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 Abstract— In this paper we describes the different 
algorithms for finding pitch markers in speech signal 
and it also explain how EEMD is better than EMD 
algorithm One of the major problem in EMD 
algorithm is mode mixing. EEMD algorithm helps in 
solving mode mixing problem.  EEMD algorithm is a 
noise assisted data analysis (NADA) for extracting 
pitch information for the speech signal. In EEMD 
signal is decomposed into intermediate functions 
called IMF. Using these IMFs, information regarding 
pitch markers can be evaluated. 
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I. INTRODUCTION 

Speech coding is an important element in digital 
communication. Pitch detection and Pitch marking 
are very essential for speech processing. There are 
so many algorithms for pitch detection and pitch 
marking. These algorithms are very important for 
speech processing tasks. But there performance is 
not up to mark for many speech coding and 
synthesis applications. 

The Empirical Mode Decomposition (EMD) has 
been proposed recently [3] as an adaptive time–
frequency data analysis method. It has been proved 
quite versatile in a broad range of applications for 
extracting signals from data generated in noisy 
nonlinear and non stationary processes. As useful 
as EMD proved to be, it still leaves some annoying 
difficulties unresolved. One of the major 
drawbacks of the original EMD is the frequent 
appearance of mode mixing, which is defined as a 
single Intrinsic Mode Function (IMF) either 
consisting of signals of widely disparate scales, or a 
signal of a similar scale residing in different IMF 
components. Mode mixing is often a consequence 

of signal intermittency. As discussed by Huang et 
al.,[1],[9] the intermittence could not only cause 
serious aliasing in the time–frequency distribution, 
but also make the physical meaning of individual 
IMF unclear. To alleviate this drawback, Huang et 
al.[1],[9] proposed the intermittence test, which can 
indeed ameliorate some of the difficulties. 
However, the approach has its own problems: first, 
the intermittence test is based on a subjectively 
selected scale. With this subjective intervention, the 
EMD ceases to be totally adaptive. Second, the 
subjective selection of scales works if there are 
clearly separable and definable timescales in the 
data. In case the scales are not clearly separable but 
mixed over a range continuously, as in the case of 
the majority of natural or man-made signals, the 
intermittence test algorithm with subjectively 
defined timescales often does not work very well. 

To overcome the scale separation problem without 
introducing a subjective intermittence test, a new 
noise-assisted data analysis (NADA) method is 
proposed, the Ensemble EMD (EEMD), which 
defines the true IMF components as the mean of an 
ensemble of trials, each consisting of the signal 
plus a white noise of finite amplitude. 

Section II discusses the different algorithm for 
extracting pitch information Section III defines 
Empirical mode decomposition. Section IV explain 
Ensemble  Emperical mode decomposition. Section 
V describe mode mixing problem. Section VI 
explain steps for EEMD algorithm   Finally section 
VII gives the conclusion. 

II. DIFFERENT ALGORITHM FOR    
EXTRACTING PITCH INFORMATION 

A. In a text-to-speech (TTS) conversion system based 
on the time-domain pitch-synchronous overlap-add 
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(TD-PSOLA) method, accurate estimation of pitch 
periods and pitch marks is necessary for pitch 
modification to assure optimal quality of synthetic 
speech. In general, there are two major tasks in 
pitch marking: pitch detection and location 
determination. In this paper, an adaptable filter, 
which serves as a band pass filter, is proposed for 
use in pitch detection to transform voiced speech 
into a sine-like wave. The pass band of the 
adaptable filter can be adapted based on the 
fundamental frequency. Based on the sine-like 
wave, a peak-valley decision method is proposed to 
determine the appropriate parts (positive part and 
negative part) of voiced speech for use in pitch 
mark estimation. In each pitch period, two possible 
peaks/valleys are searched, and dynamic 
programming is performed to obtain pitch marks. 
Experimental results indicate that our proposed 
method performs very well if correct pitch 
information is estimated. 

B. A speech data base, consisting of eight      
utterances spoken by three males, three females, 
and one child was constructed. Telephone, close 
talking microphone, and wideband recordings were 
made of each of the utterances. For each of the 
utterances in the data base; a "standard" pitch 
contour was semi automatically measured using a 
highly sophisticated interactive pitch detection 
program.[8] The "standard" pitch contour was then 
compared with the pitch contour that was obtained 
from each of the seven programmed pitch 
detectors. The algorithms used in this study were 1) 
a centre clipping, infinite-peak clipping, modified 
autocorrelation method (AUTOC), 2) the cepstral 
method (CEP), 3) the simplified inverse filtering 
technique (SIFT) method, 4) the parallel processing 
time-domain method (PPROC), 5) the data 
reduction method (DARD), 6) a spectral flattening 
linear predictive coding (LPC) method, and 7) the 
average magnitude difference function (AMDF) 
method. 

