
 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4466

Design & Implementation Of 32-Bit Risc (MIPS) Processor
*Marri Mounika1 Aleti Shankar 2

1PG Student (M. Tech-ECE), Dept. of ECE, Geetanjali College Of Enginnering & Technology, Hyderabad, AP.
2Associate Professor, Dept. of ECE, Geetanjali College Of Engineering & Technology, Hyderabad, AP.

Abstract: In this paper we propose a novel technique of run-time loading of machine code for

MIPS-32 soft-core processor. As we know, implementing fewer instructions and addressing

modes on silicon reduces the complexity of the instruction decoder, the addressing logic, and

the execution unit. This allows the machine to be clocked at a faster speed, since less work

needs to be done each clock period. Our proposed RISC MIPS Processor technique sends the

machine code to the instruction memory of the soft-core from the software tool through UART.

The user should use that software tool to write MIPS assembly code, debug the code and

generate the machine code. Also, the software tool is used for establishing UART connection.

Keywords: MIPS, Data Flow, Data Path, Pipeline, RISC, CISC.

1. Introduction

Processors are regarded as one of the

most important devices in our everyday

machines called computers. Before we

start, we need to understand what exactly

processors are and their appropriate

implementations. Processor is an

electronic circuit that functions as the

central processing unit (CPU) of a

computer, providing computational

control. Processors are also used in other

advanced electronic systems, such as

computer printers, automobiles, and jet

airliners, Calculators and etc.

Typical processors incorporate

arithmetic and logic functional units as

well as the associated control logic,

instruction processing circuitry, and a

portion of the memory hierarchy. Portions

of the interface logic for the input/output

(I/O) and memory subsystems may also

be infused, allowing cheaper overall

systems. While many processors and

single-chip designs, some high-

performance designs rely on a few chips

to provide multiple functional units and

relatively large caches.

Processors have been described in

many different ways. They have been

compared with the brain and the heart of

humans. Their operation has been liked

to a switched board, and to the nervous

system in an animal. They have often

been called microcomputers. The original

purpose of the processor was to control

memory. That is what they were originally

designed to do, and that is what they do

today. Specifically, a processor is “a

component that implements memory.”

Processors are much faster than

memories. For example, a processor

clocked at 100 MHz would like to access

memory in 10 nanoseconds, the period of

its 100 MHz clock. Unfortunately, the

memory interfaced to the processor might

require 60 nanoseconds for an access.

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4467

So, the processor ends up waiting during

each memory access, wasting execution

cycles.

To reduce the number of accesses to

main memory, designers added

instruction and data cache to the

processors. A cache is a special type of

high speed RAM where data and the

address of the data are stored. Whenever

the processor tries to read data from main

memory, the cache is examined first. If

one of the addresses stored in the cache

matches the address being used for the

memory read (called a hit), the cache will

supply the data instead. Cache is

commonly ten times faster than main

memory, so you can see the advantage of

getting data in 10 nanoseconds instead of

60 nanoseconds. Only when we miss

(i.e., do not find the required data in the

cache), does it take the full access time of

60 nanoseconds. But this can only

happen once. Since a copy of the new

data is written into the cache after a miss.

The data will be there the next time we

need it. Instruction cache is used to store

frequently used instructions. Data cache

is used to store frequently used data.

Implementing fewer instructions and

addressing modes on silicon reduces the

complexity of the instruction decoder, the

addressing logic, and the execution unit.

This allows the machine to be clocked at

a faster speed, since less work needs to

be done each clock period.

RISC typically has large set of

registers. The number of registers

available in a processor can affect

performance the same way a memory

access does. A complex calculation may

require the use of several data values. If

the data values all reside in memory

during the calculations, many memory

accesses must be used to utilize them. If

the data values are stored in the internal

registers of the processor instead, their

access during calculations will be much

faster. It is good then to have lot of

internal registers.

2. THE MIPS PROCESSOR

The MIPS instruction set architecture

(ISA) is a RISC based microprocessor

architecture that was developed by MIPS

Computer Systems Inc. in the early

1980s. MIPS is now an industry standard

and the performance leader within the

embedded industry. Their designs can be

found in Canon digital cameras, Windows

CE devices, Cisco Routers, Sony Play

Station 2 game consoles, and many more

products used in our everyday lives. By

the late 1990s it was estimated that one

in three of all RISC chips produced was a

MIPS-based design.

Architecture of MIPS RISC

microprocessor includes, fix-length

straightforward decoded instruction

format, memory accesses limited to load

and store instructions, hardwired control

unit, a large general purpose register file,

and all operations are done within the

registers of the microprocessor.

