
International Journal of Engineering Trends and Technology- Volume2Issue2- 2011 

ISSN: 2231-5381          http://www.internationaljournalssrg.org  Page 24 

 

Model-Based Programming of Intelligent 
Embedded Systems Through Offline Compilation 

 
K. Sundar Srinivas1, K. Naga Lakshmi Kalyani2 

1M.Tech, Dept. of ECE, Nova College of Engineering & Technology, A.P., India. 
2Asst.Professor, Dept. of ECE, Potti Sriramulu College of Engineering & Technology, A.P., India. 

 
Abstract - Many recent and future space missions point to the 
need for increased autonomy in spacecraft with an emphasis 
on more capable fault diagnostic systems. The most widely 
used fault diagnostic systems are rule-based. Rule-based 
systems have quick response to events and clearly present to 
engineers the predefined reactions to events. These systems, 
however, require engineers to manually generate all necessary 
rules and these do not convey the assumed model the 
engineers used to generate the rules. Contrarily, model-based 
systems eliminate the need to manually generate the rules. 
Programming complex embedded systems involves reasoning 
through intricate system interactions along lengthy paths 
between sensors, actuators, and control processors. This is a 
challenging, time-consuming, and error-prone process 
requiring significant interaction between engineers and 
software programmers. Furthermore, the resulting code 
generally lacks modularity and robustness in the presence of 
failure. Model-based programming addresses these 
limitations, allowing engineers to program reactive systems by 
specifying high-level control strategies and by assembling 
commonsense models of the system hardware and software. 
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I. INTRODUCTION 
 

 Recent failures in NASA’s Mars exploration program 
point to the need for increased autonomy in 
spacecraft. Spacecraft must be designed with the 
capacity to monitor their own systems for unexpected 
occurrences, and to react in a timely fashion to such 
conditions at the executive layer, i.e. at the level of 
real-time commanding. The ability to accurately and 
rapidly determine the current state of the system is 
vital to the design of fault protection systems in 
autonomous spacecraft. Many fault management 
systems are based on expert systems in which a rule-
based diagnostic engine is used to detect faults. For 
example, the NEAR spacecraft used such a system 
for limited autonomous operations. This type of 
system’s capability is limited to the rules enumerated 
in the database. To create these rules, engineers 
must reason through system wide interactions, 
consequently, the set of rules is limited by the faults 
that engineers can recognize. This lack of robustness 
can be detrimental to the spacecraft. Components 
may  

interact other than expected, and a rule-based system 
cannot account for this. Should such a fault occur at a 
critical mission point, such as orbital insertion, the 
rule-based engine cannot react, resulting in the loss 
of the mission? 

Embedded systems, from automobiles to office-
building control systems, are achieving unprecedented 
levels of robustness by dramatically increasing their use of 
computation. 

 
We envision a future with large networks of highly robust 
and increasingly autonomous embedded systems. These 
visions include intelligent highways that reduce congestion, 
cooperative networks of air vehicles for search and rescue, 
and fleets of intelligent space probes that autonomously 
explore the far reaches of the solar system. Many of these 
systems will need to perform robustly within extremely 
harsh and uncertain environments, or may need to operate 
for years with minimal attention. To accomplish this, these 
embedded systems will need to radically reconfigure 
themselves in response to failures, and then accommodate 
these failures during their remaining operational lifetime. 
We support the rapid development of these systems by 
creating embedded programming languages that are able to 
reason about and control underlying hardware from 
engineering models. We call this approach model-based 
programming. 
 
A. Robustness in Deep Space 
 
In the past, high levels of robustness under extreme 
uncertainty were largely the realm of deep-space 
exploration. Billion-dollar space systems, like the Galileo 
Jupiter probe, have achieved robustness by employing 
sizable software development teams and by using many 
operations personnel to handle unforeseen circumstances as 
they arise. Efforts to make these missions highly capable at 
dramatically reduced costs have proven extremely 
challenging, producing notable losses, such as the Mars 
Polar Lander and Mars Climate Orbiter failures [1]. A 
contributor to these failures was the inability of the small 
software team to think through the large space of potential 
interactions between the embedded software and its 
underlying hardware. 
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For example, consider the leading hypothesis for 
the cause of the Mars Polar Lander failure. Mars Polar 
Lander used a set of Hall Effect sensors in its legs to detect 
touchdown. These sensors were watched by a set of 
software monitors, which were designed to turn off the 
engine when triggered. As the lander descended into the 
Mars atmosphere, it deployed its legs. At this point it is 
most likely that the force of deployment produced a noise 
spike on the leg sensors, which was latched by the software 
monitors. The lander continued to descend, using a laser 
altimeter to detect distance to the surface. At an altitude of 
approximately 40 m, the lander began polling its leg 
monitors to determine touchdown. It would have 
immediately read the latched noise spike and shut down its 
engine prematurely, resulting in the spacecraft plummeting 
to the surface from 40 m [2]. 

