted to the
right by one bit starting from the current pointer position.
Then, a 0 is inserted in the current bit position bit in ANS.

After the last iteration, the contents of ANS, with the
exception of the two least significant bits are the bits which
considered as final result.

Fig. 4 shows the architectural block diagram of the square
root computation.

IV. DESIGN IMPLEMENTATION
Verilog HDL code for Square Root Computation of

IEEE-754 Double Precision Numbers is being developed and
then is simulated using ModelSim SE Plus 6.5.

Verilog HDL code was break down into modules which
deals with the exponent computation (11-bit) and mantissa
evaluation (52-bit).Top module connects all of them as shown
in Fig. 5.

Various sets of inputs are fed to the top modular block to
get the results. The further part of the document deals with
simulation and synthesis results.

A. ModelSim Simulation

Consider square root computation of a number, a = 16 (0
10000000011
00
00) were fed to the algorithm to get the desired output as b = 4
(0 10000000001
00
01) as shown in Fig. 6.

B. Xilinx ISE Synthesis

Verilog HDL Code for square root computation of IEEE-
754 Double Precision (64-bit) numbers are then synthesized
for device XC5VLX30 having package as FF324 of
VirtexTM-5 FPGA family. From the datasheet cited in [9], this
device has following attributes manifests in Table I.

TABLE I
XILINX VIRTEXTM-5 XC5VLX30 ATTRIBUTES

Device CLB Array

(One CLB = Four Slices × 2

Total

Slices

Max.

User

I/O Rows Column Total

xc5vlx30 80 30 4800 19,200 220

Table II shows the Device Utilisation Summary of the

Verilog HDL code, so written, it is been observed that number
of device parameters used are very less. Hence, an optimum
Device Utilisation is obtained.

From the timing report obtained, it is found that the
maximum combinational path delay is 129.684 ns. Maximum
combinational path delay is only for paths that start at an input

International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 6 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 297

TABLE II
FLOATING POINT SQUARE ROOT COMPUTATION (DOUBLE PRECISION):

 DEVICE UTILISATION SUMMARY

to the design and go to an output of the design without being
clocked along the way.

V. PERFORMANCE ANALYSIS: VEDIC VERSUS CONVENTIONAL
It can be easily deduced from the Table III which shows the

performance analysis of the proposed square root computation
with that of conventional algorithm based square root
computational block that proposed algorithm is more
optimistic.

TABLE III
PERFORMANCE ANALYSIS:

PROPOSED WORK (VEDIC) VERSUS CONVENTIONAL

The proposed algorithm is not able to optimise with the
area utilisation with that of other algorithms. But it can be
found out, that there is a significant improvement in the time
required for computation which is nearly 126 nanoseconds
compared to other algorithms, which suffer time delay of
nearly 165 nanoseconds. Thus, there is nearly 23 %
enhancement in the speed at which square root computation
can be carried out.

VI. CONCLUSION
The importance and usefulness of floating point format

nowadays does not allow any discussion. Any computer or
electronic device, which operates with real numbers,
implements this type of representation and operation.

Square Root is one of the most important arithmetic
operation and difficult to implement in terms of hardware.
Various architectures were proposed which include recursive
iterations to increase the computational performance of the
ALU.

The proposed design uses algorithm which makes the

system more efficient as it enhances the speed at which device
can operate. It is found that this work works nearly 23% faster
than the prior algorithmic design where synthesis carried on
Virtex – 5 platform.

Thus, proposed design is more efficient than traditional
ALUs and serve as better optimisation technique as per
today’s need and wants.

REFERENCES
[1] Alex N. D. Zamfirescu, “Floating Point Type for Synthesis”, CA USA,

2000.
[2] Xiaojun Wang, “Variable Precision Floating-Point Divide and Square

Root for Efficient FPGA Implementation of Image and Signal
Processing Algorithms” Ph. D thesis, Department of Electrical and
Computer Engineering, Northeastern University, December 2007.

[3] Tole Sutikno, Aiman Zakwan Jidin, Auzani Jidin,Nik Rumzi Nik Idris,
“Simplified VHDL Coding of Modified Non-Restoring Square Root
Calculator” in International Journal of Reconfigurable and Embedded
Systems,Vol. 1, pp. 37-42, Mar. 2012.

[4] K. Piromsopa, C. Aporntewan, P. Chongsatitvatana, “An FPGA
Implementation of a Fixed-Point Square Root Operation” Thailand,
Feb. 2002.

[5] Deepa and Sanal's (2005) Vedic Mathematics [Online]. Available:
http://www.sanalnair.org/articles/vedmath/intro.htm

[6] Rahul Bhangale (2012) Dvanda Yoga [Online]. Available:
http://mathlearners.com/vedic-mathematics/squares/dvanda-yoga/

[7] Guillaume Bedard, Frederic Leblanc, Yohan Plourde, Pierre Marchand,
“Fast Square Root Calculation” in Mactech | The Journal of Apple
Technology, Vol. 14, pp. 1-5, 1998.

[8] Padala Nandeeswara Rao, “FPGA Implementation of Double Precision
Floating Point Square Root with BIST Capability” M.Tech thesis,
Department of Electronics and Communication Engineering, Thapar
University, July 2009.

[9] Virtex-5 Family Overview datasheet, Xilinx 2009.
[10] Anuja Jayraj Thakkar, “Pipelining of Double Precision Floating Point

Division and Square Root Operations on Field-Programmable Gate
Arrays” M.Sc thesis, School of Electrical Engineering and Computer
Science,University of Central Florida, 2006

Parameters This Work

[2]

[10]

Floating point
Precision 52 52 52

Target Device
Virtex 5

XC5VLX30
-3 FF324

Virtex-II
XC2V6000

Virtex-II
XC2V6000

Number of
Slices 1576 1572 405

Number of
4-input LUTs 4789 --- ---

Number of
IOBs 128 --- ---

Estimated
Time Delay

(nanosecond)
129.684 165 532

International Journal of Engineering Trends and Technology (IJETT) – Volume 13 Number 6 – Jul 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 298

Fig. 6 Floating Point Square Root Computation (Double Precision): Timing Diagram

√ퟏퟔ = ퟎퟒ	

Fig. 4 Floating Point Square Root Computation (Double Precision): Architectural Block Diagram