Due to these design characteristics,

computer architecture courses in

university and technical schools around

the world often study the MIPS

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4468

architecture. One of the most widely used

tools that helps students understand

MIPS is SPIM (MIPS spelled backwards) a

software simulator that enables the user

to read and write MIPS assembly

language programs and execute them.

SPIM is a great tool because it allows the

user to execute programs one step or

instruction at a time. This then allows the

user to see exactly what is happening

during their program execution. SPIM

also provides a window displaying all

general purpose registers which can also

be used during the debug of a program.

This simulator is another impressive tool

that gives the computer architecture

students an opportunity to visually

observe how the MIPS processor works.

I - Type instruction

31 6 5 5 16 0

Opcode rs
1

 rt n/offset

R - Type

6 5 5 5 5 6

Opcode rs rt rd shamt func

J - Type

6 26

Opcode raddr

Figure 1 Instruction Formats

As mentioned before MIPS is a RISC

microprocessor architecture. The MIPS

Architecture defines 32-bit general purpose

registers (GPRs). Register $r0 is hard-wired

and always contains the value zero. The CPU

uses byte addressing for word accesses and

must be aligned on a byte boundary divisible

by four (0, 4, 8, …). MIPS only has three

instruction types: I-type is used for the Load

and Stores instructions, R-type is used for

Arithmetic instructions, and J-type is used

for the Jump instructions as shown in Figure

1 which provides a description of each of the

fields used in the three different instruction

types.

MIPS is a load/store architecture,

meaning that all operations are performed on

operands held in the processor registers and

the main memory can only be accessed

through the load and store instructions (e.g

lw, sw). A load instruction loads a value from

memory into a register. A store instruction

stores a value from a register to memory. The

load and store instructions use the sum of

the offset value in the address/immediate

field and the base register in the $rs field to

address the memory. Arithmetic instructions

or R-type include: ALU Immediate (e.g. addi),

three-operand (e.g. add, and, slt), and shift

instructions (e.g. sll, srl). The J-type

instructions are used for jump instructions

(e.g. j). Branch instructions (e.g. beq, bne) are

I-type instructions which use the addition of

an offset value from the current address in

the address/immediate field along with the

program counter (PC) to compute the branch

target address; this is considered PC-relative

addressing.

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4469

3. MIPS SINGLE-CYCLE PROCESSOR

IMPLEMENTATION

The MIPS single-cycle processor

performs the tasks of instruction fetch,

instruction decode, execution, memory

access and write-back all in one clock

cycle. First the PC value is used as an

address to index the instruction memory

which supplies a 32-bit value of the next

instruction to be executed. This

instruction is then divided into the

different fields shown in fig. 1. The

instructions opcode field bits [31-26] are

sent to a control unit to determine the

type of instruction to execute. The type of

instruction then determines which control

signals are to be asserted and what

function the ALU is to perform, thus

decoding the instruction. The instruction

register address fields rs bits [25 - 21], rt

bits [20 - 16], and rd bits [15-11] are used

to address the register file. The register

file supports two independent register

reads and one register write in one clock

cycle. The register file reads in the

requested addresses and outputs the data

values contained in these registers. These

data values can then be operated on by

the ALU whose operation is determined by

the control unit to either compute a

memory address (e.g. load or store),

compute an arithmetic result (e.g. add,

and or slt), or perform a compare (e.g.

branch). If the instruction decoded is

arithmetic, the ALU result must be

written to a register. If the instruction

decoded is a load or a store, the ALU

result is then used to address the data

memory. The final step writes the ALU

result or memory value back to the

register file.

Figure 2 The MIPS Processor

The initial task of this paper was to

implement in VHDL the MIPS single-cycle

processor .A good VHDL reference and

tutorial can be found in the appendices to

the book Fundamentals of Digital Logic

with VHDL Design by Stephen Brown and

Zvonko Vranesic [2]. The IEEE Standard

VHDL Language Reference Manual [3],

also helped in the overall design of the

VHDL implementation. The first part of

the design was to analyze the single-cycle

datapath and take note of the major

function units and their respective

connections.

The MIPS implementation as with all

processors, consists of two main types of

logic elements: combinational and

sequential elements. Combinational

elements are elements that operate on

data values, meaning that their outputs

depend on the current inputs. Such

elements in the MIPS implementation

include the arithmetic logic unit (ALU)

and adder. Sequential elements are

elements that contain a hold state. Each

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4470

state element has at least two inputs and

one output. The two inputs are the data

value to be written and a clock signal. The

output signal provides the data values

that were written in an earlier clock cycle.

