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Abstract-- In this study, the influence of different defects on the 
energy bands for the super cell of a defected periodic viaduct 
(DPV) when considering the pile-soil-structure interaction is 
investigated. By developing a coupled boundary element method 
(BEM) model for the piles supporting the superstructure of the 
DPV, the compliances of the pile foundation can be obtained, 
combined with the transfer matrices for the beams and piers, the 
transfer matrix for each span of the viaduct can be determined. 
Then, the eigenvalue equation for the super cell of the DPV can 
be derived by utilizing the Bloch theorem, solution of which 
yields the energy bands of the super-cell. Numerical results show 
that some defects may give rise to the defect state for the super 
cell of the DPV. 
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I. INTRODUCTION 
As viaduct can be used to resolve the settlement of soft soil 

bases effectively, they are now widely used in the high speed 
railways. For convenience, viaducts in normal sections are 
usually designed to consist of identical spans, so they can be 
simplified as periodic structures. For periodic viaducts with 
super long spans, they can be further idealized as infinite 
periodic structures. However, due to practical requirements, 
some spans of the viaduct are not identical with the standard 
span, making the viaduct defected. In this study, the spans 
different from the standard span are referred to as defected 
spans, and a periodic viaduct containing defected spans is 
called a defected periodic viaduct (DPV) [1-2]. 

Brillouin [3], Mead [4-6] and Lin [7] analyzed wave 
propagation in common periodic structures, and their 
researches show that waves in periodic structures are quite 
different from those in continuum media and the passband 
and stopband characteristics of the waves usually occurs in a 
periodic structure. It is noted that the behaviors of waves in a 
defected periodic structure is even more complicated than 
those in common periodic structures. By numerical simulation, 
Wu [8-9] found that in a defected periodic continuum medium, 
sharp peak occurs around the defected cell in a mode relevant 
to defected states. Up to now, there have been also some 
studies concerned with defected beams. Lin & Yang [10-11] 
analyzed a periodic beam with random defects, Mead [12-14] 
investigated the free waves propagating along a periodic 
beam with a single defect. Based on the researches of Mead, 
Bansal [15] investigated periodic structures with multiple 
defects and found that the influence of defects on the wave 
propagating along a periodic beam is significant because of 

wave localization. Furthermore, Mead & Bansal [16] studied 
the response of a mono-coupled periodic beam with a single 
defect to a convected loading, finding that wave motion in the 
defected periodic beam may be confined around the defect. In 
summary, the presence of defected spans in a periodic beam 
may alter the characteristics of the wave motion, causing the 
localization of wave motion around the defects.  
 To investigate the defect state of the DPV, it is necessary to 
define a super-cell for the DPV. The super-cell of the viaduct 
should contain the defected span and also it should contain 
sufficient number of spans of the viaduct to make the 
responses of the super-cell associated with the defect state 
mode negligible at the edges of the super-cell. Since there has 
been no research addressing the influence of different defects 
on the energy bands for the super cell of a DPV so far, this 
paper will look into it. Besides, existing studies concerned 
about the beam-type periodic structure with defects are 
usually limited to continuous periodic beams, wherein beams 
are supposed to be continuous and supported by various 
periodically placed supporters. Since the viaduct considered 
in this study consists of a series of separate beams, piers and 
supporting piles, it is unreasonable to simplify the viaduct as a 
continuous beam. 

II. THE GENERAL STATEMENT AND APPROCH FOR 
THE PROBLEM IN THIS STUDY 

Generally, a practical viaduct may be decomposed into two 
parts: substructure and superstructure. For simplicity, it is 
supposed in this study that each span of the viaduct only 
contains one pier and each pier of the viaduct is supported by 
an effective pile foundation. Also, the piers and piles are 
assumed to be rigidly connected. In this way, the substructure 
of the viaduct is simplified as a pile row embedded in the 
half-space soil as shown in Figure 1.  

The superstructure of the periodic viaduct is reduced to a 
unit composed of a pier, two composite beams (left and right 
beams) and three linking springs, that is, the beam-beam, left 
and right beam-pier springs, respectively (Figure 1). The three 
springs form the beam-beam-pier (BBP) junction for each 
span of the viaduct.  

It is supposed in this study that the periodic viaduct contain 
a defected span and the defected span is the 0-th span of the 
defected viaduct. Then,   to -1 spans and 1 to   
spans of the defected viaduct are the left and right 
semi-infinite periodic viaducts, respectively. 

Generally, when a periodic viaduct is undergoing vibration, 
both the in-plane and out-of-plane vibrations may occur. Note 
that: the plane here is referred to as the plane passing through 
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the viaduct, namely, the xoz plane in Figure 1. Since the 
half-space soil, piles and super-structure of the viaduct in this 
study are assumed to be material and geometrically linear, the 
in-plane and out-of-plane vibrations of the viaduct are thus 
decoupled and the in-plane and out-of-plane vibrations of the 
viaduct can thus be investigated independently. 

