
 International Journal of Engineering Trends and Technology (IJETT) – Volume 9 Number 3 - Mar 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 129

32 Bit Parallel Multiplier Using VHDL
Vrushali Gaikwad#1, Rajeshree Brahmankar#2, Amiruna Warambhe#3, Yugandhara Kute#4, Nishant Pandey*5

#Student, electronics engineering, G. H. Raisoni Institute of Engineering and Technology for women’s, Nagpur
(Maharashtra), India

*Assistant Professor, electronics engineering, G. H. Raisoni Institute of Engineering and Technology for women’s, Nagpur
(Maharashtra), India

Abstract—In this paper, design of 32-bit parallel multiplier is
presented, by introducing Carry Save Adder (CSA) in partial
product lines. The multiplier given in this paper is modeled using
VHDL (Very High Speed Integration Hardware Description
Language) for 32-bit unsigned data. Here comparison is done
between Carry Save Adder (CSA) and Carry Look Ahead Adder
(CLA). The comparison is done on the basis of two performance
parameters i.e. Speed and Power consumption. To design an
efficient integrated circuit in terms of power and speed, has
become a challenging task VLSI design field

Keywords — Multiplier, Carry Save adder(CSA), Carry Look
Ahead adder(CLA), Ripple Carry Adder(RCA), VHDL
simulation.

I. INTRODUCTION
 Multipliers are most commonly used in various electronic
applications e.g. Digital signal processing in which multipliers
are used to perform various algorithms like FIR, IIR etc. Low
power consumption and smaller area are some of the most
important criteria for the fabrication of DSP systems and high
performance systems. Optimizing the speed and area of the
multiplier is a major design issue. However, area and speed
are usually conflicting constraints so that improving speed
results mostly in larger areas. In our project we try to
determine the best solution to this problem by comparing a
few multipliers. And preparing a 32 bit multiplier by using
CSA.
 Arithmetic operations such as addition, subtraction,
multiplication and division are widely used and play an
important role in various digital systems such as digital signal
processor (DSP) architecture, microprocessor and
microcontroller and data process unit [4]. As we are
designing multiplier we need multiplication process. The basic
principle used for multiplication is to evaluate partial products
and accumulation of shifted partial products. In order to
perform this operation number of successive addition
operation is required. Therefore one of the major components
required to design a multiplier is Adder. Adders can be Ripple
Carry, Carry Look Ahead, Carry Select, Carry Skip and Carry
Save [1,2,3].
 Several researchers had addressed the adder performance
issues and others did the same with regard to the multiplier
performance. Sertbas and Özbey worked on the performance
analysis of classified binary adder architectures. They
compared the ripple adder, carry-look-ahead adder, carry
select adder and the conditional sum adder. They used VHDL
implementation for their designs and comparison studies.

Their work included the unit-gate models for area and delay
[5].
 Performance analysis of multipliers is also carried out by
number of researchers. Basic architecture of multiplier uses
Ripple Carry Adder in the partial product lines. In 2005,
Fonseca, M.; da Costa, E. et al presented a design of a Radix
2m hybrid Array multiplier to handle operands in 2’s-
complement form by using Carry Save Adder in each partial
product lines. The results showed that the multiplier
architecture with CSA gives better performance in terms of
area, speed and power consumption as compared to the
architecture with RCA [10].The multiplier presented in this
paper are all done by using VHDL for 32-bit unsigned data.
XILINX ISE v 9.1i is used as synthesis tool and FPGA-
Spartan III (XC3S250E) device is selected to get area and
power reports.

II. CARRY SAVE ADDER
 Carry Save Adder is used to do the summation of three or
more n-bit numbers. It is same as Full Adder. As shown in
Fig.1, we are performing sum of two 32-bits binary numbers,
so we are using 32 Full Adders in first stage. Carry save unit
consists of 32 full adders, each of which performs single sum
and carry bit based only on the corresponding bits of the two
input numbers. Let A and B are two 32-bit numbers and
produces partial sum and carry as S and C as shown in the
Table1:
 Si = Ai xor Bi (1)
 Ci = Ai and Bi (2)

 The final addition is then computed as:
1. Shifting the carry sequence C left by one place.
2. Placing a 0 to the front (MSB) of the partial sum sequence
S.
3. Finally, a ripple carry adder is used to add these two
together and computing the resulting sum.

