
International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3730

An Empirical Data Cleaning Technique for CFDs
Satyanarayana Mummana1, Ravi kiran Rompella 2

1 Asst Professor, Dept of Computer Science and Engineering, Avanthi Institute of Engineering & Technology, Visakhapatnam,
Andhra Pradesh.

2 Final M.Tech Student, Dept of Computer Science and Engineering, Avanthi Institute of Engineering & Technology,
Visakhapatnam, Andhra Pradesh.

Abstract:- Data cleaning is a basic data preprocessing
technique for before forwarding the data to data mining
approach ,but it leads to an intresting research area in the field
of data mining. Data cleaning is the process of finding and
deleting noisy data/records from the database. The simplest
technique used for data cleaning is based on Functional
Dependencies. As FDs works on entire instance of a table we
introduced a new technique called Conditional Functional
Dependencies. CFDs are like if then rules. The dependence
between the columns of a table are represented as conditions
using functions.. For example if we consider a employee table
which maintains the employee name,id,city,pincode and etc. In
this table the employees who are belongs to the same city, are
all may have the same pincode, So that we can generate a FD
that city--->pincode. CFD means using specific condition for
the FD. ex:city=vizag---->pincode=531005. The main agend of
our project is to find the CFD violated rows in a table using the
created CFDs. These CFDs violated rows are deleted to correct
data.

I.INTRODUCTION
Data mining, is the extraction of hidden predictive

information from large databases and powerful new
technology with great potential to help companies focus on
the most important information in their data warehouses.
The tools predict future trends and their behaviours
allowing businesses to make proactive, knowledge-driven
decisions. The prospective analyses offered by data mining
move beyond the analyses of past events provided by
retrospective tools typical of decision support systems. The
tools can answer business questions that traditionally were to
resolve takes much time. They scour databases for finding
predictive information that experts may miss because it lies
outside their expectations Data mining (also known as
Knowledge Discovery in Databases - KDD) has been
defined as nontrivial extraction of implicit and potentially
useful information from data and uses machine learning
visualization techniques to discover and present knowledge
in a form which is easily comprehensible to humans. The
components of data mining technology have been under
development for decades, in research areas such as artificial
intelligence. Today, the maturity of these techniques and
coupled with high-performance relational database engines
and broad data integration efforts and these technologies
practical for current data warehouse environments.

II.RELATED WORK
Data cleaning, also called data cleansing deals with

detecting and removing errors and inconsistencies from data
in order to improve the quality of data. Problems of data are
present in single data collections and those are files and
databases due to misspellings during data entry and missing
information or other invalid data. When multiple data
sources need to integrated in data warehouses and database
systems or global web-based information system and they
need for data cleaning increases because the sources often
contain redundant data in different representations. To
provide access to accurate and consistent data and the
consolidation of different data representations and
elimination of duplicate information become necessary. Data
warehouses require and provide extensive support for data
cleaning and continuously refresh huge amounts of data
from a variety of sources so the probability that some of the
sources contain noisy data is high. Data warehouses are used
for decision making, then that the correctness of their data is
vital to avoid wrong conclusions.

For instance, duplicated or missing information will
produce incorrect or misleading. Due to the wide range of
possible data inconsistencies and the sheer data volume and
the data cleaning is considered to be one of the biggest
problems in data warehousing. The presence of errors and
inconsistencies in data dramatically reduce the value of data,
making it worthless and even harmful. The statistics
estimated that data quality costs US businesses $600 billion
annually is also estimated that data cleaning and complex
process, accounts for 30 to 80% of the development time
and budget in most data warehouse projects. Studies
conducted by many researchers forecast that more than 50
percent of data warehouse projects will have limited success
or will be outright failures and the result of the lack of
attention to data quality issues. As a result of the previous
statistics and studies and there is an increasing demand for
data cleaning tools that automatically detect and effectively
remove inconsistencies and errors from the data. Dirty data
often arises due to changes in use and perception of the data
and violation of integrity constraints (or lake of such
constraints).The errors in a database often emerge as
violations of integrity constraints.

