
International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 8-August 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3595

A Real Time Implementation of Serial

Communication between Graphical User Interface

and Simulator Board Using RS-232

M. Srilatha, CH. Tejasree, SV. Kishore,

Digital System Engineering (M.E), VLSI System Design (M.tech), Embedded System (M.tech),

ECE Department, ECE Department, ECE Department,

University College of Engineering (A), CVSR College of Engineering, Gudlavalleru Engineering College

Osmania University, Hyderabad, JNTU-H, Hyderabad, JNTU Kakinada

Andhra Pradesh -500 007, India. Andhra Pradesh- 501 301 India, Andhra Pradesh-521 356 India,

P.Chandrasekhar, S.R.Pankaj Kumar Scientist.’F’,

Assistant Professor, Defence Electronics Research Laboratory (DLRL),

ECE Department, Ministry of Defence, Government of India

University College of Engineering (A), Chandrayangutta lines,

Osmania University, Hyderabad, Hyderabad – 500 005, India.

Andhra Pradesh -500 007, India.

Abstract— Virtex Series FPGA are used for establishing

communication to the other sub units of an system. In order to

establish the link, RS232 is used. The objective of this work is to

establish link between simulator board and RS232. The work is

broadly segregated into two major steps. In step I, a Graphical

User Interface (GUI) is designed and developed based on Visual

C++/Visual Basic Platform which enables the selectivity of data.

The selected data is encoded and coded data is sent to the

simulator board using an RS232 serial link. Step I is processed

using PC. In step II, the coded data is decoded to identify the

corresponding parameter data and it finally generates the

required data. This generation of data is carried out by

developing a code using VHDL language. The Step II is

processed by using Power processor. The two steps are finally

integrated and the output is seen at the GPIO (General Purpose

Input Output) pins.

Key words— Simulator board, GUI, XPS, Power processor,

Digital Glue Logic, Intellectual property (IP), ACK, NACK,

RS232, GPIO.

I. INTRODUCTION

 Virtex family provides most powerful features in the

FPGA[1]. It contains distinct platforms. Each platform

contains a different ratio of features. One of the functions of

the Simulator board is to accept the data from Graphical User

Interface (GUI) which will be in frame format according to

protocol, which is sent on RS232 link. Simulator board

receives the data and displays received data in GUI on RS232

link.

 Fig 1.1 shows the connection between the GUI and

simulator board. The Simulator board after reception of data

will decode the data message, acknowledges the GUI, and

sends the received data to the digital glue logic. Digital glue

logic will process the data, according to the received data and

converts into the required output format and finally to

respected IO pins. The main aim of this paper is to establish a

serial communication between simulator board and Graphical

User Interface (GUI). The paper is segregated into two

activities which will be carried out in two steps.

Fig: 1.1 Connection between the GUI and Simulator Board

STEP1: A GUI has to be designed and developed based on

Microsoft Visual C# Platform [8] provides the user with

selection of data and converts them into frames according to

the protocol and sends to the developed user software on

RS232 link.

STEP2: Development of User Software. This can be done by

using Xilinx Platform Studio [5] for required simulator board.

 PC

GUI

Simulator Board

User Software

 RS232

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 8-August 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3596

GUI acts an Interface between the simulator board

and user. It is developed in such a way that the data is

processed and output will be shown and as desired.

II. GRAPHICAL USER INTERFACE

 The function of Graphical User Interface is to

generate the appropriate selected data to user software as done

by the Simulator board. Every Selected data from GUI will be

executed by the user software. Input of the GUI is selection of

data by user, which is to be processed further. The output is a

frame, which has to send on RS-232 link.

Fig. 2.1 Block diagram of Graphical user Interface

The above Fig.2.1 shows the block diagram of GUI,

Link initialization process is implemented same as it

implemented in the development process of user software. If

the link is ok, then GUI will let the user to select data and then

to insert data appropriate to the selected data.

Fig. 2.2 GUI flow diagram

 Fig.2.2 represents the Graphical User Interface flow

diagram. Once the data is selected by user, then GUI sends the

information to the user software in a frame format on RS-232

link. The frame structure will be according to the protocol.

After data is provided by user at first it is encoded and then

given to the framing block. Once encoding is done, and then

selected code and data count fields are added to the data field.

Next checksum is calculated by performing XOR operation

performed in byte by byte process and next start of frame and

end of frame bytes are added, which completes the framing

process.

