
International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2836

Optimized Multiple Word Radix-2 Montgomery
Multiplication Algorithm

Harmeet Kaur1, Charu Madhu2

1Post graduate (M.Tech) in UIET, Panjab University, Chandigarh, India

2Assistant Professor, UIET, Panjab University, Chandigarh, India

Abstract- Montgomery multiplication algorithm is used in the
implementation of RSA and other cryptosystems based on
modular arithmetic. Several improvements have been suggested
to increase its suitability for hardware implementation. Radix-2
Montgomery architectures are easier to implement in hardware.
In this paper a modified optimized algorithm for radix-2
Montgomery Multiplication is presented which is based on
parallelizing the multiplications within each Processing Element
and pre-computation of partial results using assumptions
regarding the most significant bit of the previous design thereby
improving speed. The design has been modeled using VHDL. The
VHDL code has been synthesized and simulated using Xilinx ISE
10.1.

Keywords - Montgomery Multiplication, RSA, Modular
Multiplication, MWR2MM Algorithm

I. INTRODUCTION

 With the explosive growth in telecommunication network and
Internet popularity, care for information security issues is also
increasing. For their security, cryptographic systems are
important measures since these offer maximum security, along
with high level of flexibility[1]. The RSA (Rivest, Shamir and
Adleman) Algorithm is the most widely used public-key
cryptosystem and many public key cryptography schemes,
including RSA, involve the use of modular exponentiation of
large numbers for encryption of data. This method is
considered secure since factorization becomes intractable for
very large numbers[2]. For large numbers modular
exponentiation is a very slow process due to repeated modular
multiplications with division involved to calculate the
remainder.RSA Algorithm was introduced in 1978 and since
then space efficient, high speed architectures for modular
multiplication have been a subject of constant interest.

 During this period, one of the most useful advances
came with the introduction of Montgomery multiplication
algorithm due to Montgomery [3]. Montgomery Multipliers
are considered useful since the modulus reduction is done by
shift operations eliminating the division step, thereby

dramatically increasing the speed of encryption system as well
as making its hardware implementation easy[4]. So
Montgomery Multiplication has since then become an
essential step in RSA, ECC and other crypto-systems
involving modular exponentiation.

 Many architectures for Montgomery Multiplication
have been proposed improving various parameters like
hardware requirements, speed, area, scalability etc. The most
important development came with the introduction of a word-
based algorithm and a scalable architecture for Montgomery
multiplication called Multiple-Word Radix-2 Montgomery
Multiplication (MWR2MM) by Tenca and Koc at CHES 1999
.Several designs based on the MWR2MMalgorithmhave been
proposed [5], [6], [7], [8], [19], [10].In [5], Booth encoding
technique has been used in a high radix version of word-based
Montgomery algorithm (MWR2kMM). Number of scanning
steps were reduced in the approach but complexity of system
increased to a large extent. In [6] Harris et al. replaced right
shifting of S in MWR2MM algorithm by left shifting of Y and
M. The design maintained the scalability of original design
and processed n-bit Montgomery multiplication in n clock
cycles. In [7] and [8], the left-shifting technique was applied
on the radix-2 and radix-4 versions of the parallelized
Montgomery algorithm [9], respectively. The systolic
implementation given in [11] by McIvor et al. improves speed
to a large extent but has very large area requirements.

 In this paper we focus on the optimization of the
radix-2 MWR2MM algorithm to improve the speed of
multiplication process. This paper is organized as follows: In
section 2 the Montgomery multiplication, MWR2MM
algorithm and other improvements are explained. In section 3
new radix-2 algorithm is discussed. Architecture of
Montgomery multiplier is discussed in section 4. Results of
the implementation are detailed in section 5.Section 6 presents
a conclusion to this paper followed by references.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2837

II. MONTGOMERY MULTIPLICATION

One of the widely used algorithms for efficient modular
multiplication is the Montgomery’s algorithm [3]. This
algorithm computes the product of two integers modulo a
third one without performing division by M[4]. The reduced
product is yielded using a series of additions. If A, B and M
be the multiplicand and multiplier and the modulus
respectively and ‘n’ be the number of digit in their binary
representation, i.e. the radix is 2. Montgomery multiplication
of X and Y (mod M), denoted by MP(X, Y, M) is defined as
X.Y.2-n (mod M)[12]. Before multiplication process there is a
conversion step from ordinary domain to Montgomery domain
which is summarized below: -

X (Ordinary Domain) ↔ X’ (Montgomery Domain)
= X.2n (mod M)

Y (Ordinary Domain) ↔ Y’ (Montgomery Domain)
= Y.2n (mod M)

X.Y(Ordinary Domain) ↔ (X.Y)’ (Montgomery Domain)
= X.Y.2n (mod M)

The conversion between each domain can be done using the
same Montgomery operation, in particular X’= MP(X,
22n(mod M), M) and X= MP(X’, 1, M), where 22n (mod M)
can be pre-computed[12]. Despite the initial conversion cost,
an advantage is achieved over ordinary multiplication if many
Montgomery multiplications are followed by an inverse
conversion at the end, which is the case, for example, in RSA.