Constraint-based data cleaning has mostly focused
on two concepts and repair and a consistent answer to the
query. A repair is to find another database that is consistent
and differs minimally from the original database. Query

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3731

answer is to find an answer to a given query in every repair
of the original database, without editing the data. The
limitations in traditional dependencies lead the researchers
in data cleaning to revive actions by considering extensions
of FDs and INDs (Inclusion Dependencies) defined to as
Conditional Functional Dependencies (CFDs) and
Conditional Inclusion Dependencies (CINDs). The extended
functional dependencies specifying patterns of semantically
related values; these patterns impose conditions on what part
of the relation the dependencies are to hold and which
combinations of values should occur together (Fan et al.,
2009).

III.EXISTING SYSTEM
Unfortunately little previous work has studied this

issue. There has also been recent work on constraint repair,
which specifies the consistency of data in terms of
constraints and which detects inconsistencies in the data as
violations of the constraints. The previous work on
constraint repair is mostly based on traditional dependencies
(e.g., functional and full dependencies, etc) and they were
developed mainly for schema design because are often
insufficient to capture the semantics of the data, it shows in
example below.

CC AC PN NM STR CT ZIP
1 890 1234566 Mike Tree Ave PHI 0891
1 890 2233445 Rick Tree Ave NYC 0891
1 212 2233445 Dick Elm str NYC 0891
1 212 2233445 Jack Elm str NYC 0210
1 215 3333333 Mack Oak ave EDI 0210
4 131 4444444 Lack High st. EDI 0238

Fig1:An instance of the cust relation

Example 1.1: Consider the following schema, which
specifies a customer say that customer’s phone (country
code (CC), area code (AC), phone number (PN)), name
(NM), and address (street (STR), city (CT), zip code (ZIP)).
An instance of cust is shown in Fig. 1. Traditional functional
dependencies (FDs) on a cust relation may include:
f1: [CC, AC, PN]→[STR, CT, ZIP]
f2: [CC, AC]→[CT]
(Recall the semantics of an FD: f2 requires that two
customer records with the same country- and area-codes).
Traditional FDs are to hold on all the tuples in the relation
(indeed they do on Fig. 1). In contrast, the following
constraint is supposed to hold only when the country code is
44. That is, for customers in the UK and ZIP determines
STR:
φ0: [CC = 44, ZIP]→[STR]

In other words, φ0 is an FD that is to hold on the
subset of tuples that satisfies the pattern “CC = 44” on the
entire customized relation and generally not considered an
FD in the standard definition since φ0 includes a pattern
with data values in its specification. The constraints are
again not considered FDs:
φ1: [CC = 01, AC = 908, PN]→[STR, CT = MH, ZIP]
φ2: [CC = 01, AC = 212, PN]→[STR, CT = NYC, ZIP]
φ3: [CC = 01, AC = 215] →[CT =PHI]

The first constraint φ1 assures that only in the US
(country code 01) and for area code 908, if two tuples have
the same PN and they must have the same STR and ZIP
values and the city must be MH. Similarly and the φ2
assures that if the area code is 212 then the city must be
NYC; and φ3 specifies that for all tuples in the US and with
area code 215 and their respective PHI must be (irrespective
of the values of the other attributes). Let us observe that φ1
and φ2 refine the FD f1 given above and then φ3 refines the
FD f2. This refinement essentially enforces a binding of
semantically related data values. Note that while tuples t1
and t2 in Fig. 1 do not violate f1, they violate its refined
version φ1, since the city cannot be NYC if the area code is
908. In this example, the constraints φ0, φ1, φ2 and φ3
capture a initial requirement part of the semantics of the
data. They cannot be expressed as standard FDs and are not
considered in previous work on data cleaning. Indeed,
constraints that hold conditionally may arise in a number of
domains. For example, an employee’s pay grade may
determine her title in some parts of an organization but not
in others; an individual’s address may determine his tax rate
in some countries while in others it may depend on his
salary, etc. Further, dependencies that apply conditionally
appear to be particularly needed when integrating data and
dependencies that hold only in a subset of sources will hold
only conditionally in the integrated data.

IV.PROPOSED SYSTEM
We introduce a novel extension of traditional

methods referred to as conditional functional dependencies
(CFDs) and they are capable of capturing the notion of
“correct data” in these situations. The process goes like this,
first we will generate some CFDs based on the existing data
then we will construct a query to find the CFD violated rows
this will result the set of rows which are violated CFDs and
lastly violated rows will be treated as noisy data and those
will be deleted to get the correct data.

