
 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 76

An Analytical Study of Object-Oriented Metrics
(A Survey)

Mrs. Mansi Aggarwal , Dr. Vinit Kumar Verma , Mr. Harsh Vardhan Mishra

Abstract: The OO metrics are plays an important role in
the software development. In this paper we are mostly
focus on a set of OO metrics that can be used to measure
the quality and effectiveness of an OO design. The metrics
for OO design focus on measurements that are applied to
the class and design characteristics. These measurements
of OO metrics also permit the designers to access the
software early in process and these changes will reduce the
complexity of OO software and improve the continuing
capability of the design. This paper also summarizes the
existing metrics, which will guide the designers to support
their OO design.
Keywords— Keywords: Object-Oriented (OO), NOC, DIT.

I. INTRODUCTION
Several researchers have proposed a variety of criteria [1-11]
for evaluation and validation to which a proposed software
metric should adhere. Amongst them, we can mention
validation through measurement theory [2, 4, 6], IEEE
standards [5] Kaner’s framework [3], and Weyuker’s
properties [11]. However, most of the existing evaluation and
validation criteria were proposed when procedural languages
were dominant. After the adaptation of OO languages by the
software industry, not too much effort has been made to
develop a model/ framework for evaluating software
complexity measures in the OO domain. There are some
proposals for OO languages [12,13,14]; however, most of
them cover only specific features of evaluation. For example,
Z use’s properties [15] for OO metrics are mathematical in
nature and based on principles of measurement theory. The
lack of proper guidelines for evaluation and validation of OO
metrics motivate us to develop a new evaluation criterion
which includes all the features required for evaluation of the
OO metrics. For achieving this goal, first we have analyzed
the available validation and evaluation criteria, extracted their
important features, suggested additions/modifications (if
required), then presented them in a formal way. The validity
of the proposed model is evaluated by applying eleven
different well-known OO metrics.

OO metrics are measurement tools to achieve quality

in software process and product. However, in general,
software measurement has not yet achieved the needed degree
of maturity [9] and it needs standardization [16]. Existing
proposals, such as Weyuker’s properties [11] and the
application of measurement theory in software engineering [2,
4, 6, 17, 18], are a topic of discussion [19,20,21]. We have
also worked in the related area of software measurement and
presented several papers. We have presented a paper on the

usefulness of Weyuker’s properties for procedural languages
[24]. In another work, we have analysed how Weyuker’s
properties are used by the developers of three OO metrics [25].
We have previously performed experimentations to analyze
the current situation of standard measurement activities in
small and medium software companies [26]. We have also
performed a study on the situation of the empirical validation
of software complexity measures in practice, and we
accordingly proposed a model [27]. The applicability of
measurement theory on software complexity measures is also
investigated in one of our previous works [22]. In the present
paper we analyze the present practices used for evaluation and
validation of OO metrics, and we accordingly present a model
for evaluating OO metrics. We also propose a framework for
evaluating software complexity measures but, the present
paper is specifically for OO metrics, since OO languages do
not share the same features with procedural languages.

2. Literature survey

Most of the software maintainability assessment
model have been proposed and compared with other molds.
Zhuo F. et al. (1993) proposed maintainability index (MI) that
determine the maintainability of software system based upon
the status of the source code, which show high correlation
between assessments automated model and some expert
evaluation [28]. Binkley A. et al. (1998) collect the data of
maintenance for the development of project written in any
language like C, C++, COBOL etc and produce a level of
interaction between modules, which show low coupling were
subjected for fewer maintenance effort and fewer maintenance
fault and failures [29].

Muthana S. et. al. (2000) proposed that the linear

prediction model which is being evaluated by some industrial
software system to estimate the maintainability of large
system and to identified some fault prone models to define
impact rate, effort and error rate [30]. Kiewkanya M. et al.
(2004) prescribed that object-oriented (OO) is ease of
maintenance to provide better understandability and
modifiability. It describes three technique discriminant
techniques (correlation between maintainability and structural
complexity), weighted score level technique (combination of
understanding and modifiability) and weighted predicate level
technology (combination of predicate understandability and
modifiability). Rizvi S.W.A. et al. (2010) propose a
MEMOOD model, which provide an opportunity to improve
the maintainability or understandability of class diagram and
consequently the maintainability in final software [31].
Gautam C. et al. (2011), describe that the compound

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 77

MEMOOD model is better the MEMOOD model to determine
the maintainability of class diagram in terms of their
understandability, modifiability, scalability and level of
complexity [32].

