
International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 458

Use of Modeling Language to deploy applications in
clouds.

Gurpreet K. Juneja
India

Abstract— Resource Sharing in a pure plug and play model that
dramatically simplifies infrastructure planning is the promise of
cloud computing. The two key advantages of this model are ease-
of-use and cost-effectiveness. Cloud Computing also offers vast
amount of resources available for end users. The opportunity to
choose between several cloud providers is alluded by complexity
o cloud solution heterogeneity. Challenges with cloud deployment
and resource provisioning are identified in this paper. To tackle
these challenges a model based language named cloud ML is
proposed. This language is supported by an engine able to
provision nodes in the cloud.

Keywords— MDA, CIM, PIM, PSM, Template, Instance, Node.

I. INTRODUCTION TO CLOUD COMPUTING
Cloud Computing is a computing paradigm where a large

pool of systems are connected in public or private networks to
provide dynamically scalable infrastructure for application,
data and file storage. With the advent of this technology the
cost of computation, application hosting, content storage and
delivery is reduced significantly. This is shown in fig. 1.

Fig. 1 Cloud Computing

A. Service Models
Cloud Providers offers services that can be grouped into

three categories.

1) Software as a Service (SaaS): In this model, a complete
application is offered to the customer, as a service on demand.
A single instance of the service runs on the cloud & multiple
end users are serviced. On the customers‟ side, there is no
need for upfront investment in servers or software licenses,
while for the provider, the costs are lowered, since only a
single application needs to be hosted & maintained. Today
SaaS is offered by companies such as Google, Microsoft,
Zoho, etc.

2) Platform as a Service (PaaS): Here, a layer of software,

or development environment is encapsulated & offered as a
service, upon which other higher levels of service can be built.
The customer has the freedom to build his own applications.
Eg. Google app engine.

3) Infrastructure as a Service (IaaS): IaaS provides basic

storage and computing capabilities as standardized services
over the network. Servers, storage systems, networking
equipment, data centre space etc. are pooled and made
available to handle workloads. The customer would typically
deploy his own software on the infrastructure. Some common
examples are Amazon, GoGrid, 3 Tera, etc.

B. Deployment Models: Deployment models define where
and how applications are deployed in a cloud environment,
such as publicly with a global provider or private in local data
centres. There are four main deployment models.

 1) Public cloud: A public cloud can be accessed by any
subscriber with an internet connection and access to the cloud
space.
 2) Private cloud: A private cloud is established for a
specific group or organization and limits access to just that
group.
 3) Community cloud: A community cloud is shared among
two or more organizations that have similar cloud
requirements.
 4) Hybrid cloud: A hybrid cloud is essentially a
combination of at least two clouds, where the clouds included
are a mixture of public, private, or community.

II. MODEL DRIVEN ENGINEERING
By combining the domain of Cloud Computing with the

one of modeling it is possible to achieve benefits such as
improved communication when designing a system and better

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 459

understanding of the system itself. Model-Driven Architecture
(MDA) is a way of designing software with modeling in mind
provided by the Object Management Group (OMG). This is
shown in the fig below.

Fig. 2 Model driven architecture

When working with MDA it is common to first create a

Computation Independent Model (CIM), then a Platform-
Independent Model (PIM) and lastly a Platform-Specific
Model (PSM). There are five different steps which are
discussed below.

A. Create a CIM
This is done to capture requirements and describe the

domain. To do this the MDA developer must familiarize with
the business organization and the requirements of this domain.
This should be done without any specific technology. The
physical appearance of CIM models can be compared to use
case diagrams in UML, where developers can model actors
and actions (use cases) based on a specific domain.

B. Develop a PIM
The next step aims at using descriptions and requirements

from the CIM with specific technologies. The OMG standard
for MDA use UML models, while other tools or practices
might select different technologies. Example of such Platform
Independent Models can be class diagrams in UML used to
describe a domain on a technical level.

C. Convert PIM into PSM
The next step is to convert the models into something more

concrete and specific to a platform.

D. Generate code from PSM
A PSM should be specific enough that code can be

generated from the models. For instance can class diagrams be
generated into entities, and additional code for managing the
entities can be added as well. Some diagrams such as Business
Process Model and Notation (BPMN) can generate Business
Process Execution Language (BPEL) which again can
generate executable logic.

E. Deploy
The final step is based on deploying the PSM, which

concludes the five steps from loosely descriptions of a domain
to a running product.

III. CHALLENGES POSED BY CLOUD COMPUTING
For all the benefits that cloud computing promises, it also

poses a number of challenges for providers and consumers.
The main hurdles to be negotiated lie in sufficient utilisation
of the IT capacities, contractual complexities, regulations on
data access, the concentration of data and the fact that the user
is tied to one cloud provider. The major challenges are
discussed below.