 
Fig. 1 Illustration for an infinite DPV 

III. A COUPLED BEM MODEL FOR THE PILE-SOIL 
INTERACTION PROBLEM 

To account for the coupling between the superstructure of 
the viaduct and the pile foundations, the pile-soil interaction 
problem should be solved first. Since the separations between 
the neighboring effective piles are large enough, the 
interaction between them is neglected in this study, then, the 
multiple pile soil interaction problem is thus reduced to a 
single pile soil interaction problem. In this section, a coupled 
BEM model for a single pile embedded in the half-space soil 
will be developed, whereby the compliances of the pile 
foundation can be determined. 

A. Boundary Integral Equation for an Elastic Medium 
In this study, the pile and half-space soil are treated as the 

elastic medium. The equation of motion for an elastic medium 
in the frequency domain has the following expression [17] 

2

, ,( )i jj j ji iu u u        (1) 
in which   and   are the Lame constants of the elastic 

medium; iu is the displacement;   is the density;   is 
the angular frequency. Note that the frequency domain 
variable and time domain variable are related to each other by 
the Fourier transform for time and frequency. In this study, the 
Fourier transform with respect to time and frequency is 
defined as follows [18] 

iˆ ( ) ( ) tf f t e dt






  , i1 ˆ( ) ( )
2

tf t f e d 






   (2) 

in which t represent the time, the variable with a caret denotes 
the frequency domain variable. Note that as this study is 
restricted to the frequency domain analysis of the defected 
viaduct, for brevity, the caret denoting the frequency domain 
variable is dropped for all the frequency domain variables. 
The constitutive relation for the elastic medium as follows 
[17] 

2ij ij ije     (3) 

in which ij  and ij  are the stress and strain components 

for the elastic medium, respectively, e and ij  denotes the 
bulk strain and the Kronecker delta, respectively. Based on 
the dynamic reciprocal theorem, the frequency domain 
boundary integral equation for the elastic medium is obtained 
as follows [19] 

( ) ( )(x) [ ( , ) (y) (x, y) (y)] (y)G G

ij j ij j ij jc u U t T u d


   x y  (4) 

in which ( ) ( ),G G

ij ijU T  are the Green’s functions for the elastic 

medium and are given in Appendix A; ,j ju t  are the 
displacements and tractions along the boundary of the elastic 
medium; ijc  is the coefficients for the boundary and   
denotes the boundary of the elastic medium. 

B. Derivation of the Coupled BEM Model for the Pile and 
Half-Space Soil 

In this section, according to the boundary integral equations 
for the elastic medium, boundary element formulations for the 
pile and half-space soil are established, respectively. By using 
the boundary element formulations as well as the boundary 
conditions and continuity conditions at the pile-soil interface, 
a coupled BEM model for the pile and half-space soil will be 
developed. As shown in Figure 2, for a pile embedded in a 
half-space soil, the whole boundary of the pile-soil system 
consists of three parts, that is, the interface between the pile 
and half-space soil ( 1 ), the boundary of the pile top ( 2 ), 

and the surface of the half-space soil ( 3 ), respectively. The 

boundary of the pile consists of 1  and 2 , respectively 

and the boundary of the half-space soil is composed of 1  

and 3 , respectively.  

 
Fig. 2 The illustration for a pile embedded in an elastic half-space soil 

The frequency domain integral equations for the pile and 
half-space soil can be discretized if suitable numbers of 
boundary elements are used to discretize the corresponding 

standard span defected span BBP junction 
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boundaries. Suppose that the boundaries of the pile and 
half-space soil are discretized by the same type of 
iso-parametric element, each boundary element containing 

ndN nodes. Thus, for a point x  inside the j-th element, the 
following interpolation formulae hold [20] 

( ) ( )

1

( , ) ( , )
ndN

j j

n n
n

N   


x x , ( ) ( ) ( )

1

( , ) ( , ) ( )
ndN

j j j

n n
n

N   


u x u ,  

( ) ( ) ( )

1

( , ) ( , ) ( )
ndN

j j j

n n
n

N   


t x t  (5) 

where the superscript j denotes the element number, n is the 
local node number, ,   are the intrinsic coordinates 

corresponding to the point ( )jx , ( )j

nx is the n-th node 
coordinate of the j-th element in the global coordinate system, 

( , )nN    is the n-th shape function, ( ) ( )j

n u  and ( ) ( )j

n t  
represent the displacement and traction vectors at the n-th 
node of the j-th element. 

