
 International Journal of Engineering Trends and Technology (IJETT) – Volume 7 Number 2- Jan 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 75

High Speed Matrix Multiplication Implementation Using Field
Programmable Gate Array

Abstract
Matrix operations are commonly used in almost all areas of
scientific research. Matrix multiplication has significant
application in the areas of graph theory, numerical
algorithms, signal processing, and digital control. Matrix
multiplication is a computationally intensive problem,
especially the design and efficient implementation on an
FPGA where resources are very limited, has been more
demanding. In this paper, we implement an architecture that
is capable of handling matrices of variable sizes. This design
minimize the gate count, area, improvements in latency,
computational time, throughput for performing matrix
multiplication and reduce the number of multiplication and
additions hardware required to get the matrices multiplied on
commercially available FPGA devices. The hardware design
in our work to multiply two numbers is use the multiplier unit
used for multiplying two numbers in a single clock cycle. This
increases the speed of the computation. The system is simple
to implement and is highly scalable, the system can be scaled
with simple repetition of the hardware and with no changes in
the algorithm. Our approach converts matrix multiplication
in programmable processors into a computation channel,
when increasing the processing throughput, the output noise
(error) increases due to computational errors caused by
exceeding the machine-precision limitations.

Keywords—Multiplier, Xilinx Software, Vhdl Language,
FPGA, Latency.

Introduction

Matrix multiplication is frequently used operation in a wide
variety of graphics, image processing, robotics, and signal
processing applications. The increases in the density and speed of
FPGAs make them attractive as flexible and high-speed
alternatives to DSPs and ASICs. It is a highly procedure oriented
computation, there is only one way to multiply two matrices and
it involves lots of multiplications and additions. But the simple
part of matrix multiplication is that the evaluation of elements of
the resultant elements can be done independent of the other, these
points to distributed memory approach.

In this paper, we propose an architecture that is capable of
handling matrices of variable sizes our designs minimize the gate
count, area, improvements in latency, computational time, and
throughput for performing matrix multiplication and reduces the
number of multiplication and additions hardware required to get
the matrices multiplied on commercially available FPGA devices.
The hardware design in our work to multiply two numbers is use
the multiplier unit used for multiplying two numbers in a single
clock cycle. This increases the speed of the computation. The
system is simple to implement and is highly scalable, the system
can be scaled with simple repetition of the hardware and with no
changes in the algorithm.

Methodology adopted

Our approach converts matrix multiplication in programmable
processors into a computation channel, when increasing the
processing throughput, the output noise (error) increases due to
computational errors caused by exceeding the machine-precision
limitations. Let n = qp, where n is the number of rows of matrix
A, p is the number of processors, and q. 1 is an integer.
Matrix A has been partitioned into p regions with each region
containing q rows and being assigned to the local-memory (LM)
of each processor. Matrix B is made available to all the
processors. The data-partitioning scheme is similar to the shared-
memory approach. The differences are the extra time required for
data distribution/collection via message passing and the fact that
all computations are done in the LM of each processor with no
memory-access conflict involved.
 In this implementation, it is assumed that only processor 0 has
access to matrix A and B. Processor 0 acts as a host processor
responsible for broadcasting the needed data to each of the other
processors and waiting for the vector results from the other
processors.[1][2]
These methods have focused on using complex PE’s to both store
and transfer intermediate results throughout the processing array.
While this improves the latency of the system, it is not delay or
resource optimal due to data sharing between the PE’s. To the

Shriyashi Jain
M.TECH (DC)

SSSIST, Sehore, M.P.,India

Neeraj Kumar
Department of Electronics and

Communication,
SSSIST, Sehore, M.P. India

Jaikaran Singh
Department of Electronics and

Communication,
SSSIST, Sehore, M.P. India

 Mukesh Tiwari
Department of Electronics and

Communication,
SSSIST, Sehore, M.P. India

 International Journal of Engineering Trends and Technology (IJETT) – Volume 7 Number 2- Jan 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 76

best of our knowledge, our method is the first to perform matrix
multiplication with PE’s that operate in isolation from each other.
 The unit has following main blocks

