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Abstract— This paper deals with the design of Fractional   Order 
Proportional Integral (FO-PIλ) controller for the speed control of 
DC motor. A mathematical model of DC motor control system is 
derived and based on this model fractional order PIλ controller is 
designed using stability boundary locus method to satisfy 
required gain margin (GM) and phase margin (PM) of the 
system. Servo and Regulatory tracking simulation runs are 
carried out for the speed control of DC motor. The performance 
of the fractional order PIλ (FO-PIλ) controller is compared with 
Integer Order Relay Feedback Proportional Integral (IO-RFPI) 
controller. Finally the stability of both control system is 
considered. 

Keywords— Fractional order control, PID controllers, DC Motor, 
Speed control system, Optimization, CRONE.  
 

I.  INTRODUCTION  
The use of fractional calculus has gained popularity among 

many research areas during the last decade. Its theoretical and 
practical interests are well established nowadays, and its 
applicability to science and engineering can be considered as 
an emerging new analytical approach. The introduction of 
fractional order calculus to conventional controller design 
extends the scope of added performance improvement. 

The classical PI and PID controllers remain the most 
prevalent controllers for many industrial applications over the 
past decades. In recent years, fractional order dynamic systems 
and controllers based on fractional order calculus have gained 
an increasing attention in control community [2]. This is 
mainly due to the fact that many real physical systems are well 
characterized by fractional order differential equations 
involving non integer order derivatives [3]. 

The concept of fractional order PID controller which has 
an integrator of real order λ and differentiator of real order µ is 
proposed by Podlubny [4]. The transfer function of this 
controller is given by 
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sK
s

KKsC dip   

The PID algorithm is represented by a fractional integro-
differential equation of type as follows 
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Where, D is the integro-differential operator [5], e(t) is the 
controller input and u(t) is the controller output. Clearly, 
depending on the values of the orders λ and μ, the numerous 
choices for the controller’s type can be made. For instance, 
taking λ=1 and μ=1 yields the classical PID controller. 
Moreover, the selection of λ=1 and μ=0 leads to the PI 
controller, λ=0 and μ=1 gives the PD controller, and also λ=0 
and µ=0 results the P controller.  

Classification of dynamic systems according to the order of 
the plant and the controller can be done as: i) integer order 
system - integer order controller ii) integer order system - 
fractional order controller iii) fractional order system - integer 
order controller and iv) fractional order system - fractional 
order controller. 

In this paper design of fractional order PI controller for the 
speed control of DC motor is made based on stability boundary 
locus method. In order to get fractional order PI controller 
parameters, the mathematical model of DC motor system is 
derived. Then, the global stability regions for different values 
of λ in (Kp, Ki)-plane is obtained. Finally, the controller 
parameters corresponding to the GM and PM requirements are 
chosen. 

The paper is organized as follows: Section 2 gives a brief 
description of DC motor speed control system. The 
mathematical modeling of DC motor speed control system is 
obtained in Section 3. In Section 4, the fractional PI controller 
design based on the stability boundary locus method is given. 
The comparative simulation results for the control performance 
are presented in Section 5. Finally, concluding remarks are 
given in Section 6. 

II. PROCESS DESCRIPTION 

A. Description of the DC motor speed control system 
The functional diagram of speed control of DC motor is 

shown in Fig. 1. The setup consists of DC motor, chopper 
driver unit, Opto-coupler sensor, V-MAT card and personal 
computer. A separately excited linear DC motor is considered 
for this paper work. The speed of the DC motor is controlled 
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by varying the armature voltage through chopper circuit by 
varying the PWM pulses.   

The chopper circuit is used to convert the pulse width 
modulated signal from the personal computer through the card 
into the corresponding voltage signal. The V-MAT card acts as 
a data acquisition card to interface motor circuit with personal 
computer. Matlab® Simulink environment is used to monitor 
and control the speed of the motor from the personal computer.   

 

 
 

Fig. 1. Experimental setup of a DC motor speed control system. 

The DC motor system consists of a corrugated plate in the rotary shaft to 
transfer speed into pulse, known as Opto-coupler setup. A multifunction 
VMAT01 interface board including high speed analog to digital converter 
(ADC) and digital to analog converter (DAC) is interfaced with a 
PC-AT Pentium 4. The interface card is capable of running the 
real time control algorithms in Simulink tool of MATLAB 
platform directly. The obtained voltage signal is processed and 
the real time control algorithm is carried out by using the 
VMAT01. The parameters of LLS are shown in Table I. 

TABLE I.  THE EXPERIMENTAL PARAMETERS OF DC MOTOR SYSTEM. 

