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ABSTRACT 

 
Linear and Nonlinear regression analysis were carried 
out on Arps decline curve by using analytical Natural 
Cubic Spline Interpolation and Levenberg-Marquardt 
algorithm respectively. The linearised model was used 
to initialize the nonlinear model and this shows 
improvement in the result of nonlinear model by 
Levenberg-Marquardt algorithm.The results of these 
analyses were used for history-matching existing oil 
well production data from Niger Delta Field, Nigeria. 
The nonlinear regression by Levenberg-Maquardt 
algorithm shows high degree of accuracy in history 
matching the oil field production data and also for 
future production forecast. 
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1. INTRODUCTION 
The integral part of oil well development plan is 
essentially the requirement of forecasting the 
performance of oil wells in a reservoir or in the entire 
field. Different techniques have been developed in the 
past in an attempt to forecast future production 
performance from oil wells. Generally, only 
information about production history is available to 
initiate any evaluation of reservoir reserve from decline 
curve analysis. The varieties of methods developed and 
published in various literatures for predicting oil well 
performance range from the basic material balance 
analysis to decline curve analysis techniques. Among 
the techniques, the decline curves have been found 
quite accurate to forecast oil well performance in the 
absence of known reservoir parameters. It appears to be 
a very useful technique for performing future 
projections and evaluating original oil in place and 
hydrocarbon reserves. These estimates are needed to 
determine the economic viability for project 
development. 
 
The common methods of forecasting production from 
oil wells vary in complexity and in the amount of detail 
required. In practice then, many engineers avoid the use 
of hyperbolic decline curve. Some use the French curve 

to approximate well production declines. Another 
common approach is to assume shapes composed of 
series of straight segments. For example, 50% decline 
for two years, and then 20% decline for three year, 
followed by 8% decline to an economic limit. While 
these methods may give satisfactory results for a group 
of similar wells, a pertinent question is that why do 
these wells follow a decline shape which is apparently 
arbitrary?  
 
In addition, the several unaddressed limitations in 
predicting the performance of oil well from decline 
curve analysis include: The trial and error method of 
selecting the type of decline (exponential, harmonic and 
hyperbolic) to fit during decline curve analysis, the 
constraints to accurately estimate decline parameters 
from the Arps decline function using the conventional 
decline curve analysis and the difficulty of finding a 
proper nonlinear algorithm to tune the Arps decline 
equation to match historical oil production. For this 
reason, most applications opt for type-curve matching 
whose inefficiency to adequately predict future 
performance of oil wells has been widely criticized and 
the inability of the current methods, type-curve method 
inclusive, to track the behaviour of oil wells during the 
transient period. 
  
The decline curve analysis approach by Arps 
equation(1945) was proposed more than sixty years 
ago. However, a large number of studies on production 
decline analysis are still based on this empirical 
method(2013 journal). The successive derivatives of the 
production rate with time were determined by Arps’ 
methodolgy by using numerical forward difference 
technique. The production data presented by Arps 
offers a good illustration for demonstrating the utility of 
the proposed linear technique of decline curve analysis. 
In the example, Arps computed the loss ratio for 6 
months interval to eliminate monthly fluctuations and 
to embrace the general trend of the curve without 
difficulty. He then defined the loss ratio as the 
production rate divided by the first derivative of the 
rate-time curve. In computing for the example, Arps 
introduced a correction factor of 1/6 to find the proper 
values of the loss ratio. This depicts one important 
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weakness of the Arps loss-ratio method. That is, the 
values of the loss-ratio difference were enlarged in an 
effort to smooth the data, hence Arps introduction of 
the correction factor in his example. The factor is 
arbitrary and does not follow any defined mathematical 
formulation. Thus it cannot be generalized to other 
problems. The loss ratios thus obtained by Arps 
indicated a fairly uniform arithmetic series and 
consequently the differences between successive loss 
ratio values are reasonably constant. The average of the 
individual loss ratio is the decline exponent. 
 
In practice however, production rate is so erratic to 
follow the Arps’ loss ratio technique, thereby rendering 
the technique inaccurate. Obviously, the error of the 
Arps’ loss ratio method is attributed mainly to the linear 
numerical method(forward difference technique) it 
employed to evaluate the derivatives of production rate 
with respect to time. The method works if the data 
points are linearly ordered, but fails when the data are 
erratically staggered as in field data.  
 
This study therefore resolves these conflicts by utilizing 
numerical algorithm and hence initialization of 
instantaneous decline rate, instantaneous decline 
exponent and adjusted initial production rate follow. 
The initialization was obtained from linear least square 
regression performed on the linearly transformed Arps 
decline curve by using natural cubic spline 
interpolation. Also, the Arps decline function is 
regressed nonlinearly using the Levenberg-Marquadrt 
algorithm to obtain the values of instantaneous decline 
rate, instantaneous decline exponent and adjusted initial 
production rate that will provide a match of the 
regression model and the actual rate decline. The target 
of the tuning process is to find a Levenberg-Marquadrt 
perturbation that would update the initialization and 
minimize the objective function. 
 