1. Memory blocks
2. Control unit
3. Matrix arrangement of multiplier units
4. Adders and counters

 The architecture for the matrix multiplier is as shown below,

In order to optimize FPGA architecture resource use, the data
from input matrices A and B should be re-used. Optimal data re-
use occurs when data is read from memory for matrices A and B
exactly once. By simultaneously reading one column of matrix A
and one row of matrix B, and performing all multiply operations
based on those values before additional memory reads, optimal
data re-use occurs. Data read in this sequence allows one partial
product term of every element in output matrix C to be computed
per clock cycle.

Design Implementation
The block diagram of our design consists of three memory blocks.
The matrix A and Matrix B is stored in memory 1 and memory2
respectively depends on the address line. This matix bytes are use
for matrix multiplication. Here we can use distributed memory
approach. In a distributed-memory system, each processor has
only local memory, and information is exchanged as messages
between processors. In contrast, the processors in a shared-
memory system share a common memory. Although data is easily
accessible to any processor.

The latency is defined as the time between reading the first
elements from the input matrices, A and B, and writing the first
element C to the result matrix. The total computation time is the

time elapsed between reading the first elements from the input
matrices, A and B, and writing the final result matrix element C to
memory. The PE structure consists of one input each from matrix
A and B, a multiplier, adder and a result FIFO. Tthe multiplier
latency is denoted as Lm,adder latency as La, processing element
latency as Lpe and computational time of matrix mukltiplier is
Tm. The inputs from matrices A and B, containing one byte each
per clock cycle, are implemented using dedicated routes from the
Block Ram memory associated with the multiplier.
By having dedicated memory connections for each PE,
multiplexing between several inputs sources is not required.
During the computation of output matrix element Cij the product
term Aik · Bki must be available at the output of the adder during
the same clock cycle as the product term Ai(k+1). B(k+1)i is
available from the multiplier. The multipliers give the multiplied
output at the end of the ON time of the current clock cycle, these
outputs have to be added to get the resultant element. For
handling a 3x3 matrix the multiplier outputs have to be added
column wise and we get one resultant element at the end of
addition. Our design requires only one processing element
because our method utilizes the built-in hardware FIFOs in the
FPGA, and also because we utilize the same Block Ram for the
local PE memory and for storing the result matrix C. In the
multiplication of two NXN matrices the evaluation of each
resultant element results in N number of multiplications and N-1
additions. If we were to handle matrices of order with a maximum
order of NxN, we require the N number of multiplications that go
into the evaluation of the elements. This is achieved by setting up
the counter , so that on every evaluation of partial sum it is stored
into the register The counter is decremented every clock cycle
and if the value is not zero then the enable signal for the feedback
buffer is high, hence the partial sum is added along with fresh set
inputs. If the counter decrements to zero then all the N
multiplications have been taken into account and hence the
output buffer is enabled while the feedback is disabled, for the
next clock cycle both the buffers are disabled so that the partial
sum of next number is loaded into the register. We have taken a
separate counter in this block for simplicity of understanding, the
control of the buffers can easily be done by the control circuit
itself.

 Enter the data to be process in distributed memory as per address.
 Read the individual row elements of first matrix and that of

column for second matrix

PROCESS(clk)
BEGIN
IF (clk = '1' AND clk'EVENT) THEN
 IF (we = '1') THEN
 mem1(conv_integer(addr1))<= din1;
mem2(conv_integer(addr2))<= din2;
 ELSE
 dout1 <= mem1(conv_integer(addr1));
dout2 <= mem2(conv_integer(addr2));
 END IF;

 International Journal of Engineering Trends and Technology (IJETT) – Volume 7 Number 2- Jan 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 77

 END IF;
END PROCESS;

 Split the design in sub modules
 Multiply the row and column elements
 Accumulate the multiplier outputs and added results is

store in distributed memory
 Interconnecting all the modules to complete the circuit.