Using equation (5) in the boundary integral equation for the 
pile and integrating the shape function kernel products over 
all boundary elements for the pile, the boundary element 
formulation for the pile is obtained as follows 

( ) ( ) ( ) ( )p p p pH u = G t  (6) 
in which the superscript p  denotes the pile; ( )pG  and 

( )pH  are the coefficient matrices obtained by integrating 
shape function kernel products over all boundary elements of 
the pile; ( )pu  and ( )pt  are the generalized displacement and 
traction vectors of the nodes of the boundary elements of the 
pile. Dividing ( )pu  and ( )pt  into two parts corresponding to 

1  and 2 , respectively, and partitioning the coefficient 

matrices ( )pG  and ( )pH accordingly, equation (6) is 
rewritten as follows 

( ) ( )

( ) ( ) ( ) ( )1 1

1 2 1 2( ) ( )

2 2

=
p p

p p p p

p p

   
         

   

u t
H H G G

u t
 (7) 

in which the subscripts 1 and 2 represent the boundaries 1  

and 2  of the pile , respectively; ( ) ( ), , j = 1, 2p p

j ju t  denote 
the generalized displacement and traction vectors for the 
boundaries , j = 1, 2j  of the pile, respectively; ( ) ( )

1 2,p pH H  

and ( ) ( )

1 2,p pG G are the sub-matrices of the coefficient 

matrices ( )pH and ( )pG of the pile, corresponding to the 
boundaries 1  and 2 , respectively. 

Likewise, applying equation (5) to the boudary integral 
equaiton of the half-space soil and implementing the similar 
BEM procedure, the boundary element formulation for the 
half-space soil is derived as follows 

( ) ( ) ( ) ( )s s s sH u = G t  (8) 
in which the superscript s  denotes the half-space soil; ( )su  
and ( )st  are the generalized displacement and traction 
vectors of the nodes of the boundary elements of the 
half-space soil; ( )sG  and ( )sH  are the coefficient matrices. 
Analogously, partitioning the coefficient matrices as well as 
the displacement and traction vectors in equation (8) 
corresponding to the boundaries 1  and 3  of the 
half-space soil, the boundary element formulation (8) for the 
half-space soil is reformulated as follows 

( ) ( )

1 1( ) ( ) ( ) ( )

1 3 1 3( ) ( )

3 3

=
s s

s s s s

s s

   
         

   

u t
H H G G

u t
 (9) 

in which ( ) ( ), , j = 1, 3s s

j ju t  denote the generalized 
displacement and traction vectors for the boundaries 

, j = 1, 3j  of the half-space soil, respectively, ( ) ( )

1 3,s sH H  

and ( ) ( )

1 3,s sG G  are the sub-matrices of the coefficient 
matrices of the half-space soil associated with the boundaries 

1  and 3  of the half-space soil, respectively. 

At the interface 1 , the pile and soil should satisfy 
displacement and traction continuity conditions. The 
boundary conditions at the top of the pile ( 2 ) are determined 

by the loads applied at the top of the pile. Thus, ( )

2

pt in 
equation (7) is assumed to be known a priori. Moreover, at 
the surface 3 , the half-space soil is supposed to be stress 
free. As a result, the following continuity conditions and 
boundary condition should be fulfilled along the interface 

1 and the boundary 3 , respectively 
( ) ( )

1 1

p su u , ( ) ( )

1 1

p s t t , ( )

3

s t 0  (10) 
By using the boundary element formulations for the pile 

and soil as given by equations (7) and (9) as well as the 
continuity conditions and boundary condition as shown in 
equation (10), a coupled BEM model for the pile-soil system 
is obtained as follows  

( ) ( ) ( )

1 1 2 ( ) ( ) ( ) ( )

1 1 2 3( ) ( ) ( )

1 1 3

p p p
Tp p p s

s s s

 
    

 

H G H 0
u t u u

H G 0 H
 

( )

2 2

p p


 
 
 

G t

0
 (11) 

IV. ANALYSIS OF THE SUPER STRUCTURE OF THE 
DPV IN THE WAVENUMBER DOMAIN 

In this section, the governing equations for the piers and 
beams of the viaduct undergoing in-plane and out-of-plane 
vibrations will be outlined. As noted above, when subjected to 
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seismic waves, both in-plane and out-of-plane vibrations will 
occur in the periodic viaduct. The in-plane vibration of the 
periodic viaduct will involve the longitudinal and in-plane 
flexural vibrations of the piers and beams, while the 
out-of-plane vibration of the periodic viaduct consists of the 
torsional and out-of-plane flexural vibrations of the piers and 
beams. 

A. The Transfer Matrices for the Piers and Beams 
As the piers are treated as 1-D rods and beams, their 

transfer matrices can be derived by the conventional vibration 
theories for a rod and beam undergoing axial and flexural 
vibrations, respectively. For simplicity, the vibration of the 
beams in this study is described by the Bernoulli-Euler beam 
theory [17]. Thus, the frequency-wavenumber domain 
equations of motion for the longitudinal and in-plane flexural 
vibrations of the pier in the n-th span of the periodic viaduct 
are given as follows [17] 

2 ( ) ( )
2 ( ) ( )

( )2

( )
( ) 0

n e
n ed

d d de

d u z
E u z

dz
   ,  

4 ( ) ( )
2 ( ) ( )

( ) 4

( )
( ) 0

n e
n ed

d dI d d de

d v z
E I A v z

dz
  

 
(12) 

where the subscript d denotes the pier, d  and dE  are the 

density and elastic modulus of the pier, dA  and dII are the 
cross section area and second moment of the cross section of 
the pier, ( )n

du , ( )n

dv  are the axial and transverse displacements, 

respectively, ( )ez denotes the local vertical coordinate of the 
cross-section of the pier.  

