
International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number2- Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 64

Implementation of Data Link Control Protocols in
Wired Network

Sudhanshu Maurya#1, Vikas Kumar Nayak*2, Dr. A Nagaraju#3
#Assistant Professsor, Department of Computer Science & Engineering, Jharkhand Rai University

Ranchi, Jharkhand, India

Abstract— Data Link Layer is the protocol layer which transfers
data between connected networks. It provides the functional and
procedural means to transfer data between network and its
nodes. It also provide the means to rectify the errors and usually
correct it that may occur in the Physical Layer. Study and
simulate protocol to analyse and find the advantages and
disadvantages to improve the quality of protocol such that it
handles the network data transmission in proper way. The
protocol is studied so that the details of the protocols are
revealed and the limitations of the protocol can be overcome
later. In this research paper we give a brief introduction about
Data Link Layer Protocols and introduced a new protocol
(Protocol 7) to overcome the problem of previous protocols on
the basis of priority of the frame.

Keywords— Protocol, Adjacent network, Simulate, Transmission,
Segment, Frame.

I. INTRODUCTION
When we communicate with someone, we are sharing our

information. It is exchange of data between two devices via
some form of transmission medium such as a wired cable. The
data communication system consists of five components i.e.
Sender, Receiver, Message, Transmission medium and
Protocol. Sender sends the message to other nodes of the
network. Receiver receives the message from sender. Message
is data that is to be communicated. Transmission medium is a
path by which message travels from one node to another.
Protocol is a set of rules that helps to control data
communication between communication devices [1]. OSI
(Open System Interconnection) model is commonly used to
specify and describe computer communication protocol [2]. It
was first taken into consideration in late 1970s. The motive of
the OSI model is to show how to facilitate communication
between different systems. It is not a protocol; it is a model
for designing and understanding network architecture. The
second layer of OSI model is Data Link Layer it handles a
system which have two nodes connected via a physical link.
The major work of this layer is to establish a connection
between the nodes of network, one for sending and other for
receiving. Data Link Layer has two sub layers: Data Link
Control and Media Access Control. The data link layer is
responsible for designing and communication between two
contiguous nodes.

II. PROTOCOLS OF DATA LINK CONTROL PROTOCOL
Data Link Control Protocol consists of six protocols, two

for noiseless channel i.e. ideal channel and four for noisy

channel i.e. real channel. The first category of protocols is not
actually implemented because ideal channel does not exist in
present scenario. The list of protocols is: Unrestricted Simplex
Protocol, Stop and Wait, Positive Acknowledgment with
Retransmission, Sliding Window Protocols, Go-Back-N, and
Selective Repeat [10].

A. Unrestricted Simplex Protocol

It is a simple protocol with no restrictions. It has no error
control and flow control. This protocol provides data
transmission in only one direction only i.e from sender to
receiver. We assume that the communication channel is to be
error free and the receiver is able to process all the input
infinitely quickly. The sender pumps the data as fast as it can.
The problem with this protocol is it assumes an error free
communication channel [3]. So there is no provision of
detection and correction of errors in data frame.

B. Stop and Wait
In Stop and Wait protocol the sender takes packets from

network layer. Copies the packet into frames and transmit
them. After this the sender busy waits for an ACK from
receiver side. The receiver is busy and waits until a frame is
not received from sender side. When frame is received it
passes the data packet to network layer and sends an ACK to
the sender for the frame is successfully received. Then it back
to waiting stage and this process is continues till end of file.
Here only one outstanding frame at a time so no sequence
number is required. In this protocol it is easy to see the frame,
ACK lost / damage or a deadlock situation. The main problem
with this protocol is if the ACK not received by the sender
then it wait for infinite time[16].

