
International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 466 
 

Routing in VANET’s City Scenario using Back-bone 

Node Hop Greedy Algorithm 
S. B. Kulkarni

#1
, U. P. Kulkarni

#2
, Sunil Begumpur

#3
 

#1
Professor, Dept. of CSE, SDMCET, Dharwad, India 

#2
Professor, Dept. of CSE, SDMCET, Dharwad, India 

#3
 P G Scholar, Dept of CSE, SDMCET, Dharwad, India 

 

 

Abstract — Using advanced WLAN technologies; vehicular ad 

hoc networks (VANETs) have become useful and valuable for 

their wide variety of unique applications, such as safety on roads, 

multimedia content sharing, etc. VANETs are constrained by the 

high mobility of vehicles and the frequent connectivity problems.  

Destination positions can be found using flooding in most of the 

protocols in city environments. Further, in the case of sparse and 

void regions, recovery strategies are used which increases hop 

count. The minimum weighted algorithm based on distance or 

connectivity to select intermediate intersections are adopted in 

some geographic routing protocols. However, the shortest path 

or the path with higher connectivity may include numerous 

intermediate intersections. The path with higher hop counts has 

maximum hop counts. In this paper, we hereby propose a hop 

greedy routing scheme that yields a routing path with the 

minimum number of intermediate intersection nodes while 

taking connectivity into consideration. Moreover, we introduce 

back-bone nodes that play a key role in providing connectivity 

status around an intersection. Apart from this, by tracking the 

movement of source as well as destination, the back-bone nodes 

enable a packet to be forwarded in the changed direction. 

Simulation result shows the benefits of the proposed routing 

strategy in terms of high packet delivery ratio, low packet failure 

ratio and shorter end-to-end delay. 
 

Keywords— Back-bone Assisted Hop Greedy (BAHG), 

Destination discovery, greedy routing, unicast routing,  

Vehicular ad hoc network (VANET). 

I. INTRODUCTION 

     Today, a vehicle is not just a mechanical machine with 

few electronic devices; rather, recent advancement in wireless 

communication technologies has brought a major transition of 

vehicles from a simple moving engine to an intelligent system 

carrier. A wide spectrum of novel safety and entertainment 

services are being driven by a new class of communications 

that are broadly classified as vehicle-to-vehicle 

communication and vehicle-to-infrastructure communication. 

Currently, intelligent transportation system components 

provide a wide range of services such as freeway 

management, crash prevention and safety, driver assistance, 

and infotainment of drivers and/or passengers [1]. Recent 

trends swing toward advertisement, marketing, and business 

of services and products on wheels [26]. Consequently, these 

applications appear to be very lucrative and promising in 

terms of commerce and research. The significant use of 

vehicular communications in safety and infotainment 

applications has resulted in the development of a new class of 

media access control and network layer protocols. The current 

domain of vehicular research includes routing, congestion 

control, collision avoidance, safety message broadcast, 

vehicular sensing, security, etc.  

1.1 Routing challenges in City Environment 

The routing issues in a city network would not be exactly 

the same as in a highway. The outskirts may have sparse 

vehicular density, whereas town has to deal with vehicular 

congestion. The evening may have the highest vehicular 

traffic, and midnight may be seen as the most silent period of 

the day. It is a most difficult job to predict the exact traffic 

density of a region. The structure of the road (i.e., straight or 

curved), number of intersections, number of lanes, length of 

the road (i.e., based on road ID), availability of public 

transport, and driver behaviour have a great impact on the 

node density and network connectivity of a vehicular network. 

In a city network, intersections place a unique challenge to 

routing protocols. 

1.2 Drawbacks 

  A routing protocol has to key on some parameters to 

decide the routing path. When the routing path is the shortest 

distance path, it may involve a very high number of changes 

of directions, resulting in higher hop counts. If the 

connectivity is chosen as the parameter, the most connected 

road segment would be overcrowded by frequently routing 

data packets through the same path. As a consequence, the 

data packets experience longer queuing delays. Earlier 

approach suggested in the literature involves broadcasting 

request messages to fetch the destination position information 

and connectivity information. However, in a city, flooding is 

not advisable as multiple nodes would probe for destination 

position and connectivity information. As a result, every blind 

search (i.e., flooding) would disrupt all the ongoing 

communications. In our approach, we choose hop count as the 

metric to find the routing paths.  

1.3 Advantages of proposed System 

The hop greedy routing protocol exploits the transmission 

range and avoids intersections that are used to change the 

direction of the routing path. It is ensured that the selected 

intersections have enough connectivity. As the sender decides 

the routing path proactively, it is not possible to predict the 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 467 
 

actual connectivity value without probing the whole network. 

