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Abstract     Fuzzy Model Reference Learning Control 
(FMRLC) is an efficient technique for the control of 
non linear process. In this paper, a FMRLC is applied 
in to a non linear spherical tank system. First, the 
mathematical model of the spherical tank level system is 
derived and simulation runs are carried out by 
considering the FMRLC in a closed loop. A similar test 
runs are also carried out with Neural Network based 
IMC PI and conventional ZN based PI-mode for 
comparison analysis. The results clearly indicate that 
the incorporation of FMRLC in the control loop in 
spherical tank system provides a good tracking 
performance than the NNIMC and conventional PI 
mode.  
Keywords    FMRLC, FOPDT, NNIMC, ZN PI 
 

I. INTRODUCTION 
 

Control of non linear process is main criteria 
in the process control industries. This kind of 
nonlinear process exhibit many not easy control 
problems due to their non-linear dynamic behavior, 
uncertain and time varying parameters. Especially, 
control of a level in a spherical tank is vital, because 
the change in shape gives rise to the non-linear 
characteristics. An evaluation of a controller using 
variable transformation proposed by Anathanatrajan 
[1] on hemi-spherical tank which shows a better 
response than PI controller. A simple PI controller 
design method has been proposed by Wang and Shao 
[2] that achieves high performance for a wide range 
of linear self-regulating processes.  Later in this 
research field, Fuzzy control is a practical alternative 
for a variety of challenging control applications, 
since it provides a convenient method for 
constructing nonlinear controllers via the use of 
heuristic information. Procyk and Mamdani [3] have 
discussed the advantage of Fuzzy Logic Controllers 
(FLC) is that it can be applied to plants that are 
difficult to get the mathematical model. Recently, 
Fuzzy logic and conventional control design methods 
have been combined to design a Proportional Integral 
Fuzzy Logic Controller (PIFLC). Tang and 
Mulholland [4] have discussed about the comparison 
of fuzzy logic with conventional controller. 
 Recent years, neural network (NN) had been 
adopted in nonlinear IMC design due to its good 
ability of approximate arbitrarily nonlinear vector 

functions [5][6]. For some complex processes, 
however, when the work condition of system varies, 
the process characteristic changes drastically and 
falls outside training region. Even though the NN 
model is available, it is difficult to design the NN 
inverse controller unless the model is open-loop 
stable [7]. When the process is unstable in local 
region, the controller based on a fixed model will be 
unreliable and thus the system performance is 
affected seriously. 

To trounce these problems, in this paper a 
“learning” control algorithm is presented which helps 
to resolve some of the issues of fuzzy controller 
design and NN inverse model. This algorithm 
employs a reference model (a model of how you 
would like the plant to behave) to provide closed-
loop performance feedback for synthesizing and 
tuning a fuzzy controller’s knowledge-base. 
Consequently, this algorithm is referred to as a 
“Fuzzy Model Reference Learning Controller” 
(FMRLC) [8][9][10]. 

The paper is divided as follows: Section 2 
presents a brief description of the mathematical 
model of Spherical tank system, section 3 and 4  
shows the methodology, algorithms of FMRLC and 
NNIMC , section 5 presents the results and 
discussion and finally the conclusions are presented 
in  section 6. 

 
II. DYNAMIC MODEL OF THE SPHERICAL TANK LEVEL 

SYSTEM 
 

The spherical tank level system [11] is shown in 
Figure 1. Here the control input fin is being the input 
flow rate (m3/s) and the output is x which is the fluid 
level (m) in the spherical tank. 
Let, r = radius of tank   
       d0 = thickness (diameter) of pipe (m) and initial 
height 
       r surface = radius on the surface of the fluid varies 
according to the level (height) of fluid in the tank.  
Dynamic model of tank is given as  
ఋ
ఋ௧

 ൣ∫ x௫భߜ(x)ܣ
଴ ൧ = fin (t) – a ඥ2݃x                          (1)  
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Fig.1 Spherical Tank System 
Where 
 area of cross section of tank = (x)ܣ 
          = π (2rx −  ଶ)            (2)ݔ
a = area of cross section of pipe  