For the sign convention of the internal forces of the pier, 
the following relations hold [17] 

( ) ( )
( ) ( )

( )

( )
( )

n e
n e d

d d d e

du z
N z E A

dz
 ,  

( ) ( ) ( ) '' ( )( ) ( )n e n e

dI d dI dM z E I v z  , 
( ) ( )

( ) ( )

( )

( )
( )

n e
n e dI

dI e

dM z
Q z

dz
 

 
(13) 

where ( ) ( ) ( ), ,n n n

d dI dIN Q M  are the axial, shear force and 
moment of the cross-section. For the pier of the n-th span 
undergoing in-plane vibration, the displacement, internal 
force vectors and state vector for an arbitrary cross-section are 
defined as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

dI d d dIz u z v z zq ,  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

dI d dI dIz N z Q z M zf , 
( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( )}n e n T e n T e T

dI dI dIz z zψ q f  (14) 

in which ( )n

dI  is the rotation angle of the cross-section 

( )ez of the n-th pier, ( )n

dIq , ( )n

dIf and ( )n

dIψ represent the 
displacement and internal force vectors as well as the state 
vector, respectively. By using equations (12), (13) and (14), 
the transfer matrix for the pier undergoing in-plane vibration 
can be derived.  

Likewise, the frequency-wavenumber domain equations of 
motion for the longitudinal and in-plane flexural vibrations of 
the beams of the n-th span have the following expressions  

2 ( ) ( )
2 ( ) ( )

( ) 2

( )
( ) 0

n e
n eb

b b be

d u x
E u x

dx
   ,  

4 ( ) ( )
2 ( ) ( )

( ) 4

( )
( ) 0

n e
n eb

b bI b b be

d v x
E I A v x

dx
  

 
(15) 

where the subscript b denotes the beams, b  and bE  are 

the density and elastic modulus of the beams, bA  and bII  
are the cross section area and second moment of the cross 
section of the beams, ( )n

bu , ( )n

bv  are the axial and transverse 

displacements, respectively, ( )ex represents the local 
longitudinal coordinate for the cross-section of the beams.  

For the internal forces of the beams, the following relations 
hold 

( ) ( )
( ) ( )

( )

( )
( )

n e
n e b

b b b e

du x
N x E A

dx
 , 

( ) ( ) ( ) '' ( )( ) ( )n e n e

bI b bI bM x E I v x  , 
( ) ( )

( ) ( )

( )

( )
( )

n e
n e bI

bI e

dM x
Q x

dx


 
(16) 

where ( ) ( ) ( ), ,n n n

b bI bIN Q M  are the axial and shear forces and 
moment of the cross-section. For the beams of the n-th span 
undergoing in-plane vibration, the displacement and internal 
force vectors and the state vector at a cross-section ( )ex are 
defined as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

bI b b bIx u x v x xq , 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

bI b bI bIx N x Q x M xf ,  
( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( )}n e n T e n T e T

bI bI bIx x xψ q f  (17) 

in which ( )n

bI is the rotation angle of the cross-section ( )ex of 

the beams, ( )n

bIq , ( )n

bIf and ( )n

bIψ represent the displacement 
and internal force vectors as well as the state vector for the 
cross-section of the beams, respectively. By using equations 
(15), (16) and (17), the transfer matrix for the beams 
undergoing in-plane vibration can be derived, which is similar 
to that for the pier and thus is omitted in this study.  

As mentioned previously, the out-of-plane vibration of the 
periodic viaduct involves the torsional and out-of-plane 
flexural vibrations of the beams and piers. The 
frequency-wavenumber domain equations of motion for the 
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torsional and out-of-plane flexural vibrations of the n-th pier 
are as follows [17] 

2 ( ) ( )
2 ( ) ( )

( )2

( )
( ) 0

n e
n ed

d d de

d z
z

dz


     , 

4 ( ) ( )
2 ( ) ( )

( ) 4

( )
( ) 0

n e
n ed

d dO d d de

d w z
E I A w z

dz
  

 
(18) 

where d is the shear modulus of the pier, dOI  is the second 
moment of the cross section of the pier for the out-of-plane 
vibration, ( )n

d and ( )n

dw are the twist angle and deflection of 
the pier, respectively.  