C. This paper describes a new approach to pitch 
marking. Unlike other approaches that use the same 
combination of features for the whole signal, we 
take into account the signal properties and apply 
different features according to some heuristic. 
Basically we use a special type of energy contour 
for pitch marking. Where the energy information 
turns out to be not suitable as an indicator we resort 
to the fundamental wave computed from a 
contiguous F0 contour in combination with detailed 
voicing information. Our experiments demonstrate 
that the proposed pitch marking algorithm clearly 
improves the quality of synthesised speech 
generated by a concatenative text-to-speech system 
that uses TD-PSOLA for prosodic modifications.  

D. Robust fundamental frequency estimation in 
adverse conditions is important in various speech 
processing applications. In this paper a new pitch 
detection algorithm (PDA) based on the 
autocorrelation of the Hilbert envelope of the LP 
residual is compared to another well established 
algorithm from Goncharoff. A set of  evaluation 
criteria is collected on which the two PDA 
algorithms are compared. In order to evaluate the 
algorithms in adverse conditions a suited reference 
database was constructed. This reference database 
consists of parts of the SPEECON speech database 
where recordings of 60 speakers were selected and 
manually pitch marked. The recordings cover 
several adverse conditions as noise in the car cabin 
and reverberations of office rooms. The evaluation 
highlights the good performance of the new 
algorithm in comparison but shows, that low SNR 
conditions and strong reverberation are still a 
demanding challenge for future pitch detection 
algorithms.  

E. The work by Veldhuis also proposes the use of DP 
to determine the pitch marks. It suggests the use of 
three different consistency requirements for 
selecting candidate pitch markers and also as part 
of the DP cost function. The three proposed 
consistency requirements are the characteristic-
property requirement, the waveform consistency 
requirement and the pitch-consistency requirement. 
The characteristic property requirement demands 
that candidate pitch markers be positioned at either 
higher maxima of the absolute value of the signal 
or at the first zero crossing before the maximum 
positive peak or based on some other signal 
property. On the other hand, the waveform-
consistency requirement tests the similarity 
between signal portions around adjacent pitch 
markers, whereas the pitch-consistency 
requirement selects pitch markers whose distance is 
close to the estimated pitch period. 

F. Goncharoff and Gries present both an algorithm for 
pitch period estimation and another algorithm for 
pitch phase 1 hypotheses using dynamic 
programming (DP). The DP cost function is 
computed with automatically trained artificial 
neural networks (ANNs) which combine the 
outputs of heuristic functions measuring the 
similarity of adjacent period hypotheses. The 
speech signal is normalized to zero mean value, 
and positive zero crossings are determined in the 
sections of speech marked as voiced using external 
frame-based voiced-unvoiced decisions. The zero 
crossings are identified based on heuristic criteria. 
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III THE EMPIRICAL MODE DECOMPOSITON   

This section starts with a brief review of the 
original EMD method. The detailed method can be 
found in the works of Huang et al[1] and Huang et 
al.[2] Different to almost all previous methods of 
data analysis, the EMD method is adaptive, with 
the basis of the decomposition based on and 
derived from the data. In the EMD approach, the 
data x(t) is decomposed in terms of IMFs, , i.e., 

                        

Where  is the residue of data x(t), after n number 
of IMFs are extracted. IMFs are simple oscillatory 
functions with varying amplitude and frequency, 
and hence have the following properties:  

a. Throughout the whole length of a single IMF, 
the number of extrema and the number of zero-
crossings must either be equal or differ at most 
by one (although these numbers could differ 
significantly for the original data set). 

b. At any data location, the mean value of the 
envelope defined by the local maxima and the 
envelope defined by the local minima is zero. 
In practice, the EMD is implemented through a 
sifting process that uses only local extrema. 
From any data , say, the procedure is 
as follows: 

(i) Identify all the local extrema (the 
combination     of both maxima and minima) 
and  connect all these local maxima (minima) 
with a cubic spline as the upper (lower) 
envelope; 

(ii) Obtain the first h component  by taking the 
difference between the data and the local mean 
of the two envelopes; and 

(iii) Treat h as the data and repeat steps (i) and 
(ii) as many times as is required until the 
envelopes are symmetric with respect to zero 
mean under certain criteria. The final h is 
designated as  

 A complete sifting process stops when the residue, 
, becomes a monotonic function from which no 

more IMFs can be extracted. Based on this simple 
description of EMD Wu and Huang [1] have shown 
that, if the data consisted of white noise which has 
scales populated uniformly through the whole 
timescale or time–frequency space, the EMD 

behaves as a dyadic filter bank: the Fourier spectra 
of various IMFs collapse to a single shape along 
the axis of logarithm of period or frequency. Then 
the total number of IMFs of a data set is close to 

N with N the number of total data points. 
When the data is not pure noise, some scales could 
be missing; therefore, the total number of the IMFs 
might be fewer than  Additionally, the 
intermittency of signals in certain scale would also 
cause mode mixing.  