A.Detecting CFD Violations

A first step for data cleaning is the efficient
detection of constraint violations in the data. In this section
we develop techniques to detect violations of CFDs. Given
an instance I of a relation schema R and a set Σ of CFDs on
R, it is to find all the inconsistent tuples in I, i.e., the tuples
that (perhaps together with other tuples in I) violate some
CFD in Σ. We first provide an SQL technique for finding
violations of a single CFD, and then generalize it to validate
multiple CFDs.

QCϕ 2 select t from cust t, T2 tp

where t[CC] _ tp[CC] AND t[AC] _ tp[AC] AND
t[PN] _ tp[PN] AND
(t[STR] __ tp[STR] OR t[CT] __ tp[CT] OR t[ZIP]

__ tp[ZIP])
QVϕ2 select distinct t[CC], t[AC], t[PN] from cust t, T2 tp

where t[CC] _ tp[CC] AND t[AC] _ tp[AC] AND
t[PN] _ tp[PN]

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3732

group by t[CC], t[AC], t[PN]
having count(distinct t[STR], t[CT], t[ZIP])> 1
Figure 5. SQL queries for checking CFD ϕ2

B. Checking a Single CFD with SQL
Consider a CFD ϕ = (X → Y, Tp). The following two SQL
queries suffice to find the tuples that violate ϕ:
QCϕ
select t from R t, Tp tp
where t[X1] _ tp[X1] AND . . . AND t[Xn] _ tp[Xn] AND
(t[Y1] __ tp[Y1] OR . . . OR t[Yn] __ tp[Yn])
QVϕ
select distinct t.X from R t, Tp tp
where t[X1] _ tp[X1] AND . . . AND t[Xn] _ tp[Xn]
group by t.X having count(distinct Y)> 1
where Xi (resp. Yj) ranges over attributes in X (resp. Y);
t[Xi] , tp[Xi] is a short-cut for the Structured Query
Language expression (t[Xi]
= tp[Xi] OR tp[Xi] = ‘ ’), while t[Yj] __ tp[Yj] is a
shorthand
for (t[Yj] _= tp[Yj] AND tp[Yj] _= ‘ ’).

Intuitively, detection is a two-step process, each
conducted by a query. Initially, query QCϕ detects single-
tuple violations, i.e., the tuples t in I that match some pattern
tuple tp ∈ Tp on the X attributes, but t does not match tp in
the Y attributes due to a constant value tp[Yi] different from
value t[Yi]. That is, QCϕ finds inconsistent tuples based on
differences in the constants in the tuples and Tp patterns. On
the other hand, query QVϕ finds multi-tuple violations, i.e.,
tuples t in I for which there exists a tuple t_ in I such that
t[X] = t_[X] and moreover, both t and t_ match a pattern tp
on the X attributes, but t[Yj] _= t_[Yj] for some attribute
Yj in Y. Query QVϕ uses the group by clause to group
tuples with the same value on X and it counts the number of
distinct instantiations in Y . If there is more than one
instantiation there is a violation. It catches both tuples t and
t’ mentioned above as violations, although it is possible that
both pass the test of query QCϕ. To be precise, QVϕ returns
only the X attributes of inconsistent tuples (this is caused by
the group by). However, this has the advantage that the
ouput is more concise than when we would return the
complete tuples. Moreover, the complete tuples can be easily
obtained from the result of the two queries by means of a
simple SQL query. Example 4.1: Recall CFD ϕ2 given in
Fig. 2. Over a cust instance I, the SQL queries QCϕ2 and
QVϕ2 shown in Fig. 5 determine whether or not I satisfies
ϕ2. Executing these queries over the instance of Fig. 1, it
returns tuples t1, t2(due to QCϕ2), and t3 and t4 (due to
QVϕ2). _
ϕ4 = (cust:[CC, AC, PN]→[STR, CT, ZIP], T4), where T4
is

CC AC PN STR CT ZIP
- - - - - -
01 089 - - MH -
01 202 - - NY -
- - @ @ - @
01 512 # @ PHI @

Fig:6 Merged Ω2 and Ω3
A salient feature of our SQL translation is that

tableau Tp is treated an ordinary data table. Therefore, each
query is bounded by the size of the embedded FD X → Y in
the CFD, and is independent of the size (and contents) of the
(possibly large) tableau Tp.