State elements in the MIPS

implementation include the Register File,

Instruction Memory, and Data Memory as

seen in Figure 2. While many of logic

units are straightforward to design and

implement in VHDL, considerable effort

was needed to implement the state

elements.

It was determined that the full 32-bit

version of the MIPS architecture would

not fit onto the chosen FLEX10K70 FPGA.

The FLEX10K70 device includes nine

embedded array blocks (EABs) each

providing only 2,048 bits of memory for a

total of 2 KB memory space. The full 32-

bit version of MIPS requires no less than

twelve EABs to support the processor’s

register file, instruction memory, and data

memory. In order for our design to model

that in [1], the data width was reduced to

8-bit while still maintaining a full 32-bit

instruction. This new design allows us to

implement all of the processor’s state

elements using six EABs, which can be

handled by the FLEX10K70 FPGA device.

Even though the data width was reduced,

the design has minimal VHDL source

modifications from the full 32-bit version,

thus not impacting the instructional

value of the MIPS VHDL model.

With our new design, the register file

is implemented to hold thirty-two, 8-bit

general purpose registers amounting to

32 bytes of memory space. This easily fits

into one 256 x 8 EAB within the FPGA.

The full 32-bit version of MIPS will require

combining four 256 x 8 EABs to

implement the register file. The register

file has two read and one write input

ports, meaning that during one clock

cycle, the processor must be able to read

two independent data values and write a

separate value into the register file. Figure

3 shows the MIPS register file. The

register file was implemented in VHDL by

declaring it as a one-dimensional array of

32 elements or registers each 8-bits wide.

(e.g. TYPE register_file IS ARRAY (0 TO

31) OF STD_LOGIC_VECTOR (7 DOWNTO

0)) By declaring the register file as a one-

dimensional array, the requested register

address would need to be converted into

an integer to index the register file.(e.g.

Read_Data_1 <= register_file (

CONV_INTEGER (read_register_address1

(4 DOWNTO 0))) Finally, to save from

having to load each register with a value,

the registers get initialized to their

respective register number when the

Reset signal is asserted. (e.g. r1 = 1, r2 =

2, etc.)

Figure 3 MIPS Register File

INSTRUCTION FETCH UNIT

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4471

The function of the instruction fetch

unit is to obtain an instruction from the

instruction memory using the current

value of the PC and increment the PC

value for the next instruction as shown in

Figure 4. Since this design uses an 8-bit

data width we had to implement byte

addressing to access the registers and

word address to access the instruction

memory. The instruction fetch component

contains the following logic elements that

are implemented in VHDL: 8-bit program

counter (PC) register, an adder to

increment the PC by four, the instruction

memory, a multiplexer, and an AND gate

used to select the value of the next PC.

Figure 4 Instruction Fetch Unit

INSTRUCTION DECODE UNIT

The main function of the instruction

decode unit is to use the 32-bit

instruction provided from the previous

instruction fetch unit to index the register

file and obtain the register data values as

seen in Figure 5. This unit also sign

extends instruction bits [15 - 0] to 32-bit.

However with our design of 8-bit data

width, our implementation uses the

instruction bits [7 – 0] bits instead of sign

extending the value. The logic elements to

be implemented in VHDL include several

multiplexers and the register file that was

described earlier.

Figure 5 Instruction Decoding Unit

THE CONTROL UNIT

The control unit of the MIPS single-

cycle processor examines the instruction

opcode bits [31 – 26] and decodes the

instruction to generate nine control

signals to be used in the additional

modules as shown in Figure 6. The

RegDst control signal determines which

register is written to the register file. The

Jump control signal selects the jump

address to be sent to the PC. The Branch

control signal is used to select the branch

address to be sent to the PC. The

MemRead control signal is asserted

during a load instruction when the data

memory is read to load a register with its

memory contents. The MemtoReg control

signal determines if the ALU result or the

data memory output is written to the

register file. The ALUOp control signals

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4472

determine the function the ALU performs.

(e.g. and, or, add, sbu, slt) The MemWrite

control signal is asserted when during a

store instruction when a registers value is

stored in the data memory. The ALUSrc

control signal determines if the ALU

second operand comes from the register

file or the sign extend. The RegWrite

control signal is asserted when the

register file needs to be written. Table 1

shows the control signal values from the

instruction decoded.