Abreu et al. [33] provides a new classification

framework for the TAPROOT. This framework was defined
with the other two independent vectors these are category and
granularity. Six categories of Object-Oriented metrics were
defined are design metrics, complexity metrics, size metrics,
quality metrics, productivity metrics and reuse metrics and
also proposed three Levels of granularity are software, class
and methods but no empirical/theoretical base for the metrics
was provided.

M.Alshayeb et al. [34] have given two iterative

procedures for the pragmatic study of OO metrics. They
include the short-cycled agile process and the long cycled
framework evolution process. By bserving the results, it can
be seen that the design efforts and source lines of code added,
changed, and deleted were triumphantly predicted by object-
oriented metrics in short-cycled agile process where as in the
case long-cycled framework process the same features were
not successfully predicted by it. This has shown that the
design and implementation changes during development
iterations can be predicted by object-oriented Metrics, but the
same cannot be the case with long-term development of an
established system.

3. Classification of Object-Oriented Metrics:

3.1 Metrics for Object-Oriented Software Engineering

(MOOSE):

Chidamber and Kemerer (CK) et al. [35] proposed some
metrics that have generated a significant amount of interest
and are currently the most well known object-oriented suite of
measurements for Object-Oriented software. The CK metrics
suite consists of six metrics that assess different characteristics
of the object-oriented design are-

(i)Weighted Methods per Class (WMC): This measures the
sum of complexity of the methods in a class. A predictor of
the time and effort required to develop and maintain a class
we can use the number of methods and the complexity of each
method. A large number of methods in a class may have a
potentially larger impact on the children of a class since the
methods in the parent will be inherited by the child. Also, the
complexity of the class may be calculated by the cyclomatic
complexity of the methods. The high value of WMC indicates
that the class is more complex as compare to the low values.
(ii)Depth of Inheritance Tree (DIT): DIT metric is used to
find the length of the maximum path from the root node to the
end node of the tree. The following figure shows that the
value of the DIT from a simple hierarchy. DIT represents the
complexity and the behavior of a class, and the complexity of
design of a class and potential reuse. Thus it can be hard to

understand a system with many inheritance layers. On the
other hand, a large DIT value indicates that many methods
might be reused. A deeper class hierarchy indicates that the
more methods was used or inherited through which this
making more complex to predict the behavior of the class and
the deeper tree indicates that there is high complexity in the
design because all of the facts contained more methods and
class are involved. A deep hierarchy of the class may indicates
a possibility of the reusing an inherited methods.

(iii)Number of children (NOC): According to Chidamber
and Kemerer, the Number of Children (NOC) metric may be
defined for the immediate sub class coordinated by the class in
the form of class hierarchy[38,39]. These points are come out
as NOC is used to measure that “How many subclasses are
going to inherit the methods of the parent class”. The greater
the number of children, the greater the potential for reuse,
since inheritance is a form of reuse. The greater the number of
children, the greater the likelihood of improper abstraction of
the parent class. The number of children also gave an idea of
the potential influence for the class which may be design.

(iv)Coupling between Objects (CBO): CBO is used to count
the number of the class to which the specific class is coupled.
The rich coupling decrease the modularity of the class making
it less attractive for reusing the class and more high coupled
class is more sensitive to change in other part of the design
through which the maintenance is so much difficult in the
coupling of classes. The coupling Between Object Classes
(CBO) metric is defined as “CBO for a class is a count of the
number of non-inheritance related couples with classes”. It
claimed that the unit of “class” used in this metric is difficult
to justify, and suggested different forms of class coupling:
inheritance, abstract data type and message passing which are
available in object-oriented programming.

(v)Response for class (RFC): The response set of a class
(RFC) is defined as set of methods that can be executed in
response and messages received a message by the object of
that class. Larger value also complicated the testing and
debugging of the object through which, it requires the tester to
have more knowledge of the functionality. The larger RFC
value takes more complex is class is a worst case scenario-
value for RFC also helps the estimating the time needed for
time needed for testing the class.

(vi)Lack of Cohesion in Methods (LCOM): This metric is
used to count the number of disjoints methods pairs minus the
number of similar method pairs used. The disjoint methods
have no common instance variables in the methods, while the
similar methods have at least one common instance variable.
It is used to measuring the pairs of methods within a class
using the same instance variable. Since cohesiveness within a
class increases encapsulation it is desirable and due to lack of
cohesion may imply that the class is split in to more than two
or more sub classes. Low cohesion in methods increase the

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 78

complexity, when it increases the error proneness during the
development is so increasing.