 
B. A MODEL-BASED PROGRAMMING EXAMPLE 
 
Model-based programming enables a programmer to focus 
on specifying the desired state evolutions of the system. 
For example, consider the task of inserting a spacecraft into 
orbit around a planet. Our spacecraft includes a science 
camera and two identical redundant engines (Engines A 
and B), as shown in Fig. 3. An engineer thinks about this 
maneuver in terms of state trajectories: 
 
Heat up both engines (called standby mode). Meanwhile, 
turn the camera off, in order to avoid plume contamination 
 

 
Fig. 3 Simple spacecraft for the orbital insertion  
scenario. Initial state (left) and goal state (right) are 
depicted. 
 
When both are accomplished, thrust one of the two 
engines, using the other engine as backup in case of 
primary engine failure.  
 

This specification is far simpler than a control 
program that must turn on heaters and valve drivers, open 
valves and interpret sensor readings for the engines shown 
in the figure. Thinking in terms of more abstract hidden 
states makes the task of writing the control program much 
easier and avoids the error-prone process of reasoning 
through low-level system interactions. In addition, it gives 
the program’s execution kernel the latitude to respond to 

novel failures as they arise. This is essential for achieving 
high levels of robustness. 

 
2. MINI-ME 

 
Mini-ME differs from previous model-based fault 
monitoring systems by guaranteeing run time 
performance. Through model compilation and offline 
deduction, Mini-ME combines the benefits of the rule 
based system’s real time performance guarantees 
and the model-based fault protection system’s 
capability to reason on models. 
 
2.1 Example System 
 
The diagnostic ability of Mini-ME will be demonstrated 
in the following sections using a simplified schematic 
of a monopropellant propulsion system used for 
attitude control in the NEAR spacecraft, shown in 
Figure 2. 
 

 
Figure 2: Monopropellant Propulsion System 

Schematic 
 
The propulsion system comprises two overall 
subsystems, the tank of hydrazine and its associated 
pressure transducer, and the hydrazine thruster made 
up of the solenoid valve, catalyst bed and physical 
thruster. An inertial sensor is included in the system 
for thrust observation. 
 
The hydrazine thruster is made up of two main 
components, the solenoid valve and the catalyst bed. 
The solenoid valve controls the hydrazine flow into 
the catalyst bed. This is accomplished by applying an 
electric current to the valve to open it, otherwise it will 
remain closed. Downstream of the solenoid valve is 
the catalyst bed, which is needed for combustion. 
Over time, catalyst can be lost through various 
mechanisms, such as pieces breaking off due to 
temperature variations. This will cause a reduction in 
thrust from the hydrazine thruster, causing the inertial 
sensor to observe that the thrust is off. In the case 
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that the ACS operates nominally, the inertial sensor’s 
reading will be discretized as on. 
 
We start by specifying the two components of a model 
based program for orbital insertion: the control program 
and plant model. We then describe the execution of the 
program under nominal and failure situations. 
 
A. Control Program 
 
The RMPL control program, shown in Fig. 4, encodes the 
informal specification we gave previously as a set of state 
trajectories. The specific RMPL constructs used in the 
program are introduced in Section IV. Recall that to 
perform orbital insertion, one of the two engines must be 
fired. We start by concurrently placing the two engines in 
the standby state and by shutting off the camera. This is 
performed by lines 3–5, where commas at the end of each 
line denote parallel composition. We then fire an engine, 
choosing to use Engine A as the primary engine (lines 6–9) 
and Engine B as a backup, in the event that Engine A fails 
to fire correctly (lines 10–11). Engine A starts trying to fire 
as soon as it achieves standby and the camera is off (line 
7), but aborts if at any time Engine A is found to be in a 
failure state (line 9). Engine B starts trying to fire only if 
Engine A has failed, B is in standby, and the camera is off 
(line 10). Several features of this control program reinforce 
our earlier points. First, the program is stated in terms of 
state assignments to the engines and camera, such as 
“EngineB = Firing.” Second, these state assignments 
appear both as assertions and as execution conditions. For 
example, in lines 6–9, “EngineA = Firing” appears in an 
assertion (line 8), while “EngineA = Standby,” “Camera = 
Off,” and “EngineA = Failed” appear in execution 
conditions (lines 7 and 9). Third, none of these state 
assignments are directly observable or controllable, only 
shutter position and acceleration may be directly sensed, 
and only the flight computer command may be directly set. 
Finally, by referring to hidden states directly, the RMPL 
program is far simpler than a corresponding program that 
operates on sensed and controlled variables. The added 
complexity of the latter program is due to the need to fuse 
sensor information and generate command sequences under 
a large space of possible operation and fault scenarios.  
 
B. Plant Model 
 
The plant model is used by a model-based executive to map 
queried and asserted states in the control program to sensed 
variables and control sequences, respectively, in the 
physical plant. The plant model is built from a set of 
component models. Each component is represented by a set 
of component modes, a set of constraints defining the 
behavior within each mode, and a set of probabilistic 
transitions between modes. The component automata 
operate concurrently and synchronously.  