C. Possative Acknowledgement with Retransmission

Possative Acknowledgement with Retransmission (PAR)
protocol is updated version of Stop and Wait Protocol. It is a
Stop and Wait Protocol with ARQ (Automatic Repeat
Request). ARQ protocols are mainly used in communication
system for their easy implementation and good reliability
[5][13]. In this protocol there is only one outstanding frame at
a time so sequence number used to determine any lost or
damaged frame and sequence number does not respond until a
positive acknowledgement is not received. Here only ‘0’ and
‘1’ is used as a sequence number. It can’t change to other
sequence number until the correct one is received. The ACK
frame sent back is marked as an ACK frame as it contains the

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number2- Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 65

sequence number that is being acknowledged. It also keeps the
sender and receiver synchronized. PAR also handles the
congestion, lost/damaged frame as data frames will be resent
and this process is going on until a positive acknowledgement
is not received. The main problem with this protocol is when
frames and ACK are lost, the number of frames sent to
transfer the entire message become very large.

D. Sliding Window Protocol

In the previous protocols like stop and wait & PAR, data
frames were transmitted in only one direction. In most
sensible things, there's a necessity for transmittal data in both
directions i.e. from sender to receiver and receiver to sender.
Sliding Window protocol is popular method for both error and
flow control. Many Authors [6,7,8] classify them into three
parts namely, One-Bit Sliding Window Protocol, Go-Back-N,
Selective Repeat with respect of their sender and receiver
width. One-Bit Sliding Window protocol has the width of
sender and receiver is equal to 1, Go-Back-N has width of
sender window is not fixed but receiver window has 1, and the
Selective Repeat protocol have the width of both sender and
receiver is greater than 1 [9]. Generally any one of the two
data link layers goes and transmits the first frame. The first
packet from its network layer is fetched by the starting
machine, a frame is built from it, and then it is sent. On arrival
of this (or other) frame, it is checked by the receiving data link
layer if at all it is a duplicate, just the same as in the previous
protocol PAR. If it happens to be the expected frame, it is
passed on to the network layer and the receiver's window
slides up. The number of the last frame received without error
is contained in the acknowledgement field. If this number
matches with the sequence number of the frame that the
sender has been trying to send, the sender comes to knows
about its success with the help of the frame stored in buffer
and the sender can fetch the next packet from its network
layer. If the sequence number fails to agree, it must keep on
trying to send the same frame. On receiving a frame, the
frame is also sent back [8].

E. Go-back-N

The Go Back N protocol is the advance version of PAR.
By using buffers it allows the sender to have more than one
outstanding frame at one time. This protocol helps the sender
in maintaining a buffer of a pre-determined size. If there is
any room available in the buffer it gets packed and stores it in
the correct empty slot (seq_nr%WINDOWSIZE). It creates a
frame with the correct seq_nr and transmits it and logical
timer then resets to 0. The Upper Bound of the window is then
filled up by circularly incrementing the ‘next_frame_to_send’.
If no buffers are empty, then the physical layer is checked to
see if there is any ACK present. If a good frame is received
and the ACK number is within the current window then the
number of buffers used is decremented and reset the logical
timer (to a negative value) to show an unused slot and slide
the Lower Bound of the window by circularly incrementing
the ack number that is expected. This procedure runs in a loop
until ack_expected equals ack_received i.e. this process helps

us in determining how many ACK have been received and
how many of them have yet not been acknowledged.

If bad frames or out of window frames are detected, the
logical timers then gets updated. When a frame is timed out, it
gets retransmitted and is reset to 0. No ACK will arrive if a
frame is timed out because of loss. So on the next iteration of
the loop the next frame will be timed out and be re-sent.
Hence with this, all the timed out frames and the subsequent
frames will be retransmitted and with this we come to the
actual definition of Go Back N. The receiver waits for the
arrival of the frame. On arrival of a bad frame, it will again
wait. When a good frame arrives it checks the sequence
number of the arrived frame, if the expected sequence number
does not arrive, it resends an ACK for the last correct
sequence number that has been received successfully. If
expected sequence number is obtained then it passes the
packet to the Network layer and it updates the last correct
sequence number received, variable and circularly increments
of the next sequence number which is expected variable. An
ack is then created and transmitted for the same and then it
loops back to the physical layer to retrieve the next incoming
frame. The Upper Bound of the window is represented by the
next_frame_to_send and the Lower Bound by the
ack_expected. The logical timer consists of an integer type
array. When the value is negative then the corresponding slot
in the buffer remains unused. At any time after checking the
physical layer a loop is run that increments the timers of all
the used slots by 1 and It simultaneously checks if any of the
timer values has reached the threshold limit i.e. timeout time.
The value stored in the logical timer corresponding to a buffer
slot is the time the buffered packet has iterated in the while
loop.