A. Aiming for optimum capacity utilisation
To achieve optimum utilisation of their IT infrastructure,

they therefore usually try to acquire an ideally complementary
customer portfolio of users diversified across individual
sectors and time zones.

B. Contract terms often opaque
The contractual relationship between cloud computing

vendors and users is often not set out in full, particularly since
the contracting parties frequently fail to negotiate a
sufficiently comprehensive agreement. In many instances
users have absolutely no idea who is actually delivering the
service at the end of a long value chain of sub-contractors. In
such cases a legally enforceable contractual relationship can
normally be deemed to exist only indirectly.

C. Agreement on the service quality required
In a sustainable partnership the parties involved should

agree on the minimum level of service quality (with regard to
system availability and speed) that is to be observed. In
practice, however, the issue of quality is frequently left open
in the service level agreement.

D. Data protection and data security
In addition to the quality of service, the varied aspects of

data protection and data security are also extremely important
for the cloud consumer when drawing up a full and complete
agreement.

IV. VISION, CONCEPTS AND PRINCIPLES OF CLOUD ML
The concept and principle of Cloud ML is to be an easier

and more reliable path into cloud computing for IT-driven
businesses of variable sizes. The tool is visioned to parse and
execute template files representing topologies and provision
these as instances available in the cloud. The domain of cloud
ML contains components necessary to implement in order to
fulfil the vision as a whole. Every part within the designated
area is some physical aspect in the implementation, and
therefore core parts of the contribution. Various parts and
components of cloud ML is shown diagrammatically and is
discussed below.

A. Actors
There are three actors, (i) business person representing

someone with administration- or manager position which
defines and controls demands for application functionality and
capabilities. The next actor, (ii) cloud expert has a greater
knowledge of the cloud domain e.g., cloud providers, services

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 460

these offer, limitations, API support and prices. The last actor,
(iii) user is a person which directly utilizes CloudML to do
provisioning. This physical person may or may not have the
role of cloud expert, hence the cloud expert extends from the
user actor.

 Fig. 3 Domain of cloud ML

B. Application and Topologies
The business person is in charge of the application, he/she

has a need for an application that can fulfil certain tasks, and
to handle these tasks application demands are made. The
cloud expert use the requirements sketched by the business
person to define and design node topologies which tackles the
application demands. A topology is a map of nodes connected
together in a specific pattern, defined by the cloud expert. In a
topology there is also information about node attributes e.g.,
CPU power and RAM sizes. He/she might create several
topologies to fulfil the application demands.

C. Templates
The next step is to create templates based on the topologies;

this is done by the cloud expert. A template is a digital
reflection of a topology including the attributes and some
additional information such as node names and template
labeling. It is also possible to define more than one topology
within a single template.

D. Engine
When the cloud expert have designed and created the

necessary templates the next actor, user, will continue the
procedure. The user selects the template and feeds them into
the engine. The engine is the core of the implementation,
handling several steps and executing most of the CloudML
logic. The engine first of all converts the template files into a
native format for later use. It then, convert pure nodes into

instances ready for provisioning. Then, it connects to all the
desired providers. After that it propagates the instances and
produces models @run time of the instances being propagated.

E. Providers
The engine interacts with the providers, EC2 and

Rackspace are selected as examples, but any cloud provider
that will be supported by CloudML can be utilized. For the
engine to interact with a set of different providers, a tool,
library or framework is needed. This additional software can
connect to the different providers through a common interface.

F. Models@ run time
The last part of this implementation of CloudML is to

reflect provisioned instances with models @run time. These
models are returned to the user when provisioning starts, and
when attributes and statuses about instances are updated the
user is notified about these updates through the models.

V. ANALYSIS AND DESIGN- CLOUD ML
For analysis and design considerations of cloud ML, let us

take the example of Alice by considering fig. 3. Alice here
performs the role of cloud expert and user. She will define the
topologies, create the templates and use the engine to
provision her models.

A. Single node topology
Since this single node handles both computation and

storage, Alice decides to increase capabilities of both
processing (number of Cores) and Disk size on the Node.
Both of these attributes are incremented because the instance
hosts the main application as well as the database. The
approach of using one single node is good in terms of
simplicity. This is shown in the fig below.

 Fig. 4(a) Template and Node

 Fig. 4(b) Instance

B. Building Templates
In the end Alice inserts all data about topologies into a

Template. The template includes physical descriptions of the
Node, and a list of the type Property for the node. The Node
has a name used to reference the node under provisioning. The
properties the node can have are configurations of attributes
on a set of given capabilities. These configurations are what
define what type of tasks a node is suitable for. In Alice’s case
the node has increased two important attributes to support

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 461

both higher computation demand and storage capabilities, i.e.,
2 cores and 500 Gigabyte (GB) 1 in hard drive size. By not
altering any other attributes on the respective nodes, they will
be set to minimal values. This is a positive expectation, since
the nodes will handle specific tasks, which does not demand
enhancing of other attributes.