The pre-conditions of the Montgomery algorithm[4] are as
follows:

 The modulus M needs to be relatively prime to the
radix, i.e. there exists no common divisor for M and
the radix;

 The multiplicand and the multiplier need to be
smaller than M.

 The Montgomery algorithm uses the least significant digit of
the accumulating modular partial product to determine the
multiple of M to subtract[4]. The multiplication order is
reversed by choosing the least significant multiplier digit first
and then shifting down. If R is the current modular partial
product, then q is chosen so that R+q×M is a multiple of the
radix r, and this is right-shifted by r positions, i.e. divided by
r for use in the next iteration. So, after n iterations, the result

obtained is R =A×B×r-n mod M [13]. Montgomery algorithm
is given below:-

algorithm Montgomery(A, B, M) [4]

 int R = 0;
for i= 0 to n-1
R = R + ai × B;
if r0 = 0 then
R = R div 2;
else
R = (R + M) div 2;
return R;
end Montgomery

For the right result, the process should be followed by an extra
Montgomery Multiplication by the constant 2n mod M.

A. MWR2MM Algorithm:-

The Multiple Word Radix-2 Montgomery Multiplication
Algorithm given by Tenca and Koc is a scalable algorithm
wherein the operand Y (multiplicand) is scanned word- by-
word and the operand X is scanned bit-by-bit. The operand
length is ‘n’ bits and word length is ‘w’ bits and e= [(n + 1)/w
] words are required to store sum. The MWR2MM
algorithm[12] is given below:-

Input: odd M, n = [log2 M] + 1, word size w, e= [(n + 1)/w],
X = Σ i=0

n-1.xi.2i , Y= Σj=0
e-1.Y(j).2w.j,

M= Σj=0
e-1M(j).2w.j, with 0 ≤ X, Y < M

Output Z = Σj=0
e-1S(j).2w.j = MP(X,Y,M) ≡ X. Y. 2-n(mod M),

0 ≤ Z < 2M 2.1
S= 0;
2.2 for i = 0 to n-1 do
2.3 [qi = (xi.Y(0)) xor S0

(0) ;
2.4 (C(1), S(0)) = xi.Y(0) + qi. M(0) + S(0);
2.5 for j = 1 to e do
2.6 [(C(j+1), S(j)) = C(j) + xi.Y(j) + qi. M(j) + S(j) ;
2.7 S(j-1) = (S0

(j), Sw-1…1
(j-1));]

2.8 S(e) = 0;]
2.9 return Z = S;

The n-bit multiplicand is broken into w-bit words. The kernel
of the design has ‘p’ Processing Elements. Each of the PE
handles one bit of the multiplier and w bits of the
multiplicand. The kernel iteration continues until the
multiplication process is complete. The design is highly
flexible and can be configured to handle any number of bits.

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2838

The overall advantage of the design lies in its hardware
simplicity[7].

 This architecture performs a single Montgomery
multiplication in approximately 2n clock cycles. An
optimization of this design has been suggested in [12] by

Huang, Gaz and Ghazawi wherein the two clock cycle delay
between each of the PE is reduced to half through an approach
of pre-computation of partial results using two possible
assumptions regarding the most significant bit of the previous
word. Actually each of the PE in MWR2MM design has to

Fig.1 - MSB assumption in optimized architecture[12]

wait for 2 clock cycles for the value of S, before it starts its
execution. This delay was reduced to a single clock by
assuming MSB of S as ‘0’ or ‘1’ as shown in fig. 1.

B. Parallelized Algorithm:- In [14], Orup showed that the
steps in the Montgomery Multiplication process can be re-
ordered so that the multiplication and reduction processes
could be executed in parallel. An implementation of the
parallelized algorithm is given in [7]. It re-organizes the
original algorithm to produce a new pre-calculated value M^

that allows the original algorithm’s multiply and Result steps’
multiplications to occur simultaneously. The algorithm[7] is

M’ : n- bit integer satisfying (RR-1 – MM’) = 1
M^ : ((M’ mod 2) M + 1)/ 2
w: multiplicand word length
e: [n/w] + 2 iterations per kernel
C: 1-bit carry digit
Z = 0
Q = 0
for i = 0 to n
C = 0
Q = Z0 mod 2
for j = 0 to e -1
(C, Zj+1) = Zj + Q × M^j + Xi × Yj + C;

This design provided a significant cycle time improvement at
the cost of a small increase in cycle count.