Figure 6 MIPS Control Unit

Table 1 MIPS Control Signals

Execution Unit

The execution unit of the MIPS

processor contains the arithmetic logic

unit (ALU) which performs the operation

determined by the ALUop signal. The

branch address is calculated by adding

the PC+4 to the sign extended immediate

field shifted left 2 bits by a separate

adder. The logic elements to be

implemented in VHDL include a

multiplexer, an adder, the ALU and the

ALU control as shown in Figure 2 & 7

Figure 7 MIPS Execution Unit

DATA MEMORY UNIT

The data memory unit is only

accessed by the load and store

instructions. The load instruction asserts

the MemRead signal and uses the ALU

Result value as an address to index the

data memory. The read output data is

then subsequently written into the

register file. A store instruction asserts

the MemWrite signal and writes the data

value previously read from a register into

the computed memory address. The

VHDL implementation of the data memory

was described earlier. Figure 8 shows the

signals used by the memory unit to

access the data memory.

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4473

Figure 8 MIPS Data Memory Unit

4. Results and Conclusions

The work presented in this paper

describes a functional implementation

design of a MIPS single cycle and

pipelined processor designed using VHDL.

The VHDL designs of the MIPS processor

were all simulated to ensure that the

processors were functional and operated

just as described by Patterson and

Hennessy. The results show first the

instruction memory initialization, which

is used to fill the instruction memory with

the instructions to be executed, which are

indexed by the program counter (PC). The

second is the actual 32-bit instruction

represented using hexadecimal numbers.

The third is the PC value used to index

the instruction memory to retrieve an

instruction. The next four columns are

the MIPS instruction’s mnemonic

description. Finally last columns are the

pseudo instructions using the actual

values used during the simulation.

From This Work it is observed that the

MIPS based system is simulated using

VHDL. The overall system is simulated

and synthesized, after synthesizing the

system we could get a statistical data

about the number of input-output

buffers, the number of registers, number

of flip-flops and latches were used .The

modules simulated are Accumulator,

Buffer, Clock Generator, Instruction

Register, Multiplexer, Program Counter,

Reset, Control Logic Decoder, Arithmetic

Logic Unit and the overall system. Few

instructions were executed and their

timing sequences were analyzed. It is

found that an each instruction taken

100ps.

It shows that the different operation of

the instruction including the decoding

and execution comes to 40ns in the

overall system. Therefore we conclude

that the behavior shows, the system is

working as MIPS as instruction will be

executed within a single clock cycle.

Figure 9 Simulation Results

http://www.ijettjournal.org/

 International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 10 - Oct 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 4474

Figure 10 Schematic

Figure 11 RTL Schematic

Acknowledgements

The authors would like to thank the

anonymous reviewers for their comments

which were very helpful in improving the

quality and presentation of this paper.

 References:

[1] Zheng-WeiMin, Tang-ZhiZhong. Computer

System Structure (The second edition),

Tsinghua University Press, 2006.

[2] Pan-Song, Huang-JiYe, SOPC Technology

Utility Tutorial, Tsinghua University Press,

2006.

[3] Ramdas, T. Li-Minn Ang and Egan, G.,

"FPGA implementation of an integer MIPS

processor in Handel-C and its application

to human face detection," in Proc. of IEEE

Region 10 Conference, Vol. 1, pp. 36-39,

2004.

[4] Xizhi Li and Tiecai Li, "ECOMIPS: an

economic MIPS CPU design on FPGA," in

Proc. of the 4th IEEE International

Workshop on System-on- Chip for Real-

Time Applications, pp. 291-294, 2004.

[5] D. M. Harris and S. L. Harris, Digital

Design and Computer Architecture,1st

edition, Morgan Kaufmann, 2007, USA.

[6] Balpande, R.S. and Keote, R.S., "Design of

FPGA based Instruction Fetch & Decode

Module of 32-bit RISC (MIPS) Processor," in

Proc. of International Conference on

Communication Systems and Network

Technologies, pp. 409-413, 2011.

[7] MIPS Technologies, Inc. MIPS32™

Architecture For Programmers Volume II:

The MIPS32™ Instruction Set June 9,

2003.

Authors Profile:

 Marri Mounika is Pursuing M.

Tech from Geetanjali College Of

Enginnering & Technology, JNTUH

with specialization in Electronics &

Communications Engineering

(ECE).

Aleti Shankar is working as an

Associate Professor in

Electronics & Communication

Engineering in Geethanjali

College of Engineering & Technology, A.P,

and India. He received Masters Degree in

Systems and Signal Processing from JNTUH

A.P India. He has 10years of Teaching

Experience and his interesting fields are low

power VLSI Signal Processing, Image

Processing and Speech Processing.

http://www.ijettjournal.org/