= π ቀୢబ
ଶ
ቁ
ଶ
                           (3) 

Re write of dynamic model of tank at time t+	ݐߜ, 

A(x) δx = f୧୬ δt− aඥ2g(x− d଴)	δt          (4) 

By combining equation (1) to (4) we have 

ఋ୶
	ఋ௧

 = 
	୤୧୬	ఋ௧ି	π. ೏బ

మ

ర ඥଶ௚(୶ିୢబ)	

π	(ଶ୰୶ି௫మ)	)
                                   (5) 

 ݈݅݉ௗ	→଴ 	
ఋ୶
	ఋ௧

=	 ௗ୶
	ௗ௧

 

Therefore 

 ௗ୶
	ௗ௧

=  
	୤୧୬	ఋ௧ି	π. ೏బ

మ

ర ඥଶ௚(୶ିୢబ)	

π	(ଶ୰୶ି௫మ)	)
                          (6) 

Equation (6) shows the dynamic model of the 
spherical tank system 

III. FUZZY MODEL REFERENCE LEARNING CONTROL 

(FMRLC) 
This section discusses the design and 

development of the FMRLC and it is applied to the 
spherical tank level system. The following steps are 
considered for the design of FMRLC. 

1) Direct fuzzy control   
2) Adaptive fuzzy control 

 
A. Direct Fuzzy Control 
      The rule base, the inference engine, the 
fuzzification and the defuzzification interfaces are the  
our major components to design the direct fuzzy 
controller [8]. 

 Consider the inputs to the fuzzy system: the 
error and change in error is given by 
e(kT)=r(kT) – y(kT)                                              (7) 
c(kT) = ( e(kT) - e(kT-T) ) / T                               (8) 
and the output variable is 
u(kT) = Flow(control valve)                                (9) 
The universe of discourse of the variables (that is, 
their domain) is normalized to cover a range of  [-1, 
1] and a standard choice for the membership 
functions is used with five membership functions for 
the three fuzzy variables (meaning 25 = 52 rules in 
the rule base) and symmetric, 50% overlapping 
triangular shaped membership functions (Fig. 2.), 
meaning that only 4 (=22) rules at most can be active 
at any given time. 

-1 -0.5 0 0.5 1

NB NS Z PS PB

NB NS Z PS PB

-1 -0.66 -0.33 0 0.33 0.66 1 u(kT)

e(kT) , ec(kT)

 
Fig. 2 Membership functions for the fuzzy controller. 

            The fuzzy controller implements a rule base 
made of a set of IF-THEN type of rules. These rules 
were determined heuristically based on the 
knowledge of the plant. An example of IF THEN 
rules is the following 

IF e is negative big (NB) and ce is negative 
big (NB) THEN u is Negative big (NB) 

This rule quantifies the situation where the spherical 
tank system is far to minimum level to maximum 
level hence  the control valve needed to open from 
100% to 0%  so that it control the particular operating 
point of the liquid level system. The resulting rule 
table is shown in the Table 1. 

TABLE I. RULE BASE FOR THE FUZZY CONTROLLER 

 

Here min-max inference engine is selected, utilizes 
minimum for the AND operator and maximum for 
the OR operator. The end of each rule, introduced by 
THEN, is also done by minimum. The final 

“Level” 
        u 

“ Change in error”    ce 
NB NS Z PS PB 

 
 
“Error”  e 

NB NB NB NB NS Z 
NS NB NB NS Z PS 
Z NB NS Z PS PB 
PS NS Z PS PB PB 
PB Z PS PB PB PB 
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conclusion for the active rules is obtained by the 
maximum of the considered fuzzy sets. To obtain the 
crisp output, the centre of gravity (COG) 
defuzzification method is used. This crisp value is the 
resulting controller output. 