The Empirical Mode Decomposition (EMD) has 
been proposed recently [3] as an adaptive time–
frequency data analysis method. It has been proved 
quite versatile in a broad range of applications for 
extracting signals from data generated in noisy 
nonlinear and non stationary processes. As useful 
as EMD proved to be, it still leaves some annoying 
difficulties unresolved. One of the major 
drawbacks of the original EMD is the frequent 
appearance of mode mixing, which is defined as a 
single Intrinsic Mode Function (IMF) either 
consisting of signals of widely disparate scales, or a 
signal of a similar scale residing in different IMF 
components. 

IV.  EEMD 

To overcome the scale separation problem 
without introducing a subjective intermittence test, 
a new noise-assisted data analysis (NADA) method 
is proposed, the Ensemble EMD (EEMD), which 
defines the true IMF components as the mean of an 
ensemble of trials, each consisting of the signal 
plus a white noise of finite amplitude. It should be 
noted here that we use word ‘single’ instead of 
word ‘data’ in this paper because the purpose of 
this paper is to decompose the whole targeted data 
but not to identify the particular part that is known 
a priori as containing interesting information. 
Since there is added noise in the decomposition 
method, we refer the original data as ‘signal’ in 
most occasions. 

With this ensemble approach, we can clearly 
separate the scale naturally without any a priori 
subjective criterion selection. This new approach is 
based on the insight gleaned from recent studies of 
the statistical properties of white noise [1] which 
showed that the EMD is effectively an adaptive 
dyadic filter bank a when applied to white noise. 
More critically, the new approach is inspired by the 
noise-added analyses initiated by Flandrin et al.7 
and Gledhill.8 Their results demonstrated that noise 
could help data analysis in the EMD. The principle 
of the EEMD is simple: the added white noise 
would populate the whole time–frequency space 
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uniformly with the constituting components of 
different scales.[8] When signal is added to this 
uniformly distributed white background, the bits of 
signal of different scales are automatically 
projected onto proper scales of reference 
established by the white noise in the background. 
Of course, each individual trial may produce very 
noisy results, for each of the noise-added 
decompositions consists of the signal and the added 
white noise. Since the noise in each trial is different 
in separate trials, it is canceled out in the ensemble 
mean of enough trials. The ensemble mean is 
treated as the true answer, for, in the end, the only 
persistent part is the signal as more and more trials 
are added in the ensemble. The critical concept 
advanced here is based on the following 
observations: 

(i) A collection of white noise cancels each other 
out in a time–space ensemble mean; therefore, only 
the signal can survive and persist in the final noise-
added signal ensemble mean. 

(ii) Finite, not infinitesimal, amplitude white noise 
is necessary to force the ensemble to exhaust all 
possible solutions; the finite magnitude noise 
makes the different scale signals reside in the 
corresponding IMF, dictated by the dyadic filter 
banks, and render the resulting ensemble mean 
more meaningful. 

(iii) The true and physically meaningful answer to 
the EMD is not the one without noise; it is 
designated to be the ensemble mean of a large 
number of trials consisting of the noise-added 
signal. 

This EEMD proposed here has utilized 
many important statistical characteristics of noise. 
We will show that the EEMD utilizes the scale 
separation capability of the EMD, and enables the 
EMD method to be a truly dyadic filter bank for 
any data. By adding finite noise, the EEMD 
eliminated largely the mode mixing problem and 
preserve physical uniqueness of decomposition. 
Therefore, the EEMD represents a major 
improvement of the EMD method. In the following 
sections, a systematic exploration of the relation 
between noise and signal in data will be presented.  
Wu and Huang[1] have revealed that the EMD 
serves as a dyadic filter for various types of noise. 
This implies that a signal of a similar scale in a 
noisy data set could possibly be contained in one 
IMF component. It will be shown that adding noise 
with finite rather than infinitesimal amplitude to 
data indeed creates such a noisy data set; therefore, 
the added noise, having filled all the scale space 

uniformly, can help to eliminate the annoying mode 
mixing problem first noticed by Huang et al.2 
Based on these results, we will propose formally 
the concepts of NADA and noise-assisted signal 
extraction (NASE), and will develop a method 
called the EEMD, which is based on the original 
EMD method, to make NADA and NASE possible.  