II. MATERIALS AND METHODS 
 
The efficiency and performance of Levenberg-
Marquardt algorithms in solving variety of problems is 
higher than simple gradient descent and other conjugate 
gradient methods. The Levenberg-Marquardt algorithm 
was first shown to be a blend of vanilla gradient descent 
and Gauss-Newton iteration. Vanilla gradient descent is 
the simplest and most intuitive method of determining 

minima in a function. Parameter update is performed by 
summing the negative of the scaled gradient at each 
step: 

fcc ii 1    (1) 
      
Simple gradient descent is associated with various 
convergence problems. Logically, it would be likely 
that taken large steps down the gradient at locations 
where the gradient is small (the slope is gentle) and 
conversely, taken small steps when the gradient is large, 
will not rattle out of the minima. With the above update 
rule, do just the opposite of this. The efficiency of the 
above condition can be enhanced by using curvature as 
well as gradient information, namely second 
derivatives, which is the Newton’s method. 
 

 DJHcc T
ii  


1

1              (2) 

    
Provided that the residuals D are small, the Hessian H 
need not be evaluated exactly but can be approximated 
essentially by the equation given as 

JJH T     (3)  
                 
Where the Jacobian is defined by 

 
c
qJ




ˆ

           (4) 

For m number of data points and n number of 
regression constants, the Jacobian is mn  matrix. 
 
The main advantage of this method is rapid 
convergence. Therefore, convergence rate is sensitive to 
the starting location or more concisely, the linearity 
around the starting location. It can be deduced that 
simple gradient descent and Gauss-Newton iteration are 
complementary in the advantages they provide. 
Levenberg-Marquardt algorithm was proposed based on 
this observation. Also, another perspective on the 
algorithm is provided by considering it as a trust-region 
method. Whichever perspective the Levenberg-
Marquardt algorithm is viewed, the tuning objective is 
to find the argument that minimizes the sum of the 
squares of the errors between the production rate 
history and the Arps decline function to achieve a 
reasonable match. 

In fitting the production rate, Arps function  ctq ,ˆ  
of an independent time variable t and a vector of n 
regression constants c to a set of m production rate 
history qt, , the objective is to find the update  

   cFci minarg1    (5) 

  cF  is defined by the Euclidian norm 

    2

2
1

w
cfcF        (6) 

Where 
     tqtqDcf ˆ                        (7) 
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The weighting factor(w) is defined as 

1


mn
DDw

T

           (8) 

Here, the vector of n regression constants c represents 
the vector with elements instantaneous decline rate, 
instantaneous decline exponent and adjusted initial 
production rate. In this case the Jacobian is the 

3m matrix of the derivatives 
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And 
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Starting with initial guess of the regression constants calculated from linear least square regression, the target is to 
find a perturbation  

     DwJHHpert T  1diag      (12) 
to the regression constants that would give a new and hopefully a better match of the objective function. Provided 
that the residuals D are small, the Hessian H need not be evaluated exactly but can be approximated essentially by 
the equation given as 

JwJH T                (13)   
 With   being the blending factor, the Levenberg-Marquardt update is  
 pertcc ii 1          (14) 

If the error declines following an update,   is reduced and the algorithm degenerates to Gauss-Newton update. On 
the contrary, if the error amplifies following an update,   is increased and the update becomes gradient descent 
iteration. 
With the values of decline curve parameters determined, cumulative oil production is evaluated from the following 
equation: 
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Once the optimal curve-fit parameters are determined, the prediction error for the converged solution is computed 
from 

    

 
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III. RESULT AND DISCUSSION 

A. LINEARIZED MODEL 

The initialization of decline parameters from linear regression by using analytical natural cubic spline interpolation 

method is shown below 
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Table 1: Initialization of Decline Parameters from Linear Regression for Niger Delta Field Data 

 

 

 

 

 

 

The study computed the decline parameters thus: b = 0.9548, 1759.0iD  and   25801*  tqqi . 

With the decline parameters defined, the Arps decline function becomes 

  
  9548.0/11759.09548.01

2580
t

q



     (17) 

The oil rate computed from this equation is compared with the actual production data from a Niger Delta Field as 

tabulated in Table 2 and plotted in Figure 1.  