Moment of Inertia of the rotor J =0.03 kgm2 
Maximum Speed of the motor 1500 rpm 

Damping (friction) of the mechanical system b =0.019 Nms 
Kb=KT=K K =0.1331 

Electric Resistance R = 6Ω 
Electric Inductance L = 4.5 mH 

III. MATHEMATICAL MODEL OF DC MOTOR 

A. Mathematical modelling of DC motor speed control system 
In this paper the speed of DC motor is controlled by varying 

the armature voltage of the motor coil. The pulse width 
modulated signal from the personal computer is converted into 
corresponding armature voltage. The armature voltage controls 
the motor velocity.  

The control equivalent circuit of the DC motor by the 
armature voltage control method is shown in   Fig. 2. The 
mathematical model is derived from the control circuit based 
on its input, output and inherent parameters of the DC motor. 

 
Fig. 2 Control circuit of the DC motor using the armature voltage control 

 

Ra : armature resistance, La: armature inductance,                  
ia: armature current, if: field current 

ω: angular velocity of motor,  J: rotating inertial measurement 
of motor bearing. 

ea: input voltage, eb: back electromotive force (EMF),          
Tm: motor torque, B: damping coefficient 

 
The functional block diagram of DC motor speed control 

system is shown in Fig. 3. 
Because the back EMF eb is proportional to speed ω 

directly, then 
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 Making use of the KCL voltage law can get 
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  From Newton law, the motor torque can obtain 
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Taking Laplace transform for the above given equations, the 

equations can be formulated as follows.  
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Fig. 3 DC motor armature voltage control system functional block diagram 
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B. Transfer model of DC motor speed control system 
The transfer function model is obtained by substituting the 

experimental DC motor parameters specification given in the 
table 1.0. The transfer function model is obtained as  

 )9(
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IV. FRACTIONAL ORDER CONTROLLER DESIGN 

A. Fractional Order PIλ Control System 
The unity feedback control system consists of a plant G(s) 

and a controller C(s). In this section, either the plant or the 
controller is chosen as fractional order. The transfer function of 
the fractional order plant is expressed in the quasipolynomial 
format as.  
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where, 0..... 01  n , 0..... 01  n , ia  
and ib are arbitrary real numbers. 

The transfer function of the fractional order PIλ controller is  
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This transfer function is obtained for Kd = 0 in (1). 
By taking the value of λ as 1, the fractional order controller 

is converted to the classical integer order PI format. 
The output of the unity feedback control system is given by 
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Where, r is the reference input and y is the output of the 
control system. The denominator of (12) represents the 
fractional order characteristic quasipolynomial (FOCQ) of the 
closed loop system.  

B. Formation of Global Stability Region 
The set of all stabilizing controller parameters is obtained 

through design from the global stability region in the controller 
parametric space. Therefore, the designer has the set of all 
stabilizing controllers for the plant. The literature review in 
many decades shows many stabilization methods like Stability 
Boundary Locus method [8, 9], the D-decomposition method 
[10], the Hermite-Biehler theorem [12], Parameter space 
approach, etc. In this paper, we make use of the results of [9] 
which consider the Stability Boundary Locus method. Putting 
(10) and (11) in (12), the FOCQ is written as 
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Replacing s = jω in (13) gives  
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Using the mathematical identity, (14) is written as 
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Equating the real and imaginary parts of P(jω) to zero, the 
real part is obtained as 
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and the imaginary part is determined as  
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Solving (16) and (17), the controller parameters are obtained 
by  
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Using (18) and (19), a stability locus curve is drawn in the 
(Kp-Ki)-plane for any value of λ ( changes from 0 to 
maximum). Using the test points inside and outside of the 
curve, the global stability region is obtained.  

Considering the DC motor transfer function model in (10), 
the stability locus curves are obtained for the various values of 
λ in the range of (0, 2). For each curve, the test points are 
considered and the global stability regions are obtained. The 
set of global stability regions is shown in the (Kp-Ki)-plane in 
Fig. 4. 
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Fig. 4. The global stability regions for different values of λ. These regions are 

within the curves. 

C. Selection of Fractional Order PIλ Controller Parameters 
From the global stability regions, the designer has flexibility 

for choosing the controller parameters, Kp, Ki   and λ. For the 
selection, the key idea is to find the controller parameters using 
the test points in the global stability regions until obtaining the 
desired open loop GM and PM requirements. A lot of (Kp, Ki, 
λ) values providing these requirements can be determined.  

For the DC motor transfer function model in (10), the goal is 
to obtain the GM of 4.5 dB and PM of 20o. These requirements 
are provided for only the values of the λ in the range of (1.15, 
1.25). Therefore, we choose λ=1.2 and determine the controller 
parameters as Kp=2.5732, Ki=1.45204. So the fractional order 
PIλ controller transfer function is found as 

 )20(45204.15732.2)(
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The open loop Bode plot [13] for these values is given in 
Fig. 5. This figure shows that these values satisfy the 
constraints mentioned above.  