3. 2 Extended Metrics For Object-Oriented Software
Engineering (EMOOSE):
W.Li et al. [40] proposed this metrics of the MOOSE model.
They may be described as-
(i)Message Pass Coupling (MPC): It means that the number
of message that can be sent by the class operations.

(ii)Data Abstraction Coupling (DAC): It is used to count the
number of classes which an aggregated to current class and
also defined the data abstraction coupling.

(iii)Number of Methods (NOM): It is used to count the
number of operations that are local to the class i.e. only those
class operation which can give the number of methods to
measure it.

(iv)Size1:- It is used to find the number of line of code.

(v)Size2:-It is used to count the number of local attributes &
the number of operation defined in the class.

3.3 Metrics for Object-Oriented Design (MOOD):

F.B. Abreu et al. [41] defined MOOD (Metrics for

Object-Oriented Design) metrics. MOOD refers a structural
model of the OO paradigm like encapsulation as (MHF, AHF),
inheritance (MIF, AIF), polymorphism (POF), and message
passing (COF). Each of the metrics was expressed to measure
where the numerator defines the actual use of any one of the
feature for a particular design [42]. In MOOD metrics model,
there are two main features are methods and attributes.
Attributes are used to represent the status of object in the
system and methods are used to maintained or modifying
several kinds of status of the objects [43]. These metrics are
defined as:

(i)Method Hiding Factor (MHF): MHF is defined as the
ratio of the sum of the invisibilities of all methods defined in
all classes to the total number of methods defined in the
system under consideration. The invisibility of a method is the
percentage of the total classes from which this method is not
visible.
(ii)Attribute Hiding Factor (AHF): AHF is defined as the
ratio of the sum of the invisibilities of all attributes defined in
all classes to the total number of attributes defined in the
system under consideration.

(iii)Method Inheritance Factor (MIF): MIF is defined as
the ratio of the sum of the inherited methods in all classes of
the system under consideration to the total number of
available methods (locally defined plus inherited) for all
classes.

(iv)Attribute Inheritance Factor (AIF): AIF is defined as
the ratio of the sum of inherited attributes in all classes of the
system under consideration to the total number of available
attributes (locally defined plus inherited) for all classes.

(v)Polymorphism Factor (PF): PF is defined as the ratio of
the actual number of possible different polymorphic situation.
MIF & AIF are used to measure the inheritance of the class &
also provide the similarity into the classes. CF is used to
measure the coupling between the classes. the coupling are of
two types static & dynamic coupling, due to which is increase
the complexity of the class & reduce the encapsulation &
potential reuse that provide better maintainability. Software
developers for the object-oriented system always avoid the
high coupling factor. Polymorphism potential of the class are
used to measure the polymorphism in the particular class &
also arise from inheritance.

3.4 Goal Question Metrics (GQM):

V. L. Basili [43] developed GQM approach. This
approach was originally defined for evaluating defects for a
set of projects in the NASA Goddard Space Flight Center
environment. He has also provided the set of sequence which
are helpful for the designers. The goal of GQM is to express
the meaning of the templates which covers purpose,
perspective and environment; a set of guidelines also proposed
for driving question and metrics. It provides a framework
involving three steps:
(i) List major goals of the development or maintenance project.
(ii) Derive from each goal the questions that must be answered
to determine if the goals are being met.
(ii) Decide what must be measured in order to be able to
answer the questions adequately.
Goal (Conceptual level): A goal is defined for an object, for
a variety of reasons, with respect to various models of quality,
from various points of view, relative to a particular
environment. Objects of measurement are products, processes
and resources.

Question (Operational level): A set of questions is used to
characterize the way the assessment/achievement of a specific
goal is going to be performed based on some characterizing
model.

Metric (Quantitative level): A set of data is associated with
every question in order to answer it in a quantitative way. This
data can be objectives and subjective, if they depend only on
the objects that can be measured and not on the viewport from
which they may be taken. For example, number of versions of
a document, staff hours spent on a task, size of a program.
3.5 Quality Model for Object-Oriented Design (QMOOD):

The QMOOD [44] is a comprehensive quality model
that establishes a clearly defined and empirically validated
model to assess object-oriented design quality attributes such
as understandability and reusability, and relates it through
mathematical formulas, with structural object-oriented design
properties such as encapsulation and coupling. The QMOOD

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 79

model consists of six equations that establish relationship
between six object-oriented design quality attributes
(reusability, flexibility, understandability, functionality,
extendibility, and effectiveness) and eleven design properties.