B. Adaptive Fuzzy Control 
In this section, design and development of a 

FMRLC, which will adaptively tune on-line the 
centers of the output membership functions of the 
fuzzy controller determined earlier. 
                                                                

Fig. 3 Fuzzy Model Reference Learning Control 

 Fig. 3. shows the FMRLC as applied to the spherical 
tank level system. The FMRLC uses a (learning 
mechanism that emphasizes 
1) observes data from a fuzzy control system (i.e. 
r(kT) and y(kT))  
2) Characterizes its current performance, and  
3) Automatically synthesizes and/or adjusts the fuzzy 
controller using rule base modifier so that some pre-
specified performance objectives are satisfied. 
   In general, the reference model, which 
characterizes the desired performance of the system, 
can take any form (linear or nonlinear equations, 
transfer functions, numerical values etc.). In the case 
of the level process reference model is shown in the 
fig. 3. 

An additional fuzzy system is developed 
called “fuzzy inverse model” which adjusts the 
centers of the output membership functions of the 
fuzzy  controller, which still controls the process, 
This fuzzy system acts like a second controller, 
which updates the rule base of the fuzzy controller by 
acting upon the output variable (its membership 
functions centers). The output of the inverse fuzzy 
model is an adaptation factor p(kT) which is used by 
the rule base modifier to adjust the centers of the 
output membership functions of the fuzzy controller. 
The adaptation is stopped when p(kT) gets very small 
and the changes made to the rule base are no longer 

significant. The fuzzy controller used by the FMRLC 
structure is the same as the one developed in the 
previous section. 
The fuzzy inverse model has a similar structure to that 
of the controller (the same rule base, membership 
functions, inference engine, fuzzification and 
defuzzification interfaces. See section 3.1).  
The inputs of the fuzzy inverse model are 
 ye(kT) = ym(kT) – y(kT)                                      (10) 
yc(kT) = ( ye(kT) – ye(KT-T) ) / T                        (11) 
and the output variable is the adaptation factor p(kT).                        
 
The rule base modifier adjusts the centers of the 
output membership functions in two stages 

1) the active set of rules for the fuzzy controller 
at time (k-1)T is first determined 

                          (12)

 
The pair (i, j) will determine the activated rule. We 
denoted by i and j the  i-th, respectively the j-th 
membership function for the input fuzzy variables 
error and change in error. 

2) the centers of the output membership 
functions, which were found in the active set 
of rules determined earlier, are adjusted. The 
centers of these membership functions (bl) 
at time kT will have the following value 

b (kT ) =b (kT- T) +p(kT)                                   (13) 
  We denoted by l the consequence of the rule 
introduced by the pair (i, j).  
The centers of the output membership functions, 
which are not found in the active set of rules 
 (i, j), will not be updated. This ensures that only 
those rules that actually contributed to the current 
output y(kT) were modified. We can easily notice that 
only local changes are made to the controller’s rule 
base. 
For better learning control a larger number of output 
membership functions (a separate one for each input 
combination) would be required. This way a larger 
memory would be available to store   
Information. Since the inverse model updates only 
the output centers of the rules which apply at that 
time instant and does not change the outcome of the 
other rules, a larger number of output membership 
functions would mean a better capacity to map 
different working the adjustments it made in the past 
for a wider range of specific conditions. This 
represents an advantage for this method since time 
consuming re-learning is avoided. At the same time 
this is one of the characteristics that differences 
learning control from the more conventional adaptive 
control. 
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IV. NEURAL NETWORK BASED IMC  
 

The way in which the neurons of a neural network 
are organised is intimately linked with the learning 
algorithm used to train the network. Learning 
algorithm used in the design of the neural networks 
as being structured. Feed forward neural network 
distinguishes itself by the presence of one or more 
hidden layers whose computation nodes are 
correspondingly called hidden neurons. The function 
of the hidden neurons is to intervene between the 
external inputs and the network output in some useful 
manner. Artificial neural networks (ANN) are trained 
by adjusting these input weights, so that the 
calculated outputs may be approximated by the 
desired values.The output from a given neuron is 
calculated by applying a transfer function to a 
weighted summation of its input to give an output, 
which can serve as input to other neurons as follows.

      

                     (14)                                                  

The model fitting parameters wijk are the connection 
weights. The nonlinear activation transfer functions 
Fk. The training process requires a proper set of data 
i.e., input (I1) and target output (ti). During training 
the weights and biases of the network are iteratively 
adjusted to minimize the network performance 
function. The typical performance function that is 
used for training feed forward neural networks is the 
network Mean Squares Errors (MSE).  