F. Selective Repeat
The Selective Repeat protocol is the improved version of Go
Back N protocol as it has buffers on both sides of the receiver
as well as the sender. This protocol allows the sender to have
more than one outstanding frame at a particular time and the
receiver to accept out of order frames and store them in its
own window [13].
Sender for this improved version is a little modified from that
of Go Back N .The Maintenance of buffers and logical timers
is exactly the same as in Go Back N. The only difference is
that if a negative ACK is received the sender retransmits the
related frame identified by the NAK. All others like timeouts,
loop iterations and retransmissions are all the same as Go
Back N. This is different from Go Back N in the sense that it
only retransmits the frame for which a NAK is received and
not all the consecutive frames, as the receiver keeps a window
of frames not the whole series can be retransmitted only the
timed out frames or discard frames needs to be transmitted.
The receiver waits until a frame is arrived. If a bad frame
arrives or timeout occurs or if an out of sequence frame
arrives and if NAK has not been sent yet then a NAK is sent
for the expected sequence number. If there is any room in the
receiver’s buffer then a packet is stored in the correct slot i.e.
sequence number%WINDOWSIZE and the slot is flagged as

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number2- Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 66

used [15]. In this respect all buffered packets are passed to the
network layer in sequence. If the flag that indicates whether
an ACK has to be sent or not i.e. send_ack is set then an ACK
is sent for the last correct sequence of frame received. Then
we go back to the main loop which is waiting and start over it
again.
The Selective Repeat protocol has some problem to
implement. The sequence numbers is often to be bigger than
the window size, ensuing there's no overlap will occur within
the window [12]. This permits receiver and sender to be
unbroken in synchronization even once frames and ACK are
lost at awfully high rate. The buffering and ACK enable this
protocol to simply handle unhealthy frames, congestion and
lost frames. It had been found that a far higher timeout price is
required than in return N so as to cut back the quantity of
frames sent. A lower timeout price leads to too several frames
temporal arrangement out and being retransmitted
unnecessarily [11].
Generally any one of the two data link layers goes and
transmits the first frame. The first packet from its network
layer is fetched by the starting machine, a frame is built from
it, and then it is sent. On arrival of this (or other) frame, it is
checked by the receiving data link layer if at all it is a
duplicate, just the same as in the previous protocol PAR[17].
If it happens to be the expected frame, it is passed on to the
network layer and the receiver's window slides up. The
number of the last frame received without error is contained in
the acknowledgement field. If this number matches with the
sequence number of the frame that the sender has been trying
to send, the sender comes to knows about its success with the
help of the frame stored in buffer and the sender can fetch the
next packet from its network layer. If the sequence number
fails to agree, it must keep on trying to send the same frame.
On receiving a frame, the frame is also sent back [8].

III. PURPOSED PROTOCOL
We proposed a new protocol, Protocol 7 (Priorities

Retransmission) to overcome the problems of Selective repeat.
It works like Go-Back-N and Selective repeat but it has some
changes. It has buffer on both side of receiver and sender. It
allows the sender to have more than one outstanding frame at
a particular time and receiver to accept out of order frames
and store it in its window.
Sender for Priorities Retransmission is modified from that of
Selective Repeat. It collects all the NAK which is received
from receiver side and store it into an array. If only one NAK
is received from receiver side it simply retransmits that frame
for which a NAK is received. If more than one NAK is
received then find the minimum sequence number of NAK via
find_min() and retransmitted that frame, this process is going
on until all NAK frames are not retransmitted. It uses
optimum bandwidth then Protocol 6.