C. Provisioning
With these models Alice initializes provisioning by calling

build on Cloud ML Engine, providing Credential and
Template. This starts the asynchronous job of configuring and
creating Instances based on nodes. Provisioning process is
shown in the form of following sequence diagram.

Fig. 5 Cloud ML provisioning process (Sequence diagram)

Here, Instance only refers to template by a String,

templateName. This is semantically correct because the
template is a transparent entity in the context of provisioning,
and is only used as a reference. Instance is also an internal

element in CloudML, and might not have to be indirectly or
directly exposed to end users. RuntimeInstance is specifically
designed to complement Node with RuntimeProperties, as
Properties from Node still contain valid data. When
CloudMLEngine start provisioning, a RuntimeInstance is
created immediately, and returned to Alice. The method call
to build is described in fig. In this figure RuntimeInstance is
returned directly to Alice, because these are asynchronous
elements within CloudML. The actor CC within this figure is
an abbreviation of CloudConnector. This is emphasized in fig.
through getStatus method calls.

D. Three nodes topology
For scalability and modularity the single-node approach is

restraining, i.e., it does not scale very well, and does not
benefit from cloud advantages. If the application consumes
too much CPU power, this slows the application totality down
and decreases usability. There is no strong link between
CloudML and the application, but to maintain scalability some
measures must be manually developed using three nodes
topology. This is shown in the following figure.

 Fig. 6 Three nodes provisioning process

E. New template
Alice changes her topology by editing her existing template

to contain three nodes instead of one. She also changes the
node attributes to suite their new needs better, i.e., increasing

International Journal of Engineering Trends and Technology- Volume4Issue3- 2013

ISSN: 2231-5381 http://www.internationaljournalssrg.org Page 462

amount of Cores on front-end, and increased Disk for back-
end Node. Three nodes topology is shown in the fig below.

 Fig. 7(a) Template with nodes

 Fig. 7(b) Instance

So, the benefit of a three node topology where the

application is distributed over several nodes is the scalability
and modularity, which were lacking in the single-node
topology.

VI. CONCLUSION
First the background part introducing the domain of cloud

computing and model-driven engineering which combines the
domain of Cloud Computing with the one of modeling to
achieve benefits such as improved communication when
designing a system and better understanding of the system
itself. Then, various challenges with cloud deployment and
resource provisioning are identified. To tackle these
challenges a model based language named cloud ML is
proposed. After that, the core idea of CloudML is introduced.
Finally, analysis and design of Cloud ML should be built up.
All through is done with the help of a scenario where Alice
performs provisioning with the help of single node topology.
But, for scalability and modularity, three nodes topology is
used where the application is distributed over several nodes.

.

REFERENCES
[1] S. Mosser, B. Eirik and P. Mohagheghi, Cloud-Computing: from

Revolution toEvolution, BElgian-NEtherlands software eVOLution
seminar (BENEVOL’11), pages 1–2, Brussels, Belgium, December
2011.

[2] E. Brandtzæg, P. Mohagheghi and S. Mosser, Towards a Domain-
Specific Language to Deploy Applications in the Clouds, Third
International Conference on Cloud Computing, (CLOUD’12), July
2012.

[3] A. Huth and J. Cebula, The Basics of Cloud Computing, United States-
Computer Emergency Readiness Team (US-CERT), 2011.

[4] T. Harris, Cloud Computing: An Overview, White Papers DB.
[5] S. Heng, Cloud Computing- clear skies ahead, E-conomics Digital

economy and structural change, March 1, 2012.
[6] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language

User Guide, The (2nd Edition) (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2005. ISBN 0321267974.

[7] E. Brandtzæg, Bank manager, 2012. URL https://github.com/eirikb/
grails-bank-example.

[8] P. Haller and M. Odersky, Actors that unify threads and events,
Proceedings of the 9th international conference on Coordination
models and languages, COORDINATION’07, pages 171–190, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-72793-4.

[9] S. Kent, Model Driven Engineering, Integrated Formal Methods,
volume 2335 of Lecture Notes in Computer Science, pages 286–298.
Springer Berlin / Heidelberg, 2002. ISBN 978-3-540-43703-1.

[10] Rackspace, Rackspace cloud, 2012. URL http://www.rackspace.com/
cloud.

[11] Y. Singh and M. Sood, Model Driven Architecture: A Perspective.
Advance Computing Conference, 2009. IACC 2009. IEEE
International, pages 1644 –1652, march 2009. doi:
10.1109/IADCC.2009.4809264.

[12] J. Varia, Architecting for the Cloud: Best Practices, Compute,
1(January):1–23, 2010.