Bode Diagram
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Fig. 5. Open loop Bode plot of controller with the system. 

Gm = 5db and Pm = 20o 

 

D. Integer Order (IO) Relay feedback PI controller design  
Åström and Hägglund [1] suggest the relay feedback test to 

generate sustained oscillation as an alternative to the 
conventional continuous cycling technique. It is very effective 
in determining the ultimate gain and ultimate frequency. 
Considering the relay feedback design method in which the 
switch on point and switch off point are considered as 0.7 and 
0.3 respectively in order to generate ultimate period Pu.  The 
ultimate gain Ku is calculated with the help of height of the 
relay (h) and amplitude of oscillation (a). 
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  The values obtained from the responses shown in Figure 6. 
(a) and (b) are a = 0.2, h = 0.5 and Pu = 2.4. On substituting the 
values of a and h in equation (21) we got   Ku = 3.18. The 
values of Ku and Pu are used in closed loop Ziegler–Nichols 
PID controller tuning rule and the PI controller parameters are 
obtained as Kc = 1.431 and KI = 0.72. The transfer function of 
the PI controller is given as 
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Fig. 6 (a) Relay output (b) Closed – loop feedback output 
 

Thus the Integer Order Relay Feedback PI (IO-RFPI) 
controller is designed and controller settings are obtained. In 
the next section, the fractional order PIλ controller and integer 
order relay feedback PI controller is compared.  
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V. RESULTS AND DISCUSSIONS 

A. Set point Tracking  
The performance of set point tracking for the Fractional 

Order PIλ controller (FO- PIλ) and Integer Order Relay 
Feedback PI controller (IO-RFPI) are simulated as shown in 
Figure 7 and are made from 50% set point of speed. For each 
control systems, the performance analysis in the sense of ISE 
and IAE is compared and tabulated in Table II and Table III.  

B. Load Tracking  
The performance of load tracking for the Fractional order 

PIλ controller (FO-PIλ) and Integer Order Relay feedback PI 
controller (IO-RFPI) are simulated as shown in Figure 9 and 
are made from 50% set point of speed. For each control 
systems, the performance analysis in the sense of ISE and IAE 
is compared and tabulated in Table IV. From the servo and 
regulatory responses, it is observed that the settling time and 
rise time of the Fractional order PIλ controller is very much 
lesser than the Integer order Relay Feedback PI controller. The 
controller output responses (Armature Voltage) for both the 
servo and regulatory are shown in Figure 8 and 10 
respectively. 
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Fig. 7 Set point tracking performances of FO- PIλ and IO-RFPI 

TABLE II. ISE AND IAE PERFORMANCE ANALYSIS OF THE FO- PIλ CONTROL 
SYSTEMS (SERVO). 

FO- PIλ 
 +5% +10% +15 -5% -10% -15% 

ISE 8.77 34.84 78.34 8.90 35.10 78.73 

IAE 5.34 10.60 14.8 5.36 9.65 13.3 

TABLE III.  ISE AND IAE PERFORMANCE ANALYSIS OF THE IO- RFPI 
CONTROL SYSTEMS (SERVO). 

IO-RFPI +5% +10% +15 -5% -10% -15% 

ISE 20.1 80.35 180.4 20.07 80.28 180.6 

IAE 9.65 19.81 28.84 9.74 19.14 29.02 
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Fig . 8 Set point tracking - Controller output performances 
of (a) FO- PIλ and (b) IO-RFPI 

 
Thus the servo response of the Fractional order PIλ 

controller (FO- PIλ) and Integer Order Relay Feedback PI   
(IO-RFPI) controller are simulated from the 50% rated speed 
(i.e. 750 rpm) of DC motor. The process output (speed in %) 
and the controller output (Armature Voltage in %) are 
recorded. 
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Fig. 9 Load tracking performances of (a) FO- PIλ and (b) IO-RFPI 
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Fig. 10 Load tracking – Controller performances of 
(a) FO- PIλ and (b) IO-RFPI 

TABLE IV. ISE AND IAE PERFORMANCE ANALYSIS OF THE FO- PIλ AND IO 
– RFPI CONTROL SYSTEMS (REGULATORY). 

Control 
System ISE IAE 

FO- PIλ +2% 1.6 -2% 1.6 +2% 1.9 -2% 2.1 
IO - RFPI +2% 3.4 -2% 3.4 +2% 3.8 -2% 3.8 

 
Thus the regulatory response of the Fractional order PIλ 

controller (FO- PIλ) and Integer Order Relay Feedback PI   
(IO-RFPI) controller are simulated from the 50% rated speed 
(i.e. 750 rpm) of DC motor. The process output (speed in %) 
and the controller output (Armature Voltage in %) are 
recorded. 