For the sign convention for the internal forces, the 
following relations hold [17] 

( ) ( )
( ) ( )

( )

( )
( )

n e
n e d

d d d e

d z
m z I

dz


 ,  

( ) ( ) ( ) '' ( )( ) ( )n e n e

dO d dO dM z E I w z  , 
( ) ( )

( ) ( )

( )

( )
( )

n e
n e dO

dO e

dM z
Q z

dz
 

 
(19) 

where dI   is the polar moment of inertia of the cross section 

of the pier, ( ) ( ) ( ), ,n n n

d dO dOm Q M  are the torque, shear force and 
bending moment of the cross-section of the pier. For the pier 
undergoing out-of-plane vibration, the displacement and 
internal force vectors as well as the state vector at an arbitrary 
cross-section are defined as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

dO d d dOz z v z z q , 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

dO d dO dOz m z Q z M zf ,  
( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( )}n e n T e n T e T

dO dO dOz z zψ q f  (20) 

where ( )n

dO  is the rotation angle of the cross-section ( )ez of 

the pier, ( )n

dOq , ( )n

dOf and ( )n

dOψ represent the displacement and 
internal force vectors as well as the state vector for the 
cross-section of the pier, respectively. By using equations(18), 
(19) and (20), the transfer matrix for the pier undergoing 
out-of-plane vibration can be derived. 

Analogously, the frequency-wavenumber domain equations 
of motion for the torsional and out-of-plane flexural 
vibrations of the beams of the n-th span have the following 
forms 

2 ( ) ( )
2 ( ) ( )

( ) 2

( )
( ) 0

n e
n eb

b b be

d x
x

dx


     , 

4 ( ) ( )
2 ( ) ( )

( ) 4

( )
( ) 0

n e
n eb

b bO b b be

d w x
E I A w x

dx
  

 
(21) 

where b , bOI  are the shear modulus and the second 

moment of the cross section of the beams for the out-of-plane 
vibration, respectively, ( )n

b and ( )n

bw  are the twist angle and 
deflection of the beams, respectively. 

For the internal forces of the beams, the following relations 
hold 

( ) ( )
( ) ( )

( )

( )
( )

n e
n e b

b b b e

d x
m x I

dx


 , 

( ) ( ) ( ) '' ( )( ) ( )n e n e

bO b bO bM x E I w x  , 
( ) ( )

( ) ( )

( )

( )
( )

n e
n e bO

bO e

dM x
Q x

dx


 
(22) 

where bI   is the polar moment of inertia of the cross-section 

of the beams, ( ) ( ) ( ), ,n n n

b bO bOm Q M  are the torque, shear force 
and bending moment of the cross-section. For the beams 
undergoing out-of-plane vibration, the displacement and 
internal force vectors as well as the state vector at an arbitrary 
cross-section are as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

bO b b bOx x w x x q , 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

bO b bO bOx m x Q x M xf ,  
( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( )}n e n T e n T e T

bO bO bOx x xψ q f  (23) 

where ( )n

bO  is the rotation angle of the cross-section ( )ex of 

the beams, ( )n

bOq , ( )n

bOf and ( )n

bOψ  represent the displacement 
and internal force vectors as well as the state vector for the 
cross-section of the beams, respectively. By using 
equations(21), (22) and(23), the transfer matrix for the beams 
undergoing out-of-plane vibration can be derived, which is 
similar to that for the pier undergoing out-of-plane vibration 
and hence is omitted here. 

B. Coupling between the Pile-Soil System and the Super 
Structure 
The displacement and force vectors of the n-th pile top are 

related to each other by the compliances of the pile, namely 
( ) ( )(0) (0)n n

p p p  
q C f , ,I O   (24) 

where Cp is the 33 compliance matrix for the pile, which can 
be obtained using the aforementioned BEM model for the 
pile-soil system. 

As noted above, it is assumed that the pile and pier are 
rigidly connected, the displacement and force vectors of the 
bottom of the n-th pier are equal to those of the n-th pile top, 
namely 

( ) ( )( ) (0)n n

d d pL
 

q q , ( ) ( )( ) (0)n n

d d pL
 

f f , ,I O   (25) 
By using equation (24) and (25), one has the following 

relation for the displacement and force vectors at the bottom 
of the n-th pier 

( ) ( )( ) ( )n n

d d p d dL L
  

q C f , ,I O   (26) 
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Then, the relation between the state vectors at the top and 
bottom of the n-th pier is obtained as follows 

( ) ( )( ) ( )

( ) ( ) ( )( )

( ) ( )( ) (0 )

( ) ( ) (0 )( )

d dn n
qq d qf dp d d d

d d nn

fq d ff d dd d

L LL

L LL

   

  






     
    

        

T TC f q

T T ff
  (27) 

Using equation (27), the relation between the displacement 
and force vectors at the top of the n-th pier is obtained as 
follows 

( ) ( )(0) ( ) (0)n n

d d d  
q C f ,  

( ) ( ) 1 ( ) ( )[ ( ) ( )] [ ( ) ( )]d d d d

d qq d p fq d p ff d qf dL L L L      

  C T C T C T T ,  
,I O   (28) 

By using the equilibrium conditions at the junction [21], 
the relation between the state vectors of the beam sections to 
the right and left of the n-th junction is obtained as follows  

( ) ( )

( ) ( )

(0 ) (0 )

(0 ) (0 )

n n

b b

Jn n

b b

 



 

 

 


   
   
   

q q
S

f f
, 1

J  

S A B , ,I O  , 

( )

( )