IV. ALGORITHM FOR PROTOCOL 7
find_min(){
for(j=2;j<=nak_count;j++){
for(k=2;k<=nak_count;k++){

if(min_seq>arr[k])
min_seq=arr[k]; }
send_frame(data,min_seq,frame_expected,out_buf); }}
while (true){
wait_for_event(&event); /*five possibilities: frame_arrival,
cksum_err, timeout, network_layer_ready, ack_timeout */
switch(event){
case network_layer_ready: /*accept,save,& send new frame */
break;
case frame_arrival: /* frame arrived*/
from_physical_layer(&r); /* fetch incoming frame */
if(r.kind==data) /*an undamaged frame arrived */
if((r.kind==nak)&&between(ack_expected,(r.ack+1) %(MAX
_SEQ+1),next_frame_to_send))
{ int min_seq=1024; nak_count=0;
for(k=0;k<NR_BUFS;k++){
wait_for_event(&event)
if(r.kind==nak){
arr[nak_count]=r.seq;
nak_count++; }}
if(nak_count==1)
send_frame(data,(r.ack+1)%(MAX_SEQ+1), frame_expected,
out_buf);
else{
for(i=0;i<nak_count;i++){
find_min(); }
case cksum_err:
if (no_nak) { /*damaged frame*/
send frame(nak, 0, frame_expected, out_buf);
 /* nak frame with tn */
} break;
case timeout:
send_frame(data, oldest_frame, frame_expected, out_buf);
 /*we timed out*/
case ack_timeout:
send_frame(ack, 0, frame_expected, out_buf);
} /*ack timer expired; send ack*/

V. WORKING
The working of new protocol is same as selective repeat

protocol. The changes are as follow:

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number2- Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 67

Fig. 1: Working of Protocol 7

VI. PERFORMANCE
Sample Test Result 1:
We have chosen 10% as error rate, and kept the Event is 10000. Here
we change the Time out value and calculate the number of frames
sent.

TABLE I
TABLE OF TIMEOUT VALUE & NO. OF FRAMES SENT

S No. Error Rate Timeout Value Number of frames
sent

01 10% 10 3337
02 10% 30 1281
03 10% 50 785
04 10% 70 564
05 10% 90 440

Fig. 2: No. of Frames sent in Protocol 7 when error rate is fixed and timeout
value is increases

Sample Test Result 2:
We have chosen 10 as a Time out, and kept the Error rate is 10%.
Here we change the Number of Events and calculate the number of
frames sent.

TABLE II
Table of Events & No. of frames sent

S. No. Timeout
Value

Error
Rate

Events Number of
frames sent

01 10 10% 00 00

02 10 10% 50 18

03 10 10% 100 36

04 10 10% 150 51

05 10 10% 200 67

06 10 10% 250 86

07 10 10% 300 103

08 10 10% 350 121

09 10 10% 400 138

10 10 10% 450 155

11 10 10% 500 164

Fig. 3: Number of frames sent when event increases.

VII. CONCLUSION
In this research paper we have briefly explained about the

DATA LINK LAYER and its protocols. Data link layer
categorized in two parts i.e. Media Access Control and Data
Link Control Layer. We work on Data Link Control Protocol
which contains six protocols: two for noiseless channel
(UTOPIA & Stop and Wait) and four for noisy channels (PAR,
Stop-and-Wait, Go Back N, Selective Repeat). UTOPIA is
simple but it has the problem of flooding. Stop and Wait
protocol is easy to implement but it is not efficient because it
needs an error free communication channel which is not
possible in present scenario. PAR was easy to implement and
it worked very reliably. It was a good trade-off between the
ease of implementation and the loss in Bandwidth i.e. the
number of frames retransmitted. Sliding window protocols
have bidirectional and it work in (2m -1) model. It is of three