C. Validating Multiple CFDs

A naive way to validate a set Σ of CFDs is to use
one query pair for each CFD ϕ in Σ. This approach requires2
× |Σ| passes of the underlying relation. We next present an
alternative approach that only requires two passes. The key
idea is to generate a single query pair to check constrains in
Σ. Our proposed approach works in two phases. First phase
the process starts performing a linear scan of all the tableaux
belonging to CFDs in Σ and merges them, generating a
single tableau called Tableau TΣ is such that it captures the
constraints expressed by all the tableaux of the CFDs in Σ.
Then, in its second phase, it generates a query pair that finds
inconsistent tuples violating CFDs in Σ. 4.2.1 Merging
Multiple CFDs Consider a set Σ which, without loss of
generality, contains just two CFDs ϕ and ϕ_ on R, where ϕ =
(X → Y, T) and ϕ = (X’ → Y ‘, T’). There are two main
challenges for the generation of the merged tableau TΣ. The
first challenge is that tableaux T and T _ may not be union-
compatible, i.e., X _= X_ or Y _= Y _. We thus need to
extend tableau T (resp. T _) with all the attributes in Z =
(X∪Y)−(X_∪Y _) (resp. (X_ ∪ Y _) − (X ∪ Y) for T _).
For each attribute A in Z and each tuple tc in the original
tableau T, we set the value of tc[A] to be a special symbol
denoted by ‘@’, which denotes intuitively a don’t care
value. After this extension, the resulted tableaux are union-
compatible. Then, tableau TΣ is defined to be their union.
The presence of “@” and we reformulate CFD satisfaction.
Consider a tuple tc[X, Y] in a tableau that includes ‘@’. We
use Xfree tc and Y free tc to denote the subset of X and Y
attributes of tc that is ‘@’-free, i.e., it has no ‘@’ symbol.
IR satisfies the set CFD ϕ , denoted by I |= ϕ, if for each
pair of tuples t1 and t2 in the relation I and for every tuple tc
in the pattern tableau Tp of ϕ, if t1[Xfree tc] = t2[Xfree tc]
_ tc[Xfree tc], then t1[Y free tc] = t2[Y free tc] _ tc[Y free
tc]. For the second challenge, consider the translation of a
single CFD into an SQL query pair. Note that the translation
assumes implicit knowledge of which attributes are in the

id CC AC CT id CT AC
1 - - @ 1 - @
2 1 1 @ 2 PHI @
3 4 -- - 3 GLA @
4 @ @ - 4 @ -

Fig:7
X and Y sets and treats the translation of each

attribute set differently. Now, consider two simple CFDs on

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3733

R, namely, ϕ = (A → B, T) and ϕ_ = (B → A, T _). Suppose
that we have made the tableaux of the CFDs union-
compatible. One might want to take the union of these two
tableaux to generate TΣ. How can we translate tableau TΣ
into a query and Clearly we cannot directly use the
translation given earlier since we do not know how to treat
the join of an attribute like, say, A. Attribute A is in X for
tuples coming from empty set while it is part of Y for tuples
coming from ϕ_. Thus we need to distinguish the two sets of
tuples and treat the translation of each set separately. We
accommodate this by splitting the tableau T of each CFD ϕ =
(R : X → Y, T) into two parts, namely, TX and T Y , one
tableau for the X and one for Y attributes of ϕ. Then,
tableaux TX Σ (and similarly T Y Σ) is generated by making
all the TX tableaux in Σ union-compatible. Note that an
attribute can appear in both TX Σ and T Y Σ . To be able to
restore pattern tuples from TX Σ and T Y Σ , we create a
distinct tuple id t.id for each pattern tuple t, and associates it
with the corresponding tuples in TX Σ and T Y Σ . For
example, consider CFD ϕ3 shown in Fig. 2 and ϕ5 = (cust :
[CT] →[AC], T5), where T5 consists of a single tuple (,).
Figure 7 shows their merged TX Σ and T Y Σ tableaux. Note
that attributes CT and AC appear in both tableaux. 4.2.2
Query Generation During the second phase of our approach,
we translate tableau TΣ into a single SQL query pair. This
translation, however, introduces new challenges. Recall that
query QVϕ , for some CFD ϕ = (R : X → Y, T), requires a
group by clause over all the X attributes. Let us consider
tableau TX Σ in Fig. 7. It is not hard to see that if we use the
group by clause over all the attributes in TX Σ , we are not
going to detect all (if any) inconsistencies since, for
example, for the first three tuples in TX Σ the ‘@’ in
attribute CT indicates that, while detecting inconsistencies,
we should only group by the first two attributes and ignore
the value of attribute CT. Similarly for the last tuple in TX Σ
, the ‘@’ in attributes CC and AC indicates that while
detecting inconsistencies for these tuples then after we
should only consider the value of CT. The example suggests
that our SQL query should change the set of group by
attributes, based on the contents of each tuple. In what
follows, we show how this can be achieved while still
keeping the query size bounded by the size of the embedded
FD X → Y and independent of the size of the tableau.
Central to our approach is the use of the case clause of SQL
(supported by commercial DBMS like DB2). Consider the
merged tableaux TX Σ and T Y Σ from a set Σ of CFDs over
a relation schema R and let I be an instance of R. Then, the
following two SQL queries can be used to detect
inconsistent tuples of I violating ϕ:
QCΣ
 select t from R t, TX Σ tXp , TY
Σ tYp
wheretXp.id = tYp.id AND
t[X1] _ tXp
[X1] AND . . . t[Xn] _ tXp
[Xn] AND (t[Y1] __ tYp[Y1] OR . . . t[Yn] __ tYp[Yn])
QV