3 3

b

lr ld r

b

rr rd r

  



   




 
 
 

J J E
A

J J E I
, 

( )

3 3

( )

b

ll ld l

b

rl rd l

  



  


 


 

 
 
 

J I J E
B

J J E
,

 
( ) ( ) ( ) ( ),b a b a
l d l r d r      E C E E C E  (29) 

in which the matrix JS  is referred to as the junction transfer 

matrix at the n-th BBP junction, and ( ) ( ), ,a a
l r E E  

, , , ,ll lr ld rl rr    J J J J J  and rdJ  ( ,I O  ) are given 
in Appendix B. It is noted that for a periodic viaduct, the 
junction transfer matrix is identical for all the BBP junctions. 
By using equation (29) and the transfer matrices for the 
beams of the n-th span, one has the following relation for the 
state vectors at the right and left ends of the n-th span 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
2 2 2 2

n b b n

b J b

L L L L
     ψ T S T ψ , ,I O   (30) 

where ( ) ( / 2)b LT  is the transfer matrix for the left and right 

beams, ( ) ( / 2)n

b
L


ψ  and ( ) ( / 2)n

b
L


ψ  are the state vectors 

for the left and right ends of the n-th span, respectively. 

V. THE EIGHEVALUE EQUATION FOR THE 
SUPER-CELL OF THE DPV 

A periodic structure with defects usually displays 
characteristics associated with defect state [1, 22]. 
Furthermore, the defect state characteristics of a periodic 
structure are usually relevant to its dynamic response. 
Consequently, to fully understand the dynamic response of a 
defected viaduct, it is necessary to investigate the relation 
between the response of the defected viaduct and its defect 
state. In this section, by means of the super-cell method and 
transfer matrix method, the eigenvalue equation for a 
super-cell of the defected viaduct will be derived, whereby the 
defect state of the defected viaduct can be identified. 

Equation (30) implies that the transfer matrix for a standard 
span of the DPV has the following expression 

0 0( ) ( )( ) ( 0)b bq

R J L   T T S T , ,I O   (31) 
where the superscript q denotes the defected span of the 

viaduct. 
Suppose that the super-cell contains 2 1N   spans of the 

viaduct, the central span (the 0th span) being the defected span. 
By using the transfer matrices for the standard and defected 
spans, the relation between the state vectors at the right and 
left ends of the super-cell is obtained as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2 2

N N

n s s q s s n

b b

L L
      

 ψ T T T T T ψ 

 
,  

,I O   (32) 
Using the Bloch theorem [23] and equation(32), the 

following eigenvalue equation is derived for the super-cell of 
the viaduct 

i( ) ( ) ( ) ( ) ( ) ( )

6 6[ ] ( )
2

S

N N

Ls s q s s n

b
s

L
e     

  


  T T T T T I ψ 0 

 
, 

2S qL NL L  , ,I O   (33) 

in which S  denotes the wavenumbers for the characteristic 

waves of the super-cell; qL and SL  are the lengths of the 
defected span and super-cell, respectively. Solution of 
equation (33) yields the energy bands of the super-cell, by 
which the defect state of the super-cell of the DPV can be 
identified. 

 
 (a)                              (b) 

Fig. 3 The discretization schemes for the top and bottom of the piles as well 
as that for the surface of the half-space soil: (a) the discretization scheme for 

the piles; (b) the discretization scheme for the soil 

VI. NUMERICAL RESULTS AND CORRESPONDING 
ANALYSIS 

In this section, based on the proposed model, some 
numerical results will be presented, which include the 
Influence of different defects on on the energy bands for the 
super cell of the DPV undergoing In-plane vibration and 
out-of-plane vibration.  

In the numerical examples, the cross-sections of the piles 
and piers of the viaduct are assumed to be circular, while 
those of the beams are rectangular. The parameters for the pier, 

x 

y 

o 
x 

y 
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beams and the stiffnesses of the linking springs of the 
standard span and those for the half-space soil are given by 
Table 1 and 2, respectively. 
Table 1 The geometrical and material parameters of the soil, piles, piers and 

beams 

The length of each span of the periodic viaduct 
(L) 20.0 m 

The length and radius of the piles (Lp, Rp) 15.0 m, 1.0 m 
The height and radius of the piers (Ld, Rd)  10.0 m, 1.0 m  

The width and depth of the rectangular 
cross-section of the beams (wb, hb) 

3.0 m, 1.0 m 

The shear modulus, Poisson’s ratio and density 
for the half-space soil (µs, νs, ρs) 

2.0×107 Pa, 0.4,  
2.0×103 kg/m3 

The Young’s modulus, Poisson’s ratio and density 
for the piles (Ep, νp, ρp) 

2.8×1010 Pa, 0.2,  
2.4×103 kg/m3 

The Young’s modulus, Poisson’s ratio and density 
for the piers (Ed, νd, ρd) 

2.8×1010 Pa, 0.2,  
3.0×103 kg/m3 

The Young’s modulus, Poisson’s ratio and density 
for the beams (Eb, νb, ρb) 