QMOOD Metrics [25]

The whole description for QMOOD can be get from the
Bansiya’s thesis through which, The QMOOD metrics can
further classified into two measures are:

System Measures: System measures describe such metrics are
DSC (Design Size in Metrics), NOH (Number of Hierarchies),
NIC (Number of Independent classes), NSI (Number of Single
Inheritance), NMI (Number of multiple Inheritance), NNC
(Number of Internal Classes), NAC (Number of Abstract
Classes), NLC (Number of Leaf Classes), ADI (Average
Depth of Inheritance), AWI (Average Width of Classes),
ANA (Average Number of Ancestors).
Class Measures: Class measure metrics are those metrics
which can define some metrics are MFM (Measure of
Functional Modularity), MFA (Measure of Functional
Abstraction), MAA (Measure of Attribute Abstraction), MAT
(Measure of Abstraction), MOA (Measure of Aggregation),
MOS (Measure of Association), MRM (Modeled Relationship
Measure), DAM (Data Access Metrics), OAM (Operation
Access Metrics), MAM (Member Access Metrics), DOI
(Depth of Inheritance), NOC (Number of Children), NOA
(Number of Ancestor), NOM (Number of Methods), CIS
(Class Interface Size), NOI (Number of Inline Method), NOP
(Number of Polymorphic Method), NOO (Number of
Overloaded Operators), NPT (Number of Unique Parameter
Types), NPM (Number of Parameter per Method), NOA
(Number of Attributes), NAD (Number of Abstract Data

Types), NRA (Number of Reference Attributes), NPA
(Number of Public Attributes), CSB (Class Size in Bytes),
CSM (Class Size in Metrics), CAM (Cohesion Among
Methods of class), DCC (Direct Class Coupling), MCC
(Maximum Class Coupling), DAC (Direct Attribute based
Coupling), MAC (Maximum Attribute based Coupling), DPC
(Directed Parameter based Coupling), MPC (Maximum
Parameter based Coupling), VOM (Virtual ability Of Method),
CEC (Class Entropy Complexity), CCN (Class Complexity
based on Data), CCP (Class Complexity based on method
Parameter), CCM (Class Complexity based on Members).

3.5 LI W. METRICS

Li et al. [45] proposed six metrics are Number of
Ancestor Classes (NAC), Number of Local Methods (NLM),
Class Method Complexity (CMC), Number of Descendent
Classes (NDC), Coupling Through Abstract data type (CTA),
and Coupling through Message Passing (CTM).

(i)Number of Ancestor Classes (NAC): The Number of
Ancestor classes (NAC) metric proposed as an alternative to
the DIT metric measures the total number of ancestor classes
from which a class inherits in the class inheritance hierarchy.
The theoretical basis and viewpoints both are same as the DIT
metric. In this the unit for the NAC metric is “class”, justified
that because the attribute that the NAC metric captures is the
number of other classes’ environments from which the class
inherits.

(ii)Number of Local Methods (NLM): The Number of
Local Methods metric (NLM) is defined as the number of the
local methods defined in a class which are accessible outside
the class. It measures the attributes of a class that WMC
metric intends to capture. The theoretical basis and viewpoints
are different from the WMC metric. The theoretical basis
describes the attribute of a class that the NLM metric captures.
This attribute is for the usage of the class in an object-oriented
design because it indicates the size of a class’s local interface
through which other classes can use the class. They stated
three viewpoints for NLM metric as following:
1) The NLM metric is directly linked to a programmer’s effort
when a class is reused in an Object-Oriented design. More the
local methods in a class, the more effort is required to
comprehend the class behavior.
2) The larger the local interface of a class, the more effort is
needed to design, implement, test, and maintain the class.
3) The larger the local interface of a class, the more influence
the class has on its descendent classes.

(iii)Class Method Complexity (CMC): The Class Method
Complexity metric is defined as the summation of the internal
structural complexity of all local methods. The CMC metric’s
theoretical basis and viewpoints are significantly different
from WMC metric. The NLM and CMC metrics are
fundamentally different as they capture two independent
attributes of a class. These two metrics affect the effort
required to design, implement, test and maintain a class.