Σ select distinct tM.X from Macro tM
group by tM.X
having count(distinct Y)> 1
where Macro is:
select (case tXp
[Xi] when “@” then “@” else t[Xi] end)AS Xi . . .
(case tYp
[Yj] when “@” then “@” else t[Yj] end)AS Yj . . .
from R t,TX Σ tXp, TY Σ tYp wheretXp.id = tYp.id AND
t[X1] _ tXp
[X1] AND . . . AND t[Xn] _ tXp [Xn]
where t[Xi] _ tp[Xi] now accounts for the ‘@’ and is a
short-hand for (t[Xi] = tp[Xi] OR tp[Xi] = ‘ ’ OR tp[Xi]
= ‘@’), while t[Yj] __ tp[Yj] is a short-hand for (t[Yj] _=
tp[Yj] AND tp[Yj] _= ‘ ’ AND tp[Yj] _= ‘@’).

More specifically, query QCΣ is similar in spirit to
the SQL query that checks for inconsistencies of constants
between the relation and the tableau, for a single CFD. The
only difference is that now the query has to account for the
presence of the ‘@’symbol in the tableau. Now, we turn our
attention to relation Macro which is of the same sort as TX Σ
and T Y Σ (we rename attributes that appear in both tableaux
so as not to appear twice). Relation Marco is essentially the
join on X of relation I with the result of the join on tuple id
t.id of the two tableaux. The value of each attribute, for each
tuple tM in Marco, is determined by the case clause. In more
detail, tM[Xi] is set to be ‘@’ if tXp [Xi] is ‘@’, and is t[Xi]
otherwise find similarly for tM[Yj] value. Note that relation
I is not joined on Y with the tableaux so if for some
tuple t with t[X] _ tXp [X], there exists an attribute Yj with
tYp [Yj] a constant and t[Yj] _= tYp[Yj] (i.e., t is
inconsistent w.r.t. tp) then tM[Yj] is set to be t[Yj]. This
creates no problems since this inconsistent tuple is already
detected byQCΣ. Intuitively, Macro considers each tuple in
the tableau, and uses it as a mask over the tuples of the
relation. If the tableau tuple indicates a don’t care value for
an attribute, all the (possibly different) attribute values in the
relation tuples are masked and replaced by an ‘@’ in Macro.
Figure 8 shows the result of joining the fourth tuple of
tableaux TX Σ and TY Σ in Fig. 7 with the cust relation of
Fig. 1. Note that the query masks the attributes values of CC
and AC. This masking allows the subsequent group by over
X to essentially consider, for each tuple, only the subset of X
that does not have any don’t care values. Note that although
X = {CC, AC, CT}, the group by by queryQV Σ essentially
performs a group by over only attribute CT. The query
returns the NYC tuples which violate ϕ5.