2.8×1010 Pa, 0.2,  
3.6×103 kg/m3 

The calculated frequency range of the incident 
Rayleigh wave (f) 0~50 Hz 

The 2-D eight-node isoparametric boundary element [19] is 
used to discretize the boundaries of the pile and half-space 
soil. The top and bottom of the piles in both the standard span 
and defected span are discretized by twelve isoparametric 
boundary elements as shown in Figure 3 (a). The side 
boundary of the pile is divided into fifteen segments evenly, 
and each segment is discretized by eight elements evenly. To 
truncate the surface of the half-space soil, the surface of the 
half-space soil is covered by suitable numbers of vertical and 
horizontal boundary element layers (Figure 3(b)). The 
numbers of vertical and horizontal boundary element layers 
used to cover the soil surface for different frequency ranges 
are given in Table 3.  

Table 2 The stiffness of the beam-beam, left beam-pier and right beam-pier 
springs 

The stiffnesses of the beam-beam spring for the 

in-plane vibration (
( )t
tk , 

( )s
tIk , 

( )b
tIk )   

1.0×108 N/m,  
1.0×108 N/m,  

1.0×107 N.m/rad 
The stiffnesses of the left beam-pier spring for the 

in-plane vibration (
( )t
lk , 

( )s
lIk , 

( )b
lIk )   

1.0×108 N/m,  
1.0×108 N/m,  

1.0×107 N.m/rad 
The stiffnesses of the right beam-pier spring for 

the in-plane vibration (
( )t
rk , 

( )s
rIk , 

( )b
rIk ) 

1.0×108 N/m,  
1.0×108 N/m,  

1.0×107 N.m/rad 
The stiffnesses of the beam-beam spring for the 

out-of-plane vibration (
( )r
tk , 

( )s
tOk , 

( )b
tOk )   

1.0×107 N.m/rad,  
1.0×108 N/m,  

1.0×108 N.m/rad 
The stiffnesses of the left beam-pier spring for the 

out-of-plane vibration (
( )r
lk , 

( )s
lOk , 

( )b
lOk )   

1.0×108 N.m/rad,  
1.0×108 N/m,  

1.0×108 N.m/rad 
The stiffnesses of the right beam-pier spring for 

the out-of-plane vibration (
( )r
rk , 

( )s
rOk , 

( )b
rOk ) 

1.0×108 N.m/rad,  
1.0×108 N/m,  

1.0×108 N.m/rad 

Table 3 The numbers of the vertical and horizontal boundary element layers 
used to discretize the surface of the half-space soil for different frequency 

ranges 

 BEM for a single pile 
(vertical horizontal) 

0-5Hz 18 18 
5-20 Hz 16 16 
20-40Hz 18 18 
40-50 Hz 20 20 

Table 4 The stiffness of the defected beam-beam, left beam-pier and right 
beam-pier springs 

The stiffnesses of the beam-beam spring for the 

in-plane vibration (
( )t
tk , 

( )s
tIk , 

( )b
tIk )   

6.5×108 N/m,  
6.5×108 N/m,  

6.5×107 N.m/rad 
The stiffnesses of the left beam-pier spring for the 

in-plane vibration (
( )t
lk , 

( )s
lIk , 

( )b
lIk )   

6.5×108 N/m,  
6.5×108 N/m,  

6.5×107 N.m/rad 
The stiffnesses of the right beam-pier spring for 

the in-plane vibration (
( )t
rk , 

( )s
rIk , 

( )b
rIk ) 

6.5×108 N/m,  
6.5×108 N/m,  

6.5×107 N.m/rad 
The stiffnesses of the beam-beam spring for the 

out-of-plane vibration (
( )r
tk , 

( )s
tOk , 

( )b
tOk )   

6.5×107 N.m/rad,  
6.5×108 N/m,  

6.5×108 N.m/rad 
The stiffnesses of the left beam-pier spring for the 

out-of-plane vibration (
( )r
lk , 

( )s
lOk , 

( )b
lOk )   

6.5×108 N.m/rad,  
6.5×108 N/m,  

6.5×108 N.m/rad 
The stiffnesses of the right beam-pier spring for 

the out-of-plane vibration (
( )r
rk , 

( )s
rOk , 

( )b
rOk ) 

6.5×108 N.m/rad,  
6.5×108 N/m,  

6.5×108 N.m/rad 

A. Influence of Different Defects on the Energy Bands for 
the Super Cell of the DPV Undergoing In-plane Vibration  
Figure 4, Figure 5 and Figure 6 plot the Influence of beam 

defection (the length of the beams in the defected span is 
12.5m), pier defection (the height of the pier in the defected 
span is 15.0m) and spring defection (the stiffnesses of the 
defected springs in the defected span are given in Table 4) in 
the BBP junction on on the energy bands for the characteristic 
waves (K3LS) of the super-cells (consist of twenty-three spans) 
of the DPV undergoing in-plane vibration respectively. As the 
first and second characteristic waves are highly attenuative, 
only the energy bands for the third characteristic wave are 
presented.  
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Fig. 4 Influence of beam defection on the energy bands of the third 
characteristic wave of the super-cells undergoing in-plane vibration 