Class

Number of attributes

 Number of methods

It show the number of
super class in terms of
ration of sub class

Number of
attributes per

If shows number of
classes in terms of ratio
of super class

It calculates the average
of depth of inheritance
for the class in the system

Number of public
methods in a class

Number of attributes
defined in a class in
terms of ratio of private
and protected attributes

Reuse

Coupling

Inheritance

Informatio
n Hiding

Number of
modules

Reuse Ration

Specification
ratio

Avg. No. of
Ancestors
 Ancestors

Class Interface
Size

Data Access
Metrics

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 80

(iv)Number of Descendent Classes (NDC): The Number of
Descendent Classes (NDC) metric as an alternative to NOC is
defined as the total number of descendent classes (subclass) of
a class. The stated theoretical basis and viewpoints indicate
that NOC metric measures the scope of influence of the class
on its sub classes because of inheritance. Li claimed that the
NDC metric captures the classes attribute better than NOC.

(v)Coupling through Abstract Data Type (CTA): The
Coupling through Abstract Data Type (CTA) is defined as the
total number of classes that are used as abstract data types in
the data-attribute declaration of a class. Two classes are
coupled when one class uses the other class as an abstract data
type [45]. The theoretical view was that the CTA metric
relates to the notion of class coupling through the use of
abstract data types. This metric gives the scope of how many
other classes’ services a class needs in order to provide its
own service to others.

(vi)Coupling through Message Passing (CTM): The
Coupling through Message Passing (CTM) defined as the
number of different messages sent out from a class to other
classes excluding the messages sent to the objects created as
local objects in the local methods of the class. Two classes can
be coupled because one class sends a message to an object of
another class, without involving the two classes through
inheritance or abstract data type [Li., 98]. Theoretical view
given was that the CTM metric relates to the notion of
message passing in object-oriented programming. The metric
gives an indication of how many methods of other classes are
needed to fulfill the class’ own functionality.

3.6 SATC’s Metrics
Rosenberg Linda [46] proposed to select OO metrics

that supports the goal of measuring the code, quality, result
and they proposed many object-oriented metrics due to lack of
theoretical basis and that can be validated. These metrics may
be used to evaluate the OO concepts like methods, coupling
and inheritance and mostly focus on both of the internal and
external efficiency measures of the psychological complexity
factors that affect the ability of the programmer. It proposed
three traditional metrics and six new metrics for the object-
oriented system metrics-
Traditional Metrics

(i)Cyclomatic Complexity (CC): Cyclomatic Complexity is
used to measure the complexity of an algorithm in a method
of class. Cyclomatic Complexity of methods can be combined
with other methods to measure the complexity of the class.
Generally, this is only used for the evaluation of quality
attribute complexity.

(ii)Line of Code: It is a method used to evaluate the ease of
understandability of the code by the developer and the
maintainer. It can easily be counted by the counting the

number of lines for the code and so on. Generally, used to
measure the reusability and maintainability.

New OO Metrics

The six new OO metrics are may be discussed as:

(i)Weight Method per Class (WMC): It is used to count the
methods implemented within a class. The number of methods
and complexities involved as predictors, how many time and
effort is required to develop and maintain the class.

(ii)Response for a Class (RFC): It is used to the combination
of the complexity of a class through the number of methods
and the communication of methods with other classes. This is
used to evaluate the understandability and testability.

(iii)Lack of Cohesion of Method (LCOM): Cohesion is a
degree of methods through which all the methods of the class
are inter-related with one another and provide a well bounded
behavior. It also measures the degree of similarity of methods
by data inputs variables and attributes. Generally, ii is used to
evaluate the efficiency and reusability.

(iv)Depth of Inheritance Tree (DIT): Inheritance is a
relationship between the class that enables the programmer to
use previously defined object including the operators and
variables. It also helps to find out the inheritance depth of the
tree from current node to the ancestor node. It is used to
evaluate the reusability, efficiency, understandability and
testability.

(v)Number of Children (NOC): This is used to measure the
subclass subordinate to a class in the hierarchy. Greater the
number of children means greater reusability and inheritance
i.e. in the form of reuse. Generally, it is used to measure
efficiency, testability and reusability.
SATC focused on some selected criteria for the OO
metrics as:
(i) Efficiency of constructor design to decrease architecture
complexity.
(ii) Specification of design and enhancement in testing
structure
(iii) Increase capacity of psychological complexity.