We adopt an indirect method to compute the connectivity 

parameter for each intersection. We found that connectivity 

increases with the increase in the number of lanes[33]. We 

therefore obtain the connectivity parameter based on the 

number of lanes. However, packet congestion will occur as 

the path with the highest connectivity may be used by multiple 

source–destination (src–dst) pairs. Hence, we specify a 

connectivity threshold, and paths having connectivity 

parameter beyond this threshold are assigned the same 

connectivity status.  Thus, we develop an approximation 

algorithm to choose a path based on both hop count and 

connectivity. Apart from the routing algorithm, we introduce a 

back-bone mechanism in which some specialized nodes 

perform functions such as tracking the movement of end 

nodes, detecting void regions on road segments, storing 

packets on unavailability of forwarding nodes, and selecting 

the most suitable intersection node as the forwarding node. 

Since the routing algorithm selects a path using destination 

position, we employ a unicast request-reply-based destination 

probing mechanism. To implement this approach, we divide 

the city into many zones that are outlined by the multilane 

road structures. Some dense intersections on the boundary of 

the zones are chosen as the boundary intersections. As the 

position of each boundary intersection is known, the unicast 

request messages initiated by the source can be easily sent to 

each boundary intersection. The back-bone nodes stationed at 

boundary intersections then take the responsibility to spread 

the request messages within the respective zones. The fact that 

unicast packets do not provide burst traffic and are shielded by 

request to send/clear to send (RTS/CTS) handshake [25] is the 

basic motivation to adopt unicast to carry out all control 

packet transmissions. Once the destination receives the 

request message, it finds a suitable path to the source and 

sends the reply. On receiving the reply message, the source 

forwards data on a routing path computed by the hop greedy 

routing algorithm. Finally, the routing protocol includes an 

update mechanism that takes care of interzone movement of 

end nodes. 

II. RELATED WORK 

The VANET has witnessed several challenges 

toward the development of suitable routing solutions. 

Originally, many routing protocols were solely designed for 

mobile ad hoc networks and later enhanced to suit the 

VANET scenarios [5], [16], [17]. Later on, few novel 

protocols were developed for adverse VANET environments 

[3]–[10], [24], [25], [28]. Currently, researchers are working 

on a more concrete version of routing protocols with a higher 

performance index. However, noteworthy pioneering works 

such as greedy perimeter stateless routing (GPSR) [5], greedy 

perimeter coordinator routing (GPCR) [6], geographic source 

routing (GSR) [4], vehicle assisted data delivery (VADD) [15], 

anchor-based street- and traffic-aware routing (A-STAR) [8], 

connectivity-aware routing (CAR) [2], [3] greedy traffic-

aware routing (GyTAR) [24], road-based using vehicular 

traffic (RBVT) [28], static-node-assisted adaptive data 

dissemination in vehicular networks (SADV) [21], etc. have 

laid the foundation for routing in VANETs. 

 

The position-based routing protocol GPSR [5] relies 

on the location service to acquire the position information of 

the destination. Basically, it uses two strategies, namely, 

greedy forwarding and perimeter routing, to send packets 

from source to destination. In greedy forwarding, a neighbor 

is chosen as the forwarding node if it has the shortest 

Euclidian distance to the destination among all neighbors. On 

the other hand, if no neighbor is witnessed closer to the 

destination than the sender itself, then perimeter routing is 

exercised. In GPCR [6], packets are forwarded by applying a 

restricted greedy forwarding procedure. 

During the selection of a forwarding node, a junction node 

termed as the coordinator node is preferred over a nonjunction 

node. Note that the coordinator node is not necessarily the 

closest node to the destination. However, the recovery strategy 

in GPCR [6] remains the same as GPSR [5]. The A-STAR [8] 

features the best use of city bus route information to identify 

anchor paths. The main idea behind such arrangement is that 

more packets can be delivered to their destinations 

successfully using paths having more connectivity. 

Geographic source routing[4] uses a static street map and 

location information about each node. The sender computes a 

sequence of intersections using Dijkstra’s shortest path 

algorithm [29] to reach to the destination. The sequence of 

intersections is placed in the data packet header. The 

improved GyTAR[24] is an intersection based geographical 

routing protocol that finds a sequence of intersections between 

source and destination considering parameters such as the 

remaining distance to the destination and the variation in 

vehicular traffic. The data forwarding between the 

intersections in GyTAR adopts either an improved greedy 

forwarding mechanism or a carry-and-forward mechanism, 

depending upon the availability of the forwarding node. 