The framed data is sent to the Simulator board, and

waits for the acknowledgement. GUI gets acknowledgement

ACK or no acknowledgement NACK.

Design and development process of GUI is done by using

Microsoft Visual C# tool.

III. USER SOFTWARE DEVELOPMENT

 The selected data is input to this user software from

GUI, and the output is generation of given parameter data on

external IO pins.

Fig. 3.1 Block diagram of user software.

The above Fig.3.1 shows block diagram of user

software, initially it checks for Link initialization, if link is

established, board looks for Start of Frame (SOF). Assembly

of frames starts only after reception of a SOF character until

End of Frame (EOF) is detected. After receiving the total

frame error checking will be done by comparing received

checksum by calculated checksum. Checksum is calculated

by doing bitwise XOR of received frame data bytes (byte by

byte) except SOF and EOF. After Calculation of checksum,

an Acknowledgement ACK or NACK will be sent to GUI in

response to the received data. De-framing is done by

removing unnecessary bytes from frame and extracts data

bytes. Actual data bytes are send to user peripheral for further

processing. Data received in user peripheral is stored and

converted to the required format. The practical

LINK

INITIALIZER

FRAME

RECEIVER

ERROR

CHECKING

DE-

FRAMEING

ACK

NOWLEDGEM

ENT SENDER

USER

PERIPHERAL

LINK

INITIALIZER

SELECTION OF

DATA FROM

GUI

DATA

INSERTION

FRAMEING FRAME

SENDER

True

False

Link Initialization

Selection of Data

Calculates checksum

Sends ACK

Response received

Framing

Sends

NACK

Sending to user software on RS-232link

Start

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 8-August 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3597

implementation of this is done by using Xilinx XPS (Xilinx

platform studio).

After successful link establishment, both entities

enter into the Data Transfer phase. Then the two

communication nodes can exchange messages vice versa.

Once the user software enters into data transfer phase, it waits

till the start of frame to be received, which triggers the user

software into frame receiver mode. Once the user software

enters into frame receiver mode it keeps on receiving the bytes

till the end of frame is received. All the received bytes of

frame are store as byte array in the order they receive.

Fig. 3.2 User software flow diagram

 Once the frame is received successfully, user

software checks whether frame is error free or not. Error

checking consists following two stages.

1. It calculates the check sum and compares it with the actual

check sum field present in the frame.

2. It counts the number of actual data bytes in frame and

compares with the data count field.

 If the check sum doesn‘t matches with actual check sum

field then it generates a negative acknowledgement frame and

sends to the GUI and it doesn‘t go for further processing and

simply looks for the new start of frame. Negative

acknowledgement frame is generated according to the

protocol. It contains the data of received frame and byte in the

data field which represents the error in the frame to the GUI.

If the frame is error free, then application software looks

whether all the bytes are received or not. It does this by

comparing total length of frame with message length value +5.

If any one or both the cases fail then a negative

acknowledgement is sent to the GUI.

Fig. 3.3 Frame Structure

The Fig. 3.3 represents the frame structure. Once if

these two stages are succeeded then positive

acknowledgement frame is sent to GUI which contains

received data and positive acknowledgement byte. If the

received frame is error free then it is send to the de-framing

block. De-framing is done in order to extract the actual data

field by removing overheads in the frame. Once the data bytes

are extracted, then data is send to the newly created IP which

contains actual application work. The peripheral stores the

data in a particular register according to the received data and

process it further and converts it into required output format

specified by the received data.

IV. IMPLEMENTATION

 Implementation of this is done by using XILINX

XPS tool[2, 3, 6]. As user software has to be implemented in

FPGA, implementation process is divided into two stages.

First stage is implementation of hardware and next stage is

software implementation.

Fig. 4.1 Tool flow overview

Bit0 (SOF) Data Field Bit7(EOF)

True
False

Start

Link Initialization

Wait till SOF received

Continue receiving of bytes till

EOF received

Sends ACK

CS==Actual CS

DE- Framing

User peripheral

Calculates checksum by xoring bytes

Sends

NACK

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 8-August 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3598

The fig.4.1 represents the tool flow overview of XPS.

The system design flow simply combines the standard

hardware flow used to create FPGA bit streams and standard

software flow used to create processor ELF files.