4. Conclusion and future aspect:

This paper introduces the basic metric suite for object-oriented
design. The need for such metrics is particularly acute when
an organization is adopting a new technology for which
established practices have yet to be developed. It is unlikely
that universally valid object-oriented quality measures and
models could be devised, so that they would suit for all
languages in all development environments and for different
kind of application domains. Therefore measures and models
should be investigated and validated locally in each studied
environment. It should be also kept in mind that metrics are

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 81

only guidelines and not rules. They are guidelines that give an
indication of the progress that a project has made and the
quality of design.

References
[1] Fenton N. (1993) New Software Quality Metrics
Methodology Standards Fills Measurement Needs’, IEEE
Computer, April, pp. 105-106
[2] Briand L. C., Morasca S., Basili V. R. (1996) Property-
based Software Engineering Measurement, IEEE Transactions
on Software Engineering, 22(1), pp. 68-86
[3] Kaner C. (2004) Software Engineering Metrics: What do
They Measure and How Do We Know?’ In Proc. 10th Int.
Software Metrics Symposium, Metrics, pp. 1-10
[4] Fenton N. (1994) Software Measurement: A Necessary
Scientific Basis’, IEEE Transactions on Software Engineering,
20(3), pp. 199-206
[5] IEEE Computer Society (1998) Standard for Software
Quality Metrics Methodology. Revision IEEE Standard, pp.
1061-1998
[6] Kitchenham B., Pfleeger S. L., Fenton N. (1995) Towards
a Framework for Software Measurement Validation. IEEE
Transactions on Software Engineering, 21(12), pp. 929-943
[7] Morasca S. (2003) Foundations of a Weak Measurement-
Theoretic Approach to Software Measurement. Lecturer Notes
in Computer Science LNCS 2621, pp. 200-215
[8] Wang Y. (2003) The Measurement Theory for Software
Engineering. In Proc. Canadian Conference on Electrical and
Computer Engineering, pp. 1321-1324
[9] Zuse H. (1991): Software Complexity Measures and
Methods, Walter de Gruyter, Berline
[10] Zuse, H. (1992) Properties of Software Measures.
Software Quality Journal, 1, pp. 225- 260
[11] Weyuker, E. J. (1988) Evaluating software complexity
measure. IEEE Transaction on Software Complexity Measure,
14(9) pp. 1357-1365
[12] Marinescu, R. (2005) Measurement and Quality in Object
–oriented design, In Proceedings 21st IEEE International
Conference on Software Maintenance, pp. 701-704
[13] Reißing R. (2001) Towards a Model for Object-oriented
Design Measurement, Proceedings of International ECOOP
Workshop on Quantitative Approaches in Object-oriented
Software Engineering, pp. 71-84
[14] Rosenberg L. H. (1995) Software Quality Metrics for OO
System environment. Technical report, SATC-TR-1001,
NASA
[15] Zuse, H (1996) Foundations of Object-oriented Software
Measures. In Proceedings of the 3rd International Symposium
on Software Metrics: From Measurement to Empirical Results
(METRICS '96) IEEE Computer Society, Washington, DC,
USA, pp. 75-84
[16] Misra S. (2010) An Analysis of Weyuker’s Properties
and Measurement Theory, Proc. Indian National Science
Academy, 76(2), pp. 55-66
[17] Zuse, H. (1998) A Framework of Software Measurement,
Walter de Gruyter, Berline[18] Morasca S (2001) Software
Measurement, Handbook of Software Engineering and