 

In CAR [3], the source broadcasts request messages 

to probe the destination. The request message caches the 

change of direction information and gathers the connectivity 

and hop count information. On receiving request message, the 

destination decides the routing path and replies to the source. 

Then, the data packets are forwarded along the path, as 

suggested by the destination. Additionally, the standing and 

moving guards take care of the position updates. In the 

following sections, we will discuss various issues and 

challenges faced by different VANET routing protocols. From 

the current research trends [1], [4]–[10], [16]–[19], [22], [24], 

[25], [28], [32]–[33] and comparisons [1], [25], it is evident 

that position-based routing protocols are more suitable for city 

environments than other routing protocols. Routing protocols 

like GPSR [5], GPCR [6], GSR [4], A-STAR [8], and GyTAR 

[24] work well in city environments. However, these protocols 

encounter different problems that motivate us to design a new 

robust scheme. 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 468 
 

III. BACK-BONE-ASSISTED HOP GREEDY IN CITY 

VEHICULAR AD HOC NETWORKS 

In this section, we present a position-based 

connectivity aware back-bone-assisted hop greedy (BAHG) 

routing protocol for VANET’s city environments. The 

proposed routing protocol finds a routing path consisting of 

the minimum of intermediate intersections. The protocol is 

designed considering certain features in a city map, such as 

road segments, intersections, etc. To maintain connectivity at 

the intersections and to detect void regions, we rely on a group 

of nodes called back-bone nodes. Basically, we adopt a 

request-reply scheme to obtain destination position, which is 

then used to compute the routing path. To avoid the impact of 

mobility on routing decisions, an update procedure is 

specifically designed to supervise the movement of source as 

well as destination. Overall, the objective of the hop greedy 

routing algorithm is to reduce the hop count, which ultimately 

reduces the end-to-end delay. In addition, the protocol also 

ensures successful delivery of data packets to the destinations. 

A. Assumption 

It is assumed that each vehicle is aware of its position 

through the GPS. Moreover, it is assumed that GPS errors are 

minimized by various standard procedures like augmentation, 

precise monitoring, timekeeping, and carrier phase tracking. 

In addition to that, these nodes are equipped with a digital 

map and a navigation system. 

B.  System Design 

   In our system, intersections, major roads, and minor roads 

are assigned unique IDs. 

1. Back-Bone Nodes and Connectivity Preservation 

Connectivity is the key requirement for any routing 

protocol for reliable and fast delivery of packets. This section 

describes mechanisms to ensure connectivity of a routing path. 

A routing path involves many intermediate intersections at 

which the packet direction is changed. Selection of a wrong 

intermediate intersection may result in the dropping of packets. 

Similarly, if the source or destination changes its original 

position, the ongoing communication may get disrupted. 

Apart from this, the high mobility of vehicles may create 

temporary void regions on a road segment. As a result, routing 

paths passing through such road segments are seriously 

impaired. In our approach, we allow some of the nodes to take 

care of the foregoing connectivity issues. Such nodes are 

called as back-bone nodes. Based on the specific action they 

perform, they are classified into back-bone nodes at 

intersection and back-bone nodes at road segments. 

 

 
Fig. 1 Road Map indicating Back-Bone Nodes and 

Intersections. 

1.1 Back-bone nodes at intersection   

These nodes are used to maintain connectivity at an 

intersection. It is necessary for a back-bone node to declare its 

presence as soon as it enters the intersection region. For this 

purpose, the periodic beacons cannot be used because the 

beacon interval might be larger than the duration of stay of a 

node at an intersection. To overcome this issue, back-bone 

nodes use positional beacons, as described in [25]. 

1.2 Back-bone setup  

Back-bone nodes of this kind are of three types, 

namely, stable, primary, and secondary back bones. A stable 

back-bone node is selected from the stream of vehicles 

waiting at the intersection during red traffic signal. Among the 

waiting vehicles, the vehicle closest to the intersection 

declares itself as the stable back bone. However, primary and 

secondary back bones are selected from the fleet of vehicles 

crossing the intersection when the signal turns green. The 

primary back bone is the one located at the intersection, 

whereas the secondary back bone is outside the intersection. 

Initially, a random node declares itself as the primary back 

bone. Then, the primary backbone node selects a secondary 

back-bone node comparing the average vehicle speed, the 

position, and the moving direction of all its neighbours. When 

the current primary back-bone node leaves the intersection 

region, it notifies the secondary back bone to become the new 

primary back bone. This notification also informs vehicles at 

or around the intersection about the new primary back bone. 

1.3 Packet forwarding 

When there is a need to choose a forwarding node from an 

intersection, a back-bone node is always preferred. This is 

because back-bone nodes can maintain the communication 

history and store packet in the absence of a forwarder at the 

intersection. A forwarding node checks its neighbour list to 

probe the available back-bone nodes. It compares the packet 

forwarding time with the staying time of each back-bone node. 