CC AC CT CT’ AC’
@ @ NYC @ 908
@ @ NYC @ 212
@ @ PHI @ 215
@ @ EDI @ 131

Fig:8

In this way we generate a single pair of SQL

queries to validate a set Σ of CFDs, while guaranteeing that
the queries are bounded by the size of the embedded FDs in

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3734

Σ, independent of the size of the tableaux in Σ. Furthermore,
to validate Σ only two passes of the database is required.

V.CONCLUSION

 We have introduced CFDs and shown that CFDs
can express semantics of data fundamental to data cleaning.
For applications of CFDs in data cleaning, we have
developed SQL-based techniques for detecting
inconsistencies as violations of CFDs. We have also
experimentally evaluated our detection techniques. Even the
CFDs is a good technique for the data cleaning, it takes more
computation time for query joining and record retrievals
when compared with simple FDs. If we are able to decrease
this computation time in CFDs we can produce a good data
cleaning mechanism than this.

REFERENCES
[1] M. Arenas and L. Libkin, “A Normal Form for xml
Documents,” ACM Trans. Database Systems, vol. 29, pp.
195-232, 2004.
[2] P. Atzgeni and V.D. Antonellis, Relational Database
Theory. The Benjamin/Cummings Publishing Company,
Inc., 1993.
[3] J. Bauckmann, U. Leser, and F. Naumann, “Efficiently
Computing Inclusion Dependencies for Schema Discovery,”
Proc. Second Int’l Workshop Database Interoperability,
2006.
[4] C. Beeri, M. Dowd, R. Fagin, and R. Statman, “On the
Structure of Armstrong Relations for Functional
Dependencies,” J. Assoc. for Computing Machinery, vol. 31,
no. 1, pp. 30-46, 1984.
[5] S. Bell, “Discovery and Maintenance of Functional
Dependencies by Independencies,” Proc. Workshop.
Knowledge Discovery in Databases (KDD ’95), pp. 27-32,
1995.
[6] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A.
Kementsietsidis, “Conditional Functional Dependencies for
Data Cleaning,” Proc. IEEE 23rd Int’l Conf. Data Eng.
(ICDE), pp. 746-755, 2007.
[7] T. Calders, R.T. Ng, and J. Wijsen, “Searching for
Dependencies at Multiple Abstraction Levels,” ACM Trans.
Database Systems, vol. 27, no. 3, pp. 229-260, 2002.
[8] F. Chiang and R.J. Miller, “Discovering Data Quality
Rules,”VLDB Endowment, vol. 1, no. 1, pp. 1166-1177,
2008.
[9] G. Cormode, L. Golab, K. Flip, A. McGregor, D.
Srivastava, and X. Zhang, “Estimating the Confidence of
Conditional Functional Dependencies,” Proc. SIGKDD Int’l
Conf., pp. 469-482, 2009.
[10] S.S. Cosmadakis, P.C. Kanellakis, and N. Spyratos,
“Partition Semantics for Relations,” Proc. Fourth ACM
SIGACT-SIGMOD
Symp. Principles of Database Systems (PODS), pp. 261-
275, 1985.
[11] W. Fan, F. Geerts, L.V.S. Lakshmanan, and M. Xiong,
“Discovering Conditional Functional Dependencies,” Proc.