Knowledge Engineering, 2001, World Scientific Pub. Co. pp.
239-276
[19] Gursaran, Ray G. (2001) On the Applicability of
Weyuker Property Nine to OO Structural Inheritance
Complexity Metrics, IEEE Trans. Software Eng., 27(4) pp.
361-364
[20] Sharma N., Joshi P., Joshi R. K. (2006) Applicability of
Weyuker’s Property 9 to OO Metrics” IEEE Transactions on
Software Engineering, 32(3) pp. 209-211
[21] Zhang L., Xie, D. (2002) Comments on ‘On the
Applicability of Weyuker Property Nine to OO Structural
Inheritance Complexity Metrics. IEEE Trans. Software Eng.,
28(5) pp. 526-527
[22] Misra S., Kilic, H. (2006) Measurement Theory and
validation Criteria for Software Complexity Measure, ACM
SIGSOFT Software Engineering Notes, 31(6), pp. 1-3
[23] Poels G., Dedene G. (1997) Comments on Property-
based Software Engineering Measurement: Refining the
Additivity Properties, IEEE Trans. Softw. Eng. 23(3) pp. 190-
195
[24] Misra. S. (2006) Modified Weyuker’s Properties, In
Proceedings of IEEE ICCI 2006, Bejing, China, pp. 242-247
[25] Misra S., Akman I. (2008) Applicability of Weyuker’s
Properties on OO Metrics: Some Misunderstandings, Journal
of Computer and Information Sciences, 5(1) pp. 17-24
[26] Tolga O. P., Misra S. (2011) Software Measurement
Activities in Small and Medium Enterprises: An Empirical
Assessment’, In press, Acta Polytechnica, Hungarica, 4
[27] Misra S. (2011) An Approach for Empirical Validation
Process of Software Complexity Measures, In press, Acta
Polytechnica, Hungarica. Issue 4
[28] Zhuo F., Lowther B., Oman P. and Hagemeister Jack.,
“Constructing and testing software maintainability assesement
models”, IEEE Computer Society, 1993, pp 61-70.
[29] Binkley A. and Schach S., “Validation of the coupling
dependency metrics as a predictor of run time failures and
maintainability measures”, Proc. 20th International conference
of software engineering, pp. 452-455, 1998.
[30] Muthanna S., Kontigiannis K., Ponnambalam K. and
Stacey B.,”A Maintainability Model for industrial Software
System Using Design Level Metrics”, IEEE Computer Society,
2000, pp 248-256.
[31] Rizvi S.W.A. and Khan R.A., “Maintainability
Estimation Model for Object-Oriented Software in Design
Phase (MEMOOD)”,Journal of Computing, Volume 2, Issue 4,
April 2010,
[32] Gautam C., kang S.S., “Comparison and Implementation
of Compound MEMOOD MODEL and MEMOOD MODEL”,
International journal of computer science and information
technologies, pp 2394-2398, 2011.
[33]. B. F. Abreu: “Design metrics for OO software system”,
ECOOP 95, Quantitative Methods Workshop, 1995.
[34]. M. Alshayeb and Li.W.,”An empirical validation of
object-oriented metrics in two different iterationsoftware
processes”, IEEE transactionod Software Engineering, Vol-29,
no-.11, Nov 2003.

 International Journal of Engineering Trends and Technology (IJETT) – Volume 6 number 2- Month 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 82

[35] K. Morris, “Metrics for Object-oriented Software
Development Environments,” Masters Thesis, MIT, 1989.

[36]M. Lorenz, J. Kidd, “OO Software Metrics”, Prentice
Hall, NJ, (1994).

[37] C. Shyam, Kemerer, F. Chris, "A Metrics Suite for
Object- Oriented Design" M.I.T. Sloan School of
Management, pp. 53-315, 1993.
[38] C. Shyam and C. F. Kemerer, “Towards a Metrics Suite
for OO Design”, Proceeding on OO Programming Systems,
Languages and Applications Conference (OOPSLA’91),
ACM, Vol. 26, Issue 11, Nov 1991, pp. 197-211.
[39] C. Shyam and C. F. Kemerer, “A Metrics Suite for OO
Design”, IEEE Transactions on Software Engineering, Vol.
20, No. 6, June 1994, pp. 476-493.
[40] W. Li, Sallie, Henry “Metrics for Object-Oriented
system”, Transactions on Software Engineering, 1995.

[41] B. F. Abreu: “Design metrics for OO software system”,
ECOOP’95, Quantitative Methods Workshop, 1995.
[42] N. Fenton et al, “Software metrices: a rigorous and
practical approach”, International Thomson computer press
1996.
[43] V.L.Basili, L. Briand and W. L. Melo, “Avalidation of
object-oriented Metrics as Quality Indicators”, IEEE
Transaction Software Engineering. Vol. 22, No. 10, 1996, pp.
751-761.
[44] J. Bansiya, C. G. Davis, “A Hierarchical Model for
Object-Oriented Design Quality Assessment”, IEEE
Transactions on Software Engineering, 28, (1), (2002), 4–17.
[45] Li W., “Another Metric Suite for Object-oriented
Programming”, The Journal of System and Software, Vol. 44,
Issue 2, December 1998, pp. 155-162.
[46] Rosenberg Linda, “Software Quality Metrics for OO
System Environments”, A report of SATC’s research on OO
metrics.