Our goal in this paper is to apply the optimization of
MWR2MM architecture using pre-assumption of bits[12] to
the radix-2 parallelized Montgomery Multiplier[7]. By
combining both the approaches we achieve a significant
amount of performance improvement in terms of speed of
operation without escalating hardware cost.

III. OPTIMIZED MULTIPLE WORD RADIX-2
MONTGOMERY MULTIPLICATION ALGORITHM

The Montgomery algorithm implemented in this paper is a
hybrid between the optimized MWR2MM architecture and the
parallelized algorithm for radix-2. The basic algorithm is
similar to the parallel very high radix algorithm and the
features of the optimized radix-2 algorithm are introduced by
introducing pre-assumption of MSB of inter-mediate sum
term at each PE. The resulting algorithm takes advantage of
both one-cycle latency between Processing Elements and
simultaneous multiplication of multiplication and result steps.

 The algorithm is a scalable one and can be used to
perform multiplication for any no. of bits. Each of the
Processing Element runs multiple times during a kernel cycle
to process all bits of Mˆ and Y. Thus, an inner for loop iterates
over the n/w words of Mˆ and Y. Moreover, a side effect of
the algorithm could be seen in form of an increased iteration
of inner loop since the result in this case could be larger. The
algorithm is of the form:-

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2839

M: n-bit odd modulus
n’ : length of pre scaled X = n + 1
R : 2n’
R-1: modular multiplicative inverse of R
M’ : n-bit integer satisfying RR-1 – MM’ =1
Mˆ = ((M’mod2)M+1)/2
w = word length, e = [n/w] +1

1.Z = 0
2.For i = 0 to n
3.C = 0
4.Reduce = Z0
5.for j = 0 to e-1

6.(C0(j+1) , Z0j
w-1 ,Zj

w-2,…0) = (1,Zj
w-1…1) + Reduce * Mˆj

+ Xi *Yj + Cj
7.(CE(j+1) , ZEj

w-1 ,Zj
w-2,…0) = (0,Zj

w-1…1) + Reduce * Mˆj
+ Xi *Yj + Cj
8.If Z0

j+1 = 1 then Cj
j+1 = C0j

j+1
9.Zj

w-1…1 = Z0j
w-1…1, Zj

w-2…1
10.Else Cj

j+1 = CEj
j+1

11.Zj
w-1…1 = ZEj

w-1…1, Zj
w-2…1

IV. HARDWARE IMPLEMENTATION

The hardware architecture of our design is similar to that in
[7]. Figure 2 shows the overview architecture of the design
with p Processing Elements. Every PE receives one bit of X

and Reduce, and w bits of Mˆ , Y and Z on each step. In one
kernel cycle ‘p’ digits of X are processed against all bits of Mˆ
and Y. So k= [n/p] + 1 kernel cycles are required for
multiplication process. The results from the last PE could
either be stored in a FIFO till kernel cycle completion of first
PE or can be passed directly to first PE.

A. Processing Element- Figure 3 shows a processing element
for the design. The multiplications of Xi.Yj and Reduce.Mj are
carried out using multiplexers. Additions in line 6 and 7 in the
algorithm are carried out using ripple carry adders. The two
additions differ only in the Most Significant bit of the Z term
so the shared part of the two additions is consolidated and
remaining part is then carried out using two adders. The basic
representation is similar to that of [12], the difference being in
value of M^.

 Latency of the design is similar to that of [12] since
the MSB is pre-assumed at each PE. The parallel modification
does not show any effect on latency. With the change in the
no. of Processing Elements time parameter changes. If the no.
of Processing Elements is more than the no. of Processing
cycles the first PE has to wait until the last PE is complete
with its execution. In other case that is, with lesser no. of
Processing Elements, hardware is utilized to maximum
efficiency since by the time first PE is completed with its
kernel cycle the Z term from last PE is already available.

Fig. 2- Radix-2 Hardware Diagram

PE 1

PE 2

PE p

Y

M^

X

Z

Reduce

Z out

C C

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2840

V. RESULTS

The parallel radix-2 Montgomery Multiplier design described
above was coded in VHDL and simulated using Xilinx ISE
10.1 Simulator. A maximum combinational path delay of 0.14
µs was observed in case of 1024-bit multiplication of numbers
with 1024 processing elements and a word size of 4 bits which

is considerably a lower value in comparison to the existing
designs analyzed. The high speed attained could be a result of
the reduced data dependency between Processing Elements
and the parallelization of operations within PE’s. Further
performance boost is expected with reduction in no. of PEs
and increase of word size.