                
                                                              (15) 
 
 
There are many different types of neural 

networks, differing by their network topology and/or 
learning algorithm. In this paper the back propagation 
learning algorithm,which is a multilayer feed forward 
network with hidden layers between the input and 
output. The simplest implementation of back 
propagation learning is the network weights and 
biases updates in the direction of the negative  
gradient that the performance function decreases 
most rapidly. An iteration of this algorithm can be 
written as follows.       
  

                                                              (16) 
There are various back propagation algorithms such 
as Scaled Conjugate Gradient (SCG), Levenberg-
Marquardt (LM) and Resilient back Propagation 
(RP). Among these LM is the fastest training 
algorithm for networks  of moderate size and it has 
the memory reduction feature to be used when the 
training set is large.  

A. Generation of input-output data 
        By changing the flow rate as random number 
sequence is given as input to the spherical tank liquid 
level system  as shown in Figure.4 and the  
corresponding output is obtained as shown in Fig. 5. 
The identification data set, containing N = 30000 
samples with sampling time of 1 sec. 

 
Fig. 4 Random input applied to  level process 

 
Fig. 5 Output data of level process by  applying 
random input 

B. Forward neural model of level process 

The neural network approach is trained to represent 
the forward dynamics of the level system . The 
network is trained using delayed outputs and current 
input. The Activation function for the hidden layer is 
tansigmoidal, while for the output layer linear 
function is selected and they are bipolar in nature. 
The block diagram of forward neural network model 
is shown in Figure.6. The Levenberg Marquardt 
(LM) learning algorithm does the correct choice of 
the weight.  

h(k)

( )h k


Fig. 6 Block diagram of forward neural model 
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1) Training and Model Validation Of Forward 
Neural Model: The data set used for training is 
sufficiently rich to ensure the stable operation, since 
no additional learning takes place after training. 
During training the NN learns the forward of the 
level system dynamics by fitting the input-output data 
pairs. This is achieved by using the LM algorithm. 
The simulated forward model output is shown in fig. 
7. It is observed from Figure.6. That forward model 
output exactly matches with output of the actual 
process. Hence, the neural network has the ability to 
model forward dynamics of the level system model, 
which can be used for developing the model based 
controllers. 

 

Fig. 7 Response of forward neural model and Actual 
output 

C. Direct Inverse Neural Model Of Level Process 
    The neural network approach is also trained 
to capture the inverse dynamics of the level process 
model,. The network is trained using delayed sample 
of outputs and delayed input of level process model. 
The Activation function for hidden layer and output 
layer are bipolar tansigmoidal and bipolar pure linear 
are used to give the desired output, which is input 
signal for the level process model. The block diagram 
of direct inverse neural model is shown in Fig. 8.  

h(k)

 
Fig. 8 Block diagram of inverse neural model 

1)  Training and Model Validation of Inverse Neural 
Model: During training the NN learns the inverse of 
the level system model, by fitting the input-output 

data pairs. This is achieved by using the LM 
algorithm.  It is clear from Fig. 9. That the inverse 
model output exactly matches with input of the actual 
model. Hence the neural network has the ability to 
model inverse, which can be used for developing 
Model-based controllers.

 
. Fig. 9 Response of inverse neural model and actual 
input model 

D. Design Of Neural Internal Model Controller 

             The Internal Model Control (IMC) 
philosophy relies on the Internal Model Principle, 
which states that control can be achieved only if the 
control system encapsulates, either implicitly or 
explicitly, some representation of the process to be 
controlled. In particular, if the control scheme has 
been developed based on an exact model of the 
process, then perfect control is theoretically possible. 
In practice, however, process-model mismatch is 
common; the process model may not be invertible 
and the system is often affected by unknown 
disturbances. The open loop control arrangement will 
not be able to maintain output at set point. 
Nevertheless, it forms the basis for the development 
of a control strategy that has the potential to achieve 
perfect control. This strategy is called as Internal 
Model Control.The neural internal model control 
approach is similar to the direct inverse control 
approach above except for two additions. First is the 
addition of the forward model placed in parallel with 
the plant, to cater for plant or model mismatches and 
second is that the error between the plant output and 
the neural net forward model is subtracted from the 
set point before being fed into the inverse model. The 
other data fed to the inverse model is similar to the 
direct method. A filter can be introduced prior to the 
controller in this approach to incorporate robustness 
in the feedback system, especially where it is difficult 
to get exact inverse models. The neural internal 
model controller is shown in Fig.10. 