IEEE 25th Int’l Conf. Data Eng. (ICDE), pp. 1231-1234,
2009.
[12] P.A. Flach and I. Savnik, “Database Dependency
Discovery: A Machine Learning Approach,” Artificial
Intelligence Comm., vol. 12, no. 3, pp. 139-160, 1999.
[13] C. Giannella and E. Robertson, “On Approximation
Measures for Functional Dependencies,” Information
Systems, vol. 29, no. 6, pp. 483-507, 2004.
[14] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B.
Yu, “On Generating near-Optimal Tableaux for Conditional
Functional Dependencies,” Proc. Very Large Databases
(VLDB) Conf., pp. 376-390, 2008.
[15] G. Gottlob and L. Libkin, “Investigations on Armstrong
Relations, Dependency Inference, and Excluded Functional
Dependencies,” Acta Cybernetica, vol. 9, no. 4, pp. 395-402,
1990.
[16] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen,
“Tane : An Efficient Algorithm for Discovering Functional
and Approximate Dependencies,” Computer J., vol. 42, no.
2, pp. 100-111, 1999.
[17] I.F. Ilyas, V. Mark, P. Haas, P. Brown, and A.
Aboulnaga, “Cords: Automatic Discovery of Correlations
Soft Functional Dependencies,” Proc. SIGMOD Int’l Conf.
Management of Data, 2004.
[18] M. Kantola, H. Mannila, K.-J. Ra ïha ,̈ and H. Siirtola,
“Discovering Functional and Inclusion Dependencies in
Relational Databases,”
Int’l J. Intelligent Systems, vol. 7, no. 7, pp. 591-607, 1992.
[19] R.S. King and J. Oil, “Discovery of Functional and
Approximate Functional Dependencies in Relational
Databases,” J. Applied Math. and Decision Sciences, vol. 7,
no. 1, pp. 49-59, 2003.
[20] J. Kivinen and H. Mannila, “Approximate Dependency
Inference From Relations,” Proc. Fourth Int’l Conf.
Database Theory (ICDT ’92), pp. 86-98, 1992.
[21] A. Koeller and E.A. Rundensteiner, “Heuristic
Strategies for Inclusion Dependency Discovery,” On the
Move to Meaningful Internet Systems 2004: Proc. Int’l
Conf. CoopIS, DOA, and ODBASE, pp. 891-908, 2004.
[22] S. Lopes, J.-M. Petit, and L. Lakhal, “Efficient
Discovery of Functional Dependencies and Armstrong
Relations,” Proc. Seventh Int’l Conf. Extending Database
Technology (EDBT): Advances in Database Technology,
vol. 1777, pp. 350-364, 2000.
[23] S. Lopes, J.-M. Petit, and L. Lakhal, “Functional and
Approximate Dependency Mining: Database and Fca Points
of View,” J. Experimental and Theoretical Artificial
Intelligence, vol. 14, no. 2, pp. 93-114, 2002.
[24] H. Mannila and K.-J. Ra ïha ,̈ “Dependency Inference,”
Proc. 13th Int’l Conf. Very Large Data Bases (VLDB), pp.
155-158, 1987.
[25] H. Mannila and K.-J. Ra¨iha ,̈ “On the Complexity of
Inferring Functional Dependencies,” Discrete Applied
Math., vol. 40, pp. 237- 243, 1992.
[26] F. De Marchi, F. Flouvat, and J.-M. Petit, “Adaptive
Strategies for Mining the Positive Border of Interesting
Patterns: Application to Inclusion Dependencies in

International Journal of Engineering Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 3735

Databases,” Proc. Workshop Constraint- Based Mining and
Inductive Databases, pp. 81-101, 2006.
[27] F. De marchi, S. Lopes, and J.-M. Petit, “Efficient
Algorithms for Mining Inclusion Dependencies,” Proc.
Eighth Int’l Conf. Extending Database Technology (EDBT),
pp. 199-214, 2002.
[28] F. De Marchi, S. Lopes, and J.-M. Petit, “Unary and N-
Ary Inclusion Dependency Discovery in Relational
Databases,” J. Intelligent Information Systems, vol. 32, no.
1, pp. 53-73, 2009.
[29] F. De Marchi and J.-M. Petit, “Approximating a Set of
Approximate Inclusion Dependencies,” Advances in Soft
Computing— Intelligent Information Processing and Web
Mining, vol. 31, pp. 633- 640, 2005.

BIOGRAPHIES

Satyanarayana Mummana is working as an
Asst. Professor in Avanthi Institute of
Engineering & Technology, Visakhapatnam,
Andhra Pradesh. He has received his Masters
degree (MCA) from Gandhi Institute of
Technology and Management (GITAM),
Visakhapatnam and M.Tech (CSE) from Avanthi

Institute of Engineering & Technology, Visakhapatnam. Andhra
Pradesh. His research areas include Image Processing, Computer
Networks, Data Mining, Distributed Systems, Cloud Computing.

 I Ravi kiran Rompella completed My MCA
in 2011 from university of Mysore and
pursing my Mtech in Avanthi Institutions
Narsipatnam vizag worked as a software
engineer for 1 year on java and javascript
and sql and my research areas include Data
Mining, Distributed Systems, Cloud

Computing.