International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number2- Dec 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 68

types: First is One Bit Sliding Window having same
characteristics like stop & wait protocol. Second is Go Back N
protocol required more input in terms of implementation due
to buffer maintenance and keeping sender and receiver in
synchronization. This protocol is not efficient due to the large
number of frames retransmission. Whenever any frame is lost
instead of retransmitting that frame it retransmits all
subsequent frames and it also wastes Bandwidth. And third is
Selective Repeat it is little improvement over Go Back N and
produced far better results in terms of the no. of frames
retransmissions, it retransmits only one frame instead of the
entire series. But there is no efficient manner of frame
retransmission. In real time application like Video
conferencing and live telecast, it creates the problem of
synchronization. This problem is overcome by the Protocol
7(priorities retransmission). In this protocol we have priority
on the NAK in which we are retransmitting the frame
according to minimum sequence number of NAK. So Protocol
7 gives optimum performance than protocol 6.

REFERENCES
[1] Behrouz A Forozan, “Data Communications and Networking”, Fourth

Edition.
[2] H. Zimmermann, "OSI Reference Model - The IS0 Model of

Architecture for Open Systems Interconnection", IEEE trans. On
Communications, Vol COM-28, pp 425-432, April 1980.

[3] Steven Cherry, “A Broadband Utopia”, IEEE spectrum, May 2006
[4] S Chen, “ELEC3030(EL336)”, Computer Networks, Electonics and

Computer Science, University of Southampton.
[5] F. Argenti, G. Benelli and A. Garzelli “Generalised Stop and Wait

Protocol”, Electronic Letters, Vol.28, No. 9, 23rd April 1992.
[6] HOLZMANN, G.J. “Design and validation of computer protocols”

Prentice-Hall, Englewood Cliffs, NJ, 1991
[7] W. STALLINGS “Data and Computer Communications”, Prentice Hall

Upper Saddle River, NJ, 1997, 5th edition.
[8] Andrew S. TANENBAUM, “Computer Networks”, Prentice Hall,

Upper saddle River, NJ, 1996, 3rd edition.
[9] D. Hercog, “Generalised Sliding Window Protocol”, Electronic Letters,

Vol. 38, No. 18, 29 Aug 2002.
[10] G. ogasawara, t.ju, s.kota, “Experiments with Tactical network

simulation, routing and management”, milcom ’96, confrence
proceedings, ieee , volume 2.

[11] LIN, S., COSTELLO, JR, D., and MILLERM, ”Automatic-repeat
request error-control schemes”, IEEE Commun., 22 December 1984.

[12] LINs and COSTELLO, JR, I "Error control coding: fundamentals and
applications" (Prentice Hall, Englewood Cliffs, New Jersey,1983).

[13] M. E. Anagnostou and E. N. Protonotatios, “Performance analysis of the
Selective Repeat ARQ protocol,” IEEE Trclns. Qmmun., vol. COM-
34,Feb. 1986.

[14] K. Brayer and S. Natarajan, “An investigation of ARQ and hybrid
FECARQ on an experimental high latitude meteor burst channel,” IEEE
Trans. Commun., vol. 37, Nov. 1989.

[15] O. C. M. B. Duarte and H. M. Lima, “A new selective repeat scheme
Actual Environmental Performance Analysis Conference. June1988.

[16] F. Halsall, Data Communications, Computer Networks and Open
Systems-Addison-Wesley, 1992.

[17] J. J. Metzner and D. Chang, “Efficient selective repeat ARQ strategies
for very noisy and fluctuating channels,” IEEE Trans. Commun., vol.
COM-33, May 1985.

[18] M. J. Miller and S. Lin, “The analysis of some Selective Repeat ARQ
schemes with finite receiver buffer,” IEEE Trans. Commun., vol. COM-
29, Sept. 1981.