The first step is to create the ‗System Netlist‘ using

the Embedded Developers Kit and instantiate that Netlist into

the design‘s HDL code. The hardware design is then

synthesized, merged and implemented using the exact same

flow as used with any other ‗black box‘ core. While it is

common to include a portion of the yet created software image

inside the FPGA using block RAM, the ‗Compiled BIT‘ file

created during this phase of development only contains the

systems hardware description.

The second step is to create the ‗Board Support

Package‘ (BSP) using the Embedded Developers Kit (EDK)

and include the required drivers in the system‘s C code. The

code is then compiled and linked with the various functions

available in the BSP as same with any other processor system.

Because the embedded system is built using the FPGA fabric,

the BSP is customized for the particular set of peripherals

included in the ‗System Netlist‘. Unlike an off shelf general

purpose processor, every BSP is potentially unique and as

such EDK is tasked with customizing a generic set of drivers

as required to properly support the ‗arbitrary processor

system‘.

 Once the final set of peripherals and bus structures

have been solidified, the software and hardware flows can be

run independently. Even if part or the entire software image is

stored using on-chip block RAM, the software flow does not

require running the hardware flow from scratch, when making

software changes. Only if a change is made to the instantiated

‗System Netlist‘ does the hardware need to be implemented

again before the new software image which relies on the

architectural change can be loaded and run.

If the software image is completely stored externally,

configuring the FPGA and loading the external storage device

are performed in exactly the same way as a typical two chip

solution. If part or all of the software image is stored using on-

chip block RAM and as such is embedded within the FPGA‘s

bit stream, an additional step is required before the FPGA can

be configured. EDK provides a tool called Data2MEM which

merges the appropriate sections of the ‗Compiled ELF‘ file

with the ‗Compiled BIT‘ file. The resulting BIT file is created

typically created in a few seconds and can then be used to

configure the FPGA. When the entire software image is

stored within the FPGA, only the BIT file is needed to

configure the system and load the software image. If only

portion of the software image, such as the bootstrap, is stored

within the FPGA, then Data2MEM is run to create a

combined BIT file and the system is once again

configured/loaded as any two chip solution using the

unmerged ELF sections and the combined BIT file.

Debugging the software running on the system is performed in

the same manner as would be on any general purpose

processor.

Hardware Implementation:

Hardware Implementation can be done as follows.

First Invoke the XPS, create a new project and select the Base

System Builder Wizard. In the Base System Wizard, Create

New XPS Project Using BSB Wizard window, browse to a

directory in which to write the project file (system.xmp),

choose I would like to create a new design, select Board

window, select the board which suits. Next choose I would

like to create a system. In the Board Architecture field, select

FPGA details. In the Base System Builder wizard, in

Processor window, verify that the PowerPC Processor is

selected. Next Configure PowerPC Processor window make

the selections as per your requirements. Under Processor

Configuration, for Debug Interface, accept FPGA JTAG as the

Debug interface. Next for Cache setup, uncheck Enable.

Confirm that Enable Floating point unit (FPU) is unchecked.

Next in the Base System Builder - Configure I/O Interfaces

window, make the selections as given below

 Check RS232_Uart_1 then select XPS UARTLITE

in the Peripheral field. Set The Baud Rate to 9600, the Data

bits to 8, the Parity to None. Check Use Interrupt.

 Uncheck RS232_Uart_2. Next In the Base System

Builder - Configure I/O Interfaces window- Select

LEDs_8Bit. In the Peripheral field, select XPS_GPIO, and

uncheck Use Interrupt, Add Internal Peripherals (1 of 1)

window, make the selections as below: For XPS BRAM IF

CNTLR, select Memory of your requirement. Next In the

Base System Builder - Software Setup window, make the

selections as below. In the STDIN and STDOUT fields, select

RS232_Uart_1.

 In the Boot Memory field, select

xps_bram_if_cntrl_1. Under Sample Application Selection,

check Memory Test (default) and check Peripheral self test

(default). In the Base System Builder - Configure Memory

Test Application window, make the selections as: In the

Instruction, Data and Stack/Heap fields, select

xps_bram_if_cntlr_1.b In the Interrupt Vector field, select

DDR_SDRAM (default).