Fig. 3- Processing Element of our design

VI. CONCLUSIONS AND FUTURE SCOPE

In this paper a modified algorithm of the MWR2MM
algorithm and its corresponding architecture is presented. The
design is basically a hybrid of the Parallelized scalable
multiplier and optimized architecture of MWR2MM algorithm
with reduced data dependency. The resulting algorithm thus
takes advantage of both one-cycle latency between Processing
Elements and simultaneous multiplication of multiplication
and result steps. Good results in terms of speed have been
seen in the work with an approximate maximum
combinational path delay of 0.14 µs.

 The work could be further improved through
architectural changes to optimize the time and area
requirements. Lesser no. of processing elements could be
utilized to decrease the hardware requirements and strike a
balance between the delay and hardware requirements trade-

off. Moreover, the proposed Montgomery design could be
used to implement a full cryptosystem like RSA or ECC. The
power requirements of the circuit have not been dealt with in
this work and may prove to be an interesting task.

 The optimized Montgomery design may prove to be of great
use in future cryptographic applications with more stringent
demands of speed, area and power.

REFERENCES

[1] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for
ObtainingDigital Signatures and Public-Key Cryptosystems,”
Comm. ACM, vol. 21, no. 2, pp. 120-126, 1978.
[2] en.wikipedia.org/wiki/RSA(algorithm)
[3] P.L. Montgomery, “Modular Multiplication without Trial

1

0

1

0

Xi

0

Y(j)

Reduce

M^
i

0
+

+

+

C

Z(j)
w-1..1

0

1

1

0

1

0

CO

ZO

CE

ZE

C

Z(j)
w-1

Z(j)
w-2……0

International Journal of Engineering Trends and Technology (IJETT) - Volume4 Issue7- July 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 2841

Division,”Math. of Computation, vol. 44, no. 170, pp. 519-
521, Apr. 1985.
[4] Nadia Nedjah, Luiza de Macedo Mourelle, “A Review of
Modular Multiplication Methods and Respective Hardware
Implementations” Informatica 30 (2006) 111–129.
[5] A.F. Tenca, G. Todorov, and C ¸ .K. Koc ¸, “High-Radix
Design of a Scalable Modular Multiplier,” Proc. Third Int’l
Workshop Cryptographic Hardware and Embedded Systems
(CHES ’01), pp. 185-201,2001.
[6] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and
S. Hsu,“An Improved Unified Scalable Radix-2 Montgomery
Multiplier,”Proc. 17th IEEE Symp. Computer Arithmetic
(ARITH), pp. 172-178,June 2005.
[7] N. Jiang and D. Harris, “Parallelized Radix-2 Scalable
Montgomery Multiplier,” Proc. IFIP Int’l Conf. Very Large
Scale Integration(VLSI-SoC ’07), pp. 146-150, Oct. 2007.
[8] N. Pinckney and D.M. Harris, “Parallelized Radix-4
Scalable Montgomery Multipliers,” J. Integrated Circuits and
Systems, vol. 3,no. 1, pp. 39-45, Mar. 2008.
[9] K. Kelly and D. Harris, “Parallelized Very High Radix
ScalableMontgomery Multipliers,” Proc. 39th Asilomar Conf.
Signals,Systems and Computers, pp. 1196-1200, Oct. 2005.
[10] E.A. Michalski and D.A. Buell, “A Scalable Architecture
for RSACryptography on Large FPGAs,” Proc. Int’l Conf.
Field Program-mable Logic and Applications, (FPL ’06), pp.
145-152, Aug. 2006.
[11] C. McIvor, M. McLoone, and J.V. McCanny, “High-
Radix Systolic Modular Multiplication on Reconfigurable
Hardware,” Proc. IEEE Int’l Conf. Field-Programmable
Technology (ICFPT ’05), pp. 13-18,Dec. 2005.
[12] Miaoqing Huang, Kris Gaj, and Tarek El-Ghazawi, “New
Hardware Architectures for Montgomery Modular
Multiplication Algorithm,” IEEE transactions on computers,
vol. 60, no. 7, july 2011.
[13] Koç, Ç.K., High speed RSA implementation, Technical
report, RSA Laboratories, RSA Data Security Inc. CA,
version 2, 1994.
[14] H. Orup, “Simplifying quotient determination in high-
radix modular multiplication,” Proc 12th IEEE Symp.
Computer Arithmetic, pp- 193-199, 1995.

Authors

HarmeetKaur received the B.Tech degree in Electronics and
Communication in 2011. She is pursuing M.Tech
(Microelectronics) from UIET, Panjab University,
Chandigarh. Her area of interest includes image processing
and VLSI Design.

Mrs Charu Madhu is M.E(Electronics and Communication)
from Beant College of Engineering and Technology, PTU,
Gurdaspur. Her area of research includes VLSI, nanoscale
devices and optoelectronics. Currently she is working as
Assistant Professor (ECE). She has 4 publications in
International Journals/Conference proceedings.