V. RESULTS AND DISCUSSION 

In this section, the simulation results for 
Spherical tank level system are presented to illustrate 
the performance of the FMRLC control algorithm. 
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The differential equation is derived in the section 2 
are considered for this simulation study. Here, 
simulations are analyzed in two cases. Initially, the 
spherical tank is maintained at 40 % of its maximum 

h(k)

 
Fig. 10 Block diagram of internal model control 

level and a 5% step signal is applied to the process 
with FMRLC control algorithm and the responses are 
recorded in Fig. 11. Similarly, a same procedure is 
applied to NNIMC and ZNPI for the comparative 
analysis. The performance indices interms of ISE and 
IAE are calculated and summarized in the table 2.      
In order to validate the FMRLC algorithm, the 
different operating points (50% and 60 %) are also 
carried out and output responses are recorded in the 
fig. 12. and fig. 13. and their performance indices are 
given in the same table2.To analyze the FMRLC 
controller for the both the cases, a performance 
analysis in terms of ISE, IAE is made and their 
values are tabulated in Table 2 and Table 3  

TABLE 2. PERFORMANCE INDEX FOR SERVO RESPONSE 

 

          Secondly, a load disturbance is applied to the 
FMRLC algorithm under the same operating points 
and responses are traced in Fig. 14. to fig. 16. In the 
case of servo regulatory, the process is maintained at 
40 % of its maximum level and  5% step signal is 
applied to the process and the disturbance is given at 
new steady state level (10%  of given step change). 

          The performance indices for all the three 
controllers are computed and tabulated in the table 3. 
Also the different operating points (50% and 60 %) 
are also carried out and their performances indices 

are summarized in the same table 3. It is observed 
that, the FMRLC algorithm gives an excellent 
performance than the other two. 

TABLE 3. PERFORMANCE INDEX FOR SERVO REGULATORY 

RESPONSE 

 FMRLC NNIMC ZNPI 
ISE IAE ISE IAE ISE IAE 

 
40% 

 
133.9 

 
92.88 

 
182.5 

 
102.8 

 
674.1 

 
331.6 

 
50% 

 
146.5 

 
105.5 

 
210.6 

 
179.8 

 
696.3 

 
344.5 

 
60% 

 
173 

 
149.4 

 
324.9 

 
278 

 
659.8 

 
330.6 

 
From the table 2 and 3, it is observed that FMRLC 
control algorithm provides minimum error values in 
the servo and servo regulatory cases than the other 
control strategies 

VI. CONCLUSION 

This paper, a Fuzzy Model Reference Learning 
Control (FMRLC) is applied in to a non linear 
spherical tank system. Simulation runs are carried out 
by considering the FMRLC algorithm, NNIMC and 
conventional ZN PI-mode in a closed loop. The 
results clearly indicate that the incorporation of 
FMRLC in the control loop in spherical tank system 
provides a superior tracking performance than the 
NNIMC and conventional PI mode. 

 
Fig. 11 Servo Response of spherical tank at 40% 
operation point

 
Fig. 12 Servo Response of spherical tank at 50% 
operation point 
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FMRLC NNIMC ZNPI 
ISE IAE ISE IAE ISE IAE 

40% 124.2 89.48 182.3 88.32 697.2 319.5 

50% 143.3 94.59 206.4 159.3 756.1 340.9 

60% 167.9 129.3 312.9 243.3 738 330.5 
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Fig. 13 Servo Response of spherical tank at 60% 
operation point  

Fig. 14 Regulatory Response of Spherical tank at 
40% operating point 
 

Fig. 15 Regulatory Response of Spherical tank at 
50% operating point 
 

 
Fig. 16 Regulatory Response of Spherical tank at 
60% operating point 
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