Table 2: Production history and predicted rate data from linearised a algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decline Exponent 0.95482 

Decline Rate 0.175941 

Initial Oil Rate 2580 

Regression MSE 349.2297 

Forecast MSE 287.736 

Time 

(Month) 

Rate History 

(/Month) 

Rate Predicted 

(/Month) 

1 2580 2192.74727 
2 2100 1904.87087 
3 2090 1682.64223 
4 1780 1506.01274 
5 1860 1362.3248 
6 1470 1243.19768 
7 1510 1142.8642 
8 1250 1057.22707 
9 1330 983.296193 
10 1220 918.838865 
11 1090 862.15465 
12 1050 811.925933 
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 Figure 1: Field data initialized rate compared with rate history 

The correlation confidence of the linear regression on the first data set (1st month to 12th month) was computed as 

mean square error of 349.23. To corroborate the fitness of the linear correlation, the second data set (13th month to 

16th month) was used to forecast future production rate using the developed model.  

Table 3: Forecast from Initialization 

Time 

(Month) 

Rate History (/Month) Rate Forecast (/Month) 

13 982 767.116105 

14 940 726.89857 

15 883 690.606211 

16 850 657.694768 

 

The forecast is compared with the actual production as shown in Figure 2. The mean square error of the forecast 

from the linear regression was computed as 287.74.  
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Figure 2: Field data forecast from initialized rate compared with rate history 
 
The forecast mean square error although less than the regression mean square error still did not adequately minimize 
the Arps decline function to match production rate history. Hence, there is the need for refinement by applying the 
nonlinear optimization algorithm.  
 
B. NONLINEAR ALGORITHM 

The requirement of nonlinear optimization of the Arps decline curve function is the initialization of decline 
parameters and this is a major problem of nonlinear optimization. The problem of initialization in nonlinear 
optimization could give rise to non-uniqueness of the solution because nonlinear regression involves numerical 
iterations. The determination of an initial estimate that is realistically close to the desired local minimum will guide 
the Arps function to a suitable local point and hopefully turn out a unique combination of the decline parameters. 
Future rate-time prediction then can be made more confidently and as early as possible, even in the transient 
production period.  

The principal objective of the nonlinear algorithm is to refine the decline parameters obtained from the linear 
regression. The advantage of this refinement is that there is an assurance that the initialized decline parameters 
closely approximate the actual values.  
Therefore, with the initialized decline parameters b = 0.9548, 1759.0iD  and   25801*  tqqi  

from linear regression, a nonlinear regression algorithm was performed on the first set of the Arps data to produced 

a refined values of the decline parameters as 1015.1b , 1452.0iD  and 59.2863* iq . 

Table 4: Initialization of decline parameters from nonlinear algorithm for Niger Delta field data 
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Also with the refined decline parameters defined, the Arps decline function finally becomes 

  
  1015.1/11452.01015.11

59.2863
t

q



     (18)

 

The oil rate computed from this equation is compared with the actual production as shown in Table 5 and plotted in 

Figure 3. 

Table 5: Production history and predicted rate data from nonlinear regression 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3: Field data nonlinear rate compared with rate history 

Time 

(Month) 

Rate History 

(/Month) 

Rate Predicted 

(/Month) 

1 2580 2502.773589 
2 2100 2225.861515 
3 2090 2006.345609 
4 1780 1827.86936 
5 1860 1679.781662 
6 1470 1554.84212 
7 1510 1447.953211 
8 1250 1355.419839 
9 1330 1274.496622 
10 1220 1203.100246 
11 1090 1139.620593 
12 1050 1082.793171 
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The match indicated a mean square error of 96.25, which on the basis of the initialized rate is 98.57% reduction in 
error. Thus, the nonlinear regression refinement was able to improve the linear regression more than the Arps’ data. 
 
The confidence of the developed model is tested by using the second data set in the developed model equation for 
non-linear algorithm to forecast future oil production rate. The forecast is shown in Table 3 and plotted in Figure 4.8    
 

Table 3: Forecast from Initialization 

Time 

(Month) 

Rate History (/Month) Rate Forecast (/Month) 

13 982 1031.6108 

14 940 985.26105 

15 883 943.08127 

16 850 904.5254 

 
 

  
  

Figure 4: Field data Forecast from nonlinear regression compared with production history 
 
 
CONCLUSION 
This research study used linear regression to initialize 
the nonlinear optimization of the hyperbolic decline. 
The method is an advancement of existing methods, 
as no initial guesses are required to determine any of 
the decline curve parameters. The result of the 
initialization was refined using nonlinear regression 
algorithm to improve the accuracy of the decline 
curve analysis. Thus, the second stage of the method 
is computer-automated curve fitting algorithm based 
on Levenberg-Marquardt (LM) optimization.  
 

The study concluded that a method that combined 
linear and nonlinear optimization to determine the 
hyperbolic decline curve parameters was developed, 
the technique was initialized from production history 
using linear regression thereby eliminating the efforts 
of trying out each type of the decline equations on the 
production rate history before decline curve analysis 
and the procedure is not only accurate but solved the 
problem of non-uniqueness as common in oil field 
data.  
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