Table 1. Carry save adder computation

 A: 1 0 0 1 1
 B: 1 1 0 0 1
 C: + 0 1 0 1 1
 S: 0 0 0 0 1
 C: + 1 1 0 1 1
Sum: 1 1 0 1 1 1

 International Journal of Engineering Trends and Technology (IJETT) – Volume 9 Number 3 - Mar 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 130

 A B C A B C A B C

cout sum cout sum cout sum

 CARRY PROPOGATION ADDER
 (RIPPLE CARRY ADDER)

 sum_out c_out

 Fig 1: Computation flow of Carry Save Adder.

III. CARRY LOOK AHEAD ADDER
 Lookahead carry algorithm is used to perform the
addition operation speedily, because in this algorithm carry
for the next stages is calculated in advance based on input
signals. In CLA, the carry propagation time is reduced to
O(log2(Wd)) by using a tree like circuit to compute the carry
rapidly. The CLA exploits the fact that the carry generated by
a bit-position depends on the three inputs to that position [7].
If ‘R’ and ‘S’ are two inputs then if R=V=1, a carry is
generated independently of the carry from the previous bit
position and if R=V= 0, no carry is generated. Similarly if R
≠V, a carry is generated if and only if the previous bit-position
generates a carry. ‘C’ is initial carry, “S” and “Cout” are
output sum and carry respectively, then Boolean expression
for calculating next carry and addition is:
 Pi = Ri xor Vi -- Carry Propagation (1)
 Gi = Ri and Vi -- Carry Generation (2)
 Ci+1 = Gi or (Pi and Ci) -- Next Carry (3)
 Si = Xi xor Yi xor Ci -- Sum Generation (4)

 Thus, for 4-bit adder, we can extend the carry, as shown
below:
 C1 = G0 + P0 · C0 (5)
 C2 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0 (6)
 C3 = G2 + P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0 (7)
 C4 = G3 + P3 · G2 + P3 · P2 · G1 + P3 · P2 · P1 · G0
+ P3 · P2 · P1 · P0 · C0 (8)

 B3 A3 B2 A2 B1 A1 B0 A0

 C C2 C1 C0
 C0

 C4 S3 S2 S1 S0

Fig 2: Computation flow of Carry look Ahead Adder.

IV. MULTIPLIER USING CSA
 Instead of using other Adders, here we are using Carry
save adder for adding each group of partial product terms.
Because as compared to CSA some other adders are slow and
as CSA is more accessible for understanding, therefore we are
using CSA in our project. Figure 2 & 3 shows architecture of
32-bit multiplier using CSA respectively to add each group of
partial products in parallel.

x 32 x”00000000”
multiplier y(0)

 32 32 multiplicand
 y(1)

 y(2)

 y(31)

 32

 Fig 3: 32-Bit Array Multiplier Using Carry save Logic

V. SIMULATION RESULT
 The VHDL simulation of multiplier is shown in this
section. For simulation process XILINX 9.1i software is used
and hardware used is universal VLSI (FPGA) trainer kit. Here,
we have performed the simulation process for half adder, full
adder, 4-bit multiplier, 8-bit multiplier and 32-bit multiplier .
 Here, simulation process of half adder is shown. In half
adder there are two inputs a and b and the outputs as sum and
carry. Thus, simulation waveform for half adder is given in fig.
4.

 Figure 4: Simulation Waveform for half adder.
 Here, simulation process of full adder is shown. In full
adder there are three inputs and the outputs as sum and carry.
Thus, simulation waveform for full adder is given in fig. 5.

Carry propogation adder
(RCA)

FA FA FA

FA FA FA FA

P(63 downto 32)
P(32)…………….P(0)

32 bit CSA

32 bit CSA

32 bit CSA

32 bit CSA

Ripple carry
adder

 International Journal of Engineering Trends and Technology (IJETT) – Volume 9 Number 3 - Mar 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 131

Fig 5: Simulation Waveform for full adder.