V.  MODE MIXING PROBLEM 

“Mode mixing” is defined as any IMF consisting of 
oscillations of dramatically disparate scales, often 
caused by intermittency of the driving mechanisms. 
When mode mixing occurs, an IMF can cease to 
have physical meaning by itself, suggesting falsely 
that there may be different physical processes 
represented in a mode. Even though the final time–
frequency projection could rectify the mixed mode 
to some degree, the alias at each transition from 
one scale to another would irrecoverably damage 
the clean separation of scales. Such a drawback 
was first illustrated by Huang et al.2 in which the 
modelled data was a mixture of intermittent high 
frequency oscillations riding on a continuous low-
frequency sinusoidal signal. An almost identical 
example used by Huang et al.2 is presented here in 
detail as an illustration. The data and its sifting 
process are illustrated in Fig.1. The data has its 
fundamental part as a low-frequency sinusoidal 
wave with unit amplitude. At the three middle 
crests of the low-frequency wave, high-frequency 
intermittent oscillations with an amplitude of 0.1 
are riding on the fundamental, as panel (a) of Fig.1 
shows. The sifting process starts with identifying 
the maxima (minima) in the data. In this case, 15 
local maxima are identified, with the first and the 
last coming from the fundamental, and the other 13 
caused mainly by intermittent oscillations (panel 
(b)).  

 

Fig(1):  The very first step of the sifting process. Panel (a) is the 
input; panel (b) identifies local maxima (gray dots); panel (c) 
plots the upper envelope (upper gray dashed line) and low 
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envelope (lower gray dashed line) and their mean (bold gray 
line); and panel (d) is the difference between the input and the 
mean of the envelopes 

As a result, the upper envelope resembles neither 
the upper envelope of the fundamental (which is a 
flat line at one) nor the upper one of the 
intermittent oscillations (which is supposed to be 
the fundamental outside intermittent areas).[5] 
Rather, the envelope is a mixture of the envelopes 
of the fundamental and of the intermittent signals 
that lead to a severely distorted envelope mean (the 
thick gray line in panel (c)). Consequently, the 
initial guess of the first IMF (panel (d)) is the 
mixture of both the low-frequency fundamental and 
the high-frequency intermittent waves, as shown in 
Fig.2. An annoying implication of such scale 
mixing is related to unstableness and lack of the 
uniqueness of decomposition using the EMD. With 
stoppage criterion given and end-point approach 
prescribed in the EMD, the application of the EMD 
to any real data results in a unique set of IMFs, just 
as when the data is processed by other data 
decomposition methods. This uniqueness is here 
referred to as “the mathematical uniqueness,” and 
satisfaction to the mathematical uniqueness is the 
minimal requirement for any decomposition 
method. The issue that is emphasized  

 

Figure 2: The intrinsic mode functions of the input displayed in 
Fig.1(a). 

here is what we refer to as “the physical 
uniqueness.” Since real data almost always 
contains a certain amount of random noise or 
intermittences that are not known to us, an 
important issue, therefore, is whether the 
decomposition is sensitive to noise. If the 
decomposition is insensitive to added noise of 
small but finite amplitude and bears little 
quantitative and no qualitative change, the 
decomposition is generally considered stable and 
satisfies the physical uniqueness; and otherwise, 
the decomposition is unstable and does not satisfy 
the physical uniqueness. The result from 

decomposition that does not satisfy the physical 
uniqueness may not be reliable and may not be 
suitable for physical interpretation. For many 
traditional data decomposition methods with 
prescribed base functions, the uniqueness of the 
second kind is automatically satisfied. 
Unfortunately, the EMD in general does not satisfy 
this requirement due to the fact that decomposition 
is solely based on the distribution of extrema. To 
alleviate this drawback, Huang et al.2 proposed an 
intermittence test that subjectively extracts the 
oscillations with periods significantly smaller than 
a preselected value during the sifting process. The 
method works quite well for this example. 
However, for complicated data with scales variable 
and continuously distributed, no single criterion of 
intermittence test can be selected. Furthermore, the 
most troublesome aspect of this subjectively pre-
selected criterion is that it lacks physical 
justifications and renders the EMD non adaptive. 
Additionally, mode mixing is also the main reason 
that renders the EMD algorithm unstable: any small 
perturbation may result in a new set of IMFs 
Obviously, the intermittence prevents EMD from 
extracting any signal with similar scales. To solve 
these problems, the EEMD is proposed, which will 
be described in the following sections.  