The various modules required for are called from the
library and then are interconnected as required.

 Calculate the latency and throughput

The memory hierarchy consists of input matrices A and B, and
output Matrix C FIFO storage. Each matrix is partitioned into m
Block Ram banks. This structure has one bank of A and B feeding
one PE array row and column respectively [3][4.

Result Analysis
Row and column counter is in used to count the number of input
data that is read from the memory which is given to matrix
arrangement logic. To read/write a data from the memory an
address location is sent. Hence the data will become available at
the each clock cycle. As the data are retrieved from the Block
RAM start from the memory location of zero, for every nine
clock-cycles the retrieved data is sent to the multiplier.

Fig.1 Matrix of image pixel data read in memory when we=0

Fig.2 Matrix of image pixel data write in memory when we=1

Fig 3 Data addition and multiplication of PE
Data can be write and read according the address given to
memory1, memory2, memory3 as shown in our block diagram.

Fig 4 Matrix multiplication and matrix arrangement
The latency is defined as the time between reading the first
elements from the input matrices, A and B, and writing the first
element C to the result matrix. The total computation time is the
time elapsed between reading the first elements from the input
matrices, A and B, and writing the final result matrix element C to
memory.

Conclusion
The multiplier unit of the matrix multiplier described in this paper
has been implemented by us. This being the heart of the entire
system and the key block to decide on the operating clock
frequency, we can derive certain conclusions the results observed.
The multiplier unit has been designed to multiply two numbers of
sixteen bit each. The fig 3 and fig 4 shows the PE modules
addition and multiplication simulations. The code for the circuit is
written in VHDL using the tool XILINX ISE 7.1i version. In this
paper, we considered two different examples of matrix multiplier
architecture where speed is the main constraint. The performance
is evaluated by computing its execution time on simulator. The
fig1 and fig2 shows the matrix formation. The latency time
between reading the first elements from the input matrices, A and
B, and writing the first element C to the result matrix calculate is
115ns. The total computation time is the time elapsed between
reading the first elements from the input matrices, A and B, and
writing the final result matrix element C to memory is calculus
1600ns. Hardware implementation results demonstrate that it can

 International Journal of Engineering Trends and Technology (IJETT) – Volume 7 Number 2- Jan 2014

 ISSN: 2231-5381 http://www.ijettjournal.org Page 78

provide a throughput improved frames per second which is
sufficient for many image and video processing applications.
Finally, we conclude that for multiplication of large matrices,
memory based architecture is quite efficient whereas, for small
and medium sized matrix multiplication, systolic array techniques
prove to be quite efficient as demonstrated by the implementation
results..
References
[1] Shu-Qing Li, Chi Hou Chan, Leung Tsan "Parallel Implementation of
the Sparse-Matrix/Canonical Grid Method for the Analysis of Two-
Dimensional Random Rough Surfaces (Three-Dimensional Scattering
Problem) on a Beowulf System" IEEE Transactions On Geoscience And
Remote Sensing, Vol. 38, No. 4, July 2000

[2] Nan Zhang "A Novel Parallel Scan for Multicore Processors and Its
Application in Sparse Matrix-Vector Multiplication" IEEE Transactions
On Parallel And Distributed Systems, Vol. 23, No. 3, March 2012

[3] Bahram Hamraz, Nicholas HM Caldwell, and P. John Clarkson "A
Matrix-Calculation-Based Algorithm for Numerical Change Propagation
Analysis" IEEE Transactions On Engineering Management, Vol. 60, No.
1, February 2013

[4] Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis,
Georgios Goumas, Nectarios Koziris "An Extended Compression Format
for the Optimization of Sparse Matrix-Vector Multiplication" IEEE
Transactions On Parallel And Distributed Systems- 2013