Figure 4 shows that in the calculated frequency range, 
several pass bands occur for both the OPV and DPV. But, 
compared with the ordered case, additional pass bands occur 
when the frequency exceeds 20.0Hz. This indicates that the 
defected span amplifies the dynamic response of the DPV and 
results in more resonances, which also can be seen from 
Figure 5 and Figure 6. Comparing these figures, we can see 
that, the influence of beam defection on the energy bands for 
the super-cells is more apparent than pier defection and spring 
defection. However, when the defect lies in the piers, the 
imaginary part of the wavenumbers in the additional 
passbands are much lower, although it does not result in more 
passbands than the beam defection and spring defection do. 
This means the additional resonances it results in maybe more 
violent. 
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Fig. 5 Influence of pier defection on the energy bands of the third 
characteristic wave of the super-cells undergoing in-plane vibration 
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Fig. 6 Influence of spring defection on the energy bands of the third 
characteristic wave of the super-cells undergoing in-plane vibration 

B. Influence of Different Defects on the Energy Bands for 
the Super Cell of the DPV Undergoing Out-of-Plane 
Vibration 
Figure 7, Figure 8 and Figure 9 plot the Influence of beam 

defection (the length of the beams in the defected span is 
12.5m), pier defection (the height of the pier in the defected 
span is 15.0m) and spring defection (the stiffnesses of the 
defected springs in the defected span are given in Table 4) in 
the BBP junction on on the energy bands for the characteristic 
waves ( 3 SL ) of the super-cells (consist of twenty-three 
spans) of the DPV undergoing out-of-plane vibration 
respectively.  
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Fig. 7 Influence of beam defection on the energy bands of the third 
characteristic wave of the super-cells undergoing out-of-plane vibration 
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Fig. 8 Influence of pier defection on the energy bands of the third 
characteristic wave of the super-cells undergoing out-of-plane vibration 
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Fig. 9 Influence of spring defection on the energy bands of the third 
characteristic wave of the super-cells undergoing out-of-plane vibration 

As in the in-plane vibration case, additional pass bands 
occur in the DPV, suggesting that the defected span amplifies 
the out-of-plane dynamic response of the DPV and results in 
more resonances too. Comparison of these three figures, we 
can also see that, the influence of beam defection on the 
energy bands for the super-cells is more apparent than pier 
defection and spring defection, and pier defection may result 
in more violent resonances. 

VII. CONCLUSION 
A model for the analysis of the influence of different 

defects on the energy bands for the super cell of a DPV has 
been developed in this paper. Obviously, the proposed model 
is a useful tool for conducting aseismic design for various 
DPVs. For the inhomogeneous piers and beams, sub-division 
of piers and beams is a prerequisite for the establishment of 
the corresponding model. Alternatively, the finite element 
method can be used to discretize the inhomogeneous piers and 
beams and similar models can also be developed. Also, our 
model can be easily extended to account for the DPV with 
several defected spans.  

Numerical results show that the defected span of the DPV 
has a pronounced influence on the dynamic response of the 
DPV. The defects amplify the dynamic response of the DPV 
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and results in more resonances, i.e., when the DPV is 
subjected to seismic waves, the dynamic responses of the 
spans near the defected span are amplified considerably. In 
summary, the presence of the defected span makes the DPV 
more vulnerable when exposed to seismic waves. As a result, 
for periodic viaducts with defects, it is important to mitigate 
the influence of the defected spans by choosing suitable 
geometrical and material parameters for the defected spans. 
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APPENDIX A-- THE FREQUENCY DOMAIN GREEN’S 
FUNCTION FOR A THREE-DIMENTIONAL ELASTIC 

MEDIUM 

The frequency domain Green’s functions 
ij

U  and 
ij

T  for 

an elastic medium have the following form 
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(A. 2) 

where / /A d dr r   , 2 /B r  , 2 /C d dr  , 

   2 2

1 2/ 2 / / 2 /D C C d dr d dr r      ,    is the shear 

modulus of the elastic medium, and 1 2,C C  are the 
compressive and shear wave velocities of the elastic medium, 
respectively.  

APPENDIX B—MATRICES IN EQUATION(29) 

Matrices ( )a

lE  and ( )a

rE  ( ,I O  ) in equation(29) are 
given as follows 

( )

0 1 0

1 0 0

0 0 1

a
lI  



 
 
 
  

E , ( )

0 1 0

1 0 0

0 0 1

a
rI





 
 
 
  

E ,  

( )

0 0 1
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1 0 0

a
lO



 

 
 
 
  

E , 
( )

0 0 1

0 1 0

1 0 0

a
rO 



 
 
 
  

E

 

(B.1) 

Matrices , , , ,ll lr ld rl rr    J J J J J  and rdJ ( ,I O  ) in 
equation(29) are given as follows 
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