D. Stability Analysis  
The stability of a Fractional Order Control System (FOCS) 

is analyzed with Matignon’s stability theorem [11]. It is well 
known from the general stability theory that a linear time-
invariant (LTI) system is stable if all roots of characteristic 
equation are negative or have negative real parts. It means that 
they are located on the left half of the complex plane.  

In the fractional-order LTI case, the left half of the plane is 
different from the integer one. As can be shown in    Fig. 11, 
the vertical axis of the complex plane is changed with an angle 
depending on the fractional order. Therefore, the stability 
region for the closed loop poles can be increased or decreased. 
It should be noted that only the denominator is meaningful for 
the stability assessment.  

The pole position plot of the FOCS obtained using the 
MATLAB is shown in Fig. 12. This figure shows that all poles 
of the FOCS are in the fractional left half plane and thus the 
FOCS is stable. Similarly, the pole position plot for the Integer 
Order Control System (IOCS) in root locus is shown in         
Fig. 13 and is stable.  
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Fig. 11 Stability region of a LTI FO system with order 0 <q ≤ 1 

 

Fig. 12 The poles of the fractional order control system. 
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Fig. 13 The poles of the integer order control system. 

Thus the stability of FO- PIλ and (IO-RFPI) controller are 
simulated and recorded. It is found that both the systems are 
stable. 

VI.  CONCLUSIONS 
In this paper, a fractional order PIλ controller is designed 

based on global stability boundary locus method. The 
controller parameters are obtained based on providing the 
desired gain margin (GM) and phase margin (PM) in the global 
stability region. It is seen from the simulation and performance 
analysis results that the fractional order PIλ controller shows 
better results compared to that of relay feedback PI controller 
for the DC motor speed control system. The stability of the 
both control systems is analyzed and is stable. 

REFERENCES 
[1] K. J. Astrom and T. Hagglund, Advanced PID Control. ISA, Research T. 

Park, NC, 2005. 
[2] Y. Q. Chen, “Ubiquitous fractional order controls?”, in Proc. FDA 2006 

Fractional Derivatives and Appl., Porto, Jul. 19–21, 2006.  
[3] C. Hwang, J.-F. Leu, and S.-Y. Tsay, “A note on time-domain simulation 

of feedback fractional-order systems,” IEEE Trans. Autom. Control,, vol. 
47, no. 4, pp. 625–631, 2002. 

[4] I. Podlubny, “Fractional-order systems and PIλDµ-controllers,” IEEE 
Trans. Autom. Control, vol. 44, no. 1, pp. 208–214, 1999. 

[5] I. Podlubny, Fractional Differentiation Equations, Academic Press, San 
Diego, 1999. 

[6] S. Mukhopadhyay, Fractional Order Modeling and Control: 
Development of Analog Strategies for Plasma Position Control of the 
Stor-1m Tokamak, MSc Thesis, 2009. 

[7] D. Xue and Y. Q. Chen, Advanced Mathematic problem Solution Using 
MATLAB, Tsinghua University Press; Beijing, 2004. 

[8] N. Tan, I. Kaya, C. Yeroglu and D. P. Atherton, “Computation of 
stabilizing PI and PID controllers using the Stability Boundary Locus”, 
Energy Conversion and Management, vol.47, pp.3045-3058, 2006. 

[9] S. E. Hamamci, “Stabilization using fractional-order PI and PID 
controllers,” Nonlinear Dynamics, vol. 51, pp. 329-343, 2008. 

[10] P. K. Bhaba, K. Vaithiyanathan, and S. E. Hamamci, “Computation of all 
Stabilizing First Order Controller for Fractional Order System” in Proc. 
27th Chinese Control Conference, CCC08, Kunming, July 16-18, 2008. 

[11] D. Matignon. “Generalized Fractional Differential and Difference 
Equations: Stability Properties and Modelling Issues”, in Proc. Math. 
Theory of Networks and Systems Symposium, Padova, Italy, 1998. 

[12] R. Caponetto, G. Dongola, L. Fortuna and A. Gallo, “New results on the 
synthesis of FO-PID controllers”, Commun Nonlinear Sci Numer 
Simulation, vol.15, pp.997–1007, 2010. 

[13] H. W. Bode, Network Analysis and Feedback Amplifier Design. Van 
Nostrand. New York, 1945. 

The vertical axis  
of the integer order 

complex plane. 

The vertical axis  
of the fractional order 

complex plane. 

q: fractional 
order 