 

VI   STEPS FOR ENSEMBLE EMPIRICAL 
MODE DECOMPOSITION           

To improve the accuracy of measurements, the 
ensemble mean is a powerful approach, where data 
are collected by separate observations, each of 
which contains different noise. To generalize this 
ensemble idea, noise is introduced to the single 
data set, x(t), as if separate observations were 
indeed being made as an analog to a physical 
experiment that could be repeated many times[2]. 
The added white noise is treated as the possible 
random noise that would be encountered in the 
measurement process. Under such conditions, the 
ith “artificial” observation will be 

               (3.2)              

In the case of only one observation, each multiple-
observation ensembles is mimicked by adding not 
arbitrary but different realizations of white noise, 

,that single observation as given in Eq. 
(3.2). Although adding noise may result in smaller 
signal-to-noise ratio, the added white noise will 
provide a relatively uniform reference scale 
distribution to facilitate EMD; therefore, the low 
signal–noise ratio does not affect the 
decomposition method but actually enhances it to 



          International Journal of Engineering Trends and Technology (IJETT) – Volume 7 Number 3- Jan  2014 

  ISSN: 2231-5381                    http://www.ijettjournal.org                               Page 124 

 

avoid the mode mixing. Based on this argument, an 
additional step is taken by arguing that adding 
white noise may help to extract the true signals in 
the data, a method that is termed EEMD, a truly 
NADA method. Before looking at the details of the 
new EEMD, a review of a few properties of the 
original EMD is presented: 

(i) The EMD is an adaptive data analysis method 
that is based on local characteristics of the data, and 
hence, it catches nonlinear, non stationary 
oscillations more effectively. 

(ii) The EMD is a dyadic filter bank for any white 
(or fractional Gaussian) noise-only Series.  

(iii) When the data is intermittent, the dyadic 
property is often compromised in the original EMD 
as the example in Fig.2 shows. 

(iv) Adding noise to the data could provide a 
uniformly distributed reference scale, which 
enables EMD to repair the compromised dyadic 
property; and  

(v) The corresponding IMFs of different series of 
noise have no correlation with each other. 
Therefore, the means of the corresponding IMFs of 
different white noise series are likely to cancel each 
other. With these properties of the EMD in mind, 
the proposed EEMD is developed as follows: 

(a) Add a white noise series to the targeted data;  

(b) Decompose the data with added white noise 
into IMFs; 

(c) Repeat step 1 and step 2 again and again, but   
with different white noise series each time; and 

(d) Obtain the (ensemble) means of corresponding 
IMFs of the decompositions as the final result. 

The effects of the decomposition using the EEMD 
are that the added white noise series cancel each 
other in the final mean of the corresponding IMFs; 
the mean IMFs stay within the natural dyadic filter 
windows and thus significantly reduce the chance 
of mode mixing and preserve the dyadic property. 
To illustrate the procedure, the data in Fig. 1 is 
used as an example. If the EEMD is implemented 
with the added noise having an amplitude of 0.1 
standard deviation of the original data for just one 
trial, the result is given in Fig. 3. Here, the low-
frequency component is already extracted almost 
perfectly.[6] The high-frequency components, 
however, are buried in noise. Note that high-
frequency intermittent signal emerges when the 
number of ensemble members increases, as Fig. 4 

displays. Clearly, the fundamental signal C5 is 
represented nearly perfect, as well as the 
intermittent signals, if C2 and C3 are added 
together. The fact that the intermittent signal 
actually resides in two EEMD components is due to 
the average spectra of neighbouring IMFs of white 
noise overlapping, as revealed by Wu and Huang.6 
Thus sometimes, the combination of two adjutant 
components to form one IMF is necessary. The 
need for this type of adjustment is easily 
determined through an orthogonality check. 
Whenever two IMF components become grossly 
unorthogonal, one should consider combining the 
two to form a single IMF component. This provides 
the first example to demonstrate that the NADA, 
using the EEMD significantly, improves the 
capability of extracting signals in the data, and 
represents a major improvement of the EMD 
method. 

 
Figure 3: The modified input (the top panel), its intrinsic mode 

functions (C1–6), and the trend of (R). In panel C5, the original 

input is plotted as the bold dashed gray line for comparison. 

VII                   CONCLUSION 

In this study, we have proposed a better and 
effective method for determining pitch markers in 
speech signal which operates using the Ensemble 
Emperical mode Decomposition. Results prove that 
mode mixing problem can be solved by EEMD 
algorithm and preserve physical uniqueness of 
decomposition. Therefore, the EEMD represents a 
major improvement of the EMD method. Further 
we can use this algorithm for comparing pitches of 
different musical instruments. [4],[7] 
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