 In the Base System Builder - Configure Peripheral

Test Application window, make the selections as below. In the

Instruction, Data Stack/Heap, and Interrupt Vector fields,

select DDR_SDRAM. In the Base System Builder - System

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 8-August 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3599

Created window, where the selections which have been made

are summarized, click Generate to generate the system. In the

Base System Builder - Finish window, check Save Settings

File click Finish.

Software implementation:

 Software implementation can be done as follows.

Select Software menu, go to Software platform settings to

select the software settings for the embedded system. In

Software platform settings check Xilkernel, uncheck lwip and

Xilmfs. In OS& Libraries settings configure the Xilkernel

libraries according to requirements. Next in driver window

default drivers are configured. Select OK. Again select

Software menu, go to Generate Libraries and BSPs to generate

libraries and board support packages. This will generate .MSS

file. In Application area select Add application project option

and type the name of the application in the Project Name area

and click OK. A new application is created. In the created

application add source files and header files which are used

for implementing the application. After writing the user

software, build the application using Software → Build all

User Applications for checking the errors and debugging the

developed application. After completing the above procedure

.elf file for the application is generated it is used to download

it onto the FPGA. Select Debug →XMD Debug options select

connection type to Hardware, JTAG Cable type Auto, check

Auto discover JTAG chain definition and click OK.

Download bit stream to FPGA using JTAG using Device

Configuration→ Download Bit stream to the FPGA. Here

sytem.bit file and .elf file are merged in order generate

download.bit file and configures the FPGA through JTAG.

When .elf file is not included in download.bit file then Select

Debug > Launch XMD from the XPS GUI to debug the user

software. After launching XMD debugger download .elf file

of the application using the command download <application

name>/executable.elf. Run the application using the command

run. Use stop command to stop the processor.

V. RS-232

 The concept of serial communication is the process

of sending data one bit at a time, sequentially, over a

communication channel. RS-232(Recommended Standard

232) is the traditional name for a serial binary single-ended

data and control signals connecting between a DTE (Data

Terminal Equipment) and a DEC (Data Circuit terminating

Equipment).

 Rs-232 data usually is sent as a packet with 7 or 8bit

words, start, stop, parity bits (may be varied). Start bit

followed by data bits, parity bit and finished by stop bit. The

start and stop bits are used in asynchronous communication.

 Details of character format and transmission bit rate

are controlled by the serial port hardware, often a

single integrated circuit called a UART that converts data

from parallel to asynchronous start-stop serial form. Details of

voltage levels, slew rate, and short-circuit behavior are

typically controlled by a line driver that converts from the

UART's logic levels to RS-232 compatible signal levels, and a

receiver that converts from RS-232 compatible signal levels to

the UART's logic levels.

VI. TESTING

 To Test the user software a GUI is developed. First

the user software is downloaded in to the board using JTAG

cable using download bit stream option in XPS menu. After

downloading bit stream, now we download application using

XMD debugger in XPS menu using ―Download <application

name>/executable. Elf‖. Now the FPGA board is ready to

communicate on RS-232 link.

VII. RESULTS

Fig. 8.1 Selection of Data from GUI

Fig. 8.2 Result after select the data from GUI

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 8-August 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3600

Fig. 8.3 Result in LSA (Logic Analyzer) after dumping the program into

FPGA on GPIO pins.

VIII. CONCLUSION

 Serial communication through RS-232 link has been

successfully established between Graphical User Interface and

Simulator board. Subsequently selected data have been

communicated between the Graphical User Interface and

Simulator board

 The future scope of this work can be enhanced by

suing Ethernet link.

ACKNOWLEDGMENT

 The authors would like to thank P. Prashanth
Application Engineer, Digi Logic Systems, Hyderabad for

their support in implementation of the hardware and D.

Krishnaveni Sc.‘D‘, DLRL, Hyderabad for giving valuable

suggestions .

REFERENCES

[1]. Clive ―MAX‖ Maxfield, ―the design warrior’s guide to FPGAs‖,

2004.

[2]. Jonathon W. Donaldson, ―Xilinx EDK Tutorials and Notes ―.

[3]. Xilinx Website -www.xilinx.com

[4]. www.xilinx.com/support/documentation/dt_edk_edk10-1.htm.

[5]. Embedded System Tools -Reference Manual - Xilinx

[6]. Xilinx software Help tool – Xilinx

[7]. Douglas L. Perry ―VHDL Programming by Example‖, 2002.

[8]. Microsoft visual C# platform studio-2010

http://www.ijettjournal.org/