 Here, simulation process of 4-bit multiplier is performed.
Here,there are two 4 bit inputs resulting in 8 bit output. Thus,
simulation waveform for 4-bit multiplier is given in fig. 6.

Fig 6: Simulation Waveform for 4bit-multiplier.

 Here, simulation process of 8-bit multiplier is shown.
Here, there are two 8 bit inputs which results in 16 bit output.
Thus, simulation waveform for 8-bit multiplier is given in fig.
7.

Fig 7: Simulation Waveform for 8-bit multiplier.

 Here, simulation process of 32-bit multiplier is
performed. Here, there are two 32 bit inputs resulting in 64 bit
output. Thus, simulation waveform for 32-bit multiplier is
given in fig. 8

Fig 8: Simulation Waveform for 32-bit multiplier.

VI. OUTPUT ON FPGA KIT
 Simulation process of full adder and half adder on FPGA
kit is shown below:
for half adder:

i/p:11 ; o/p:01

i/p:10 ; o/p:10
Fig 9: Simulation results of half adder.

for full adder:

i/p:011; o/p:01

i/p:001; o/p:10
Fig 10: Simulation results of half adder.

VI. CONCLUSION
 This paper presents a highly efficient method of
multiplication using VHDL. The multiplication using carry
save adder is more faster and efficient than any other adder.
According to the results, implementation of CSA logic in each
partial product lines improves overall performance of
multiplier unit. The delay is reduced and hence, this multiplier
is very much useful in large multiplications.This work is

 International Journal of Engineering Trends and Technology (IJETT) – Volume 9 Number 3 - Mar 2014

ISSN: 2231-5381 http://www.ijettjournal.org Page 132

performed on 32-bit unsigned data .Therefore, it can be
extended for signed multiplication as well as for designing of
64-bit multiplier.

REFERENCES

[1] B. Parhami, Computer Arithmetic, Algorithm and Hardware Design,

Oxford University Press, New York, pp. 91-119, 2000.

 [2] Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic

with VHDL Design.2nd Edn. McGraw-Hill Higher Education, USA.ISBN:

0072499389, 2005.

 [3] Wakerly, J.F., 2006. Digital Design-Principles and Practices. 4th Edn.

Pearson Prentice Hall, USA.ISBN: 0131733494.

[4] Rajender Kumar, Sandeep Dahiya, “Performance Analysis of Different Bit

Carry Look Ahead Adder Using VHDL Environment, International Journal

of Engineering Science and Innovative Technology (IJESIT)”, Volume 2,

Issue 4, July 2013. ISSN: 2319-5967.

[5] A. Sertbas and R.S. Özbey, “A performance analysis of classified binary

adder architectures and the VHDL simulations”, J. Elect. Electron. Eng.,

Istanbul, Turkey, vol. 4, pp. 1025-1030, 2004.

[6}http://www.istanbul.edu.tr/eng/ee/jeee/main/pa ges/issues/is41/41005.pdf

[7] Raminder Preet Pal Singh, Parveen Kumar, Balwinder Singh,

“Performance Analysis of 32-Bit Array Multiplier with a Carry Save Adder

and with a Carry-Look-Ahead Adder”, International Journal of Recent Trends

in Engineering, Vol 2, No. 6, November 2009.

[8] Hasan Krad and Aws Yousif, “Design and Implementation of a Fast

Unsigned 32-bit Multiplier Using VHDL”

[9] Hasan Krad and Aws Yousif Al-Taie, “Performance Analysis of a 32-Bit

Multiplier with a Carry-Look-Ahead Adder and a 32-bit Multiplier with a

Ripple Adder using VHDL”, Journal of Computer Science 4 (4): 305-308,

2008

[10] Fonseca, M.; da Costa, E. et al, “Design of a Radix-2m Hybrid Array

Multiplier Using Carry Save Adder” integrated Circuits and System Design,

18th Symposium on Volume, Issue, 4-7 Sept. 2005 Page(s): 172-177.