 
1 OrbitInsert()::{ 
2 do { 
3  EngineA=Standby, 
4  EngineB=Standby, 
5  Camera=Off, 
6  do { 
7  when EngineA=Standby ^  Camera=Off 
8  donext EngineA=Firing 
9  } watching EngineA=Failed, 
10 when EngineA=Failed  ^ EngineB=Standby  ^  
     Camera=Off 
11 donext EngineB=Firing 
12 } watching EngineA=Firing v  EngineB=Firing 
13 } 
 

Fig. 4 RMPL control program for the orbital insertion 
scenario. 

 
III. RULE SYSTEM ANALYSIS 

 
A comparison to a real system is the best validation 
for the Mini-ME fault diagnosis tool. For verification, a 
NEAR-like power system and its associated rules 
were analyzed to develop appropriate Mini-ME 
models to obtain diagnoses of particular faults. These 
rules have several characteristics relating to Mini-ME, 
the first being the dependency on time. In all of the 
rules, the observation must be made for a certain 
length of time before it is triggered. This dependency 
is moved outside of Mini-ME through the use of the 
monitors. Monitors can be designed with a counter 
that is incremented when an observation falls in a 
certain range, such as if the charger current exceeds 
0.8 A. Only when the counter reaches a certain value, 
corresponding to 10 seconds for rule 3, then would 
the monitor send the observation that the charger 
current is “high”. This use of discretization allows the 
modeling to be more intuitive and understandable as 
the model is now specified in a more qualitative way. 
 

 
 

Table 2. NEAR-like Power Storage System Rules 
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No. Symptom Recovery Action 
1 (Battery Current > 0.6A) 

For 60 sec 
Turn off the charger 

2 (Redundant battery 
charger is ON) for 5 sec 

stop rules 2 and 3 

3 (Charger current > 0.8 A) 
for 10 sec 

Switch to the redundant 
charger, and disengage 
the primary. 

4 (Charger current > 0.07A) 
and (Bus Voltage > 24 V) 
for 10 sec 

Same recovery as rule 2. 

5 (Battery Temp > 30 C) for 
1 hour 

Switch to the redundant 
charger and turn its 
trickle charge on 

 
 
A second characteristic of a NEAR-like rule is that 
different symptoms can lead to the same recovery 
action, such as the conditions for switching to the 
redundant charger (rules 3 and 4). These types of 
rule combinations may have the same resulting 
action, but lead to a different state for the component. 
Hidden in these rules then is the state of the power 
system that the engineer had to determine. For 
instance, in the case of rule 3, this would mean that 
the charger has become broken in some way, thus 
identifying the state, and the model of this mode 
would come from these symptoms.  
 

Mini-ME has also been used as a tool to 
understand model compilation techniques and its 
applications. Other such applications that use this 
technique include a mode estimation capability for the 
Reactive Model based Programming Language 
(RMPL) [3], and a reactive planning system, Burton 
[4]. 

 
IV. CONCLUSION 

 
Fault protection in spacecraft is a must as missions 
venture further into space and space systems 
increase in complexity. The necessity of a system that 
can perform this fault diagnosis in real time is then a 
key component. The Mini-ME fault protection system 
has been shown to meet this goal without any loss of 
information from a rule-based system. The utilization 
of system models in Mini-ME allows it to perform 
diagnosis of components. A model-based approach 
has many benefits including reusability, 
compositionality and specification of intuitive models. 
The use of these models to perform reasoning and 
deduction has been shifted to an offline operation, an 
approach that differs from previous systems such as 
Sherlock and Livingstone. This offline compilation of 
the models to rules, called dissents, allows Mini-ME 
to perform fast diagnosis of faults online. Using these 

models and observations from the system, Mini-ME 
generates a diagnosis of the system’s components 
using a best first search to generate the most likely 
diagnosis. This diagnosis gives the state of the 
system, which is not available in  
a rule-based system. In rule-based systems, the 
mapping from symptoms to recovery action is 
apparent, but not the mapping from symptoms to the 
system state. Making this step explicit leads to rules 
that are easier to analyze for completeness, and a 
rule set smaller in size. In the case of the example 
system in section 2, it requires only 6 dissents to 
represent the faults, whereas a rule-based system 
would require 32 rules to represent all of the possible 
faults. These characteristics lead to more reliable fault 
protection as it makes the process of rule generation 
modular by using models of the system, monitors that 
discretized observations and repair actions based on 
the diagnoses, all of which are designed by the 
engineer in a clear manner. A key benefit of the Mini-
ME system and the use of associated repair 
manager, aside from the model-based approach, is 
that they give the spacecraft the ability to remain 
operational in the face of component failures. This 
ability is crucial as space exploration expands. The 
same individuals who designed the spacecraft may 
not be around when it lands, which necessitates fault 
diagnosis ability. 
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