If the forwarding node is moving, it prefers stable back-bone 

nodes as the forwarder. Otherwise, it prefers the moving back 

bones (i.e., primary and secondary). The primary back bone 

has higher priority over the secondary back bone. Among the 

stable back bones, the back bone closest to the intersection has 

the highest priority. 

   Intersections 

Back-Bone Nodes 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 469 
 

1.4 Message queuing and retrieval  

The stable back-bone nodes take the responsibility of 

packet buffering. In the absence of a suitable forwarding node, 

the packet is stored in a stable back-bone node. On availability 

of a forwarding node in the desired direction, packet is 

retrieved and forwarded. The stable back-bone nodes maintain 

the database of all communications with a timestamp. They 

store source and destination addresses along with the time of 

arrival of packets. If a similar packet arrives with a new 

timestamp, the previous database information is updated. 

While a packet is being routed along the selected path, either 

destination or source may change its position and moves to a 

new road segment. To allow back-bone nodes to keep track of 

the movements, both source and destination inform about their 

identity in their beacons. Whenever source or destination 

changes direction, the back-bone node updates the 

corresponding entry in its communication history. When a 

packet is being forwarded, the back-bone nodes provide the 

updated information. This enables a packet to be forwarded in 

the new direction. In Fig. 2, nodes B1, B2, B3, and B4 

represent the back-bone nodes that take care of the activities at 

intersections. 

 
Fig. 2 Back-bone nodes engaged in void region detection and 

forwarding packets at intersections. 

1.5  Back-bone nodes at road segment 

If any part of a road segment longer than the 

transmission range is devoid of nodes, it can be noticed by the 

nodes present at the periphery of the void region. Nodes 

closest to the void region from both directions declare 

themselves as back-bone nodes. These backbone nodes are 

termed as “void-guard” back-bone nodes. The purpose of a 

“void-guard” back-bone node is to inform the presence of a 

void region to the neighbouring back-bone nodes stationed at 

intersections. For all such transactions among the back-bone 

nodes, a piggybacked beacon message is used. On being 

aware of an unconnected road segment, the back-bone node at 

the intersection prohibits packets from being forwarded to the 

identified road segment. In this case, the packet is forwarded 

by selecting a new route. In Fig. 2, nodes R1 andR2 are back-

bone nodes of this type. 

2. Hop Greedy Algorithm in Destination Reply and Data 

Dissemination  

This section demonstrates how the reply message is 

forwarded to the source and the data packet is forwarded to 

the destination by adopting the hop greedy algorithm. On 

receiving a request message, the destination decides the reply 

path to the source using the hop greedy algorithm. The reply 

path is not necessarily the same as the path followed by the 

request message. The destination is aware of the source 

position; hence, a direct path to the source is computed 

without involving any boundary intersection. The reply 

message contains the list of intersections through which it has 

to traverse. If the source moves to a new position before the 

reply message is received, an update procedure discussed later 

renders a new path to the reply message. On receiving the 

reply message from the destination, the source transmits the 

data packets by computing a path to the destination adopting 

the same hop greedy algorithm. The update procedure also 

handles the change of position of the destination if the data 

packets do not locate it at the old position. In addition to that, 

the data packet carries the source position information. Such 

information enables the destination to decide whether to send 

a new reply message to the source if the destination has 

moved to a different zone. 

3.  BAHG Position Update 

  Before receiving the reply message, the source may 

change its position. Some back-bone nodes must be aware of 

the direction of the source movement. When a forwarder 

chosen among the back-bone nodes learns about such changes, 

it forwards the reply message toward the new direction. 

Ultimately, the source is able to receive the reply message. 

Likewise, the destination may change its position before 

receiving the data packet, and its movements are tracked by 

the back-bone nodes. The destination may move substantially 

far from its original position. In such cases, the hop count will 

be elevated if the packet is forwarded using the updates 

received from the back-bone nodes. Thus, a fresh reply 

message is forwarded to the source if the destination changes 

its zone. On receiving this reply message, the source can 

compute a better path to the destination. This can marginalize 

the hop count, irrespective of the destination movement. 

IV. HOP GREEDY ROUTING ALGORITHM 

In this section, we introduce the hop greedy routing 

algorithm that ensures the minimum number of hops from the 

source to the destination while considering connectivity. This 

algorithm is transformed to a single source minimum weight 

algorithm similar to [29]. The street map is converted into a 

graph G. All intersections as well as the source and the 

destination of the data packet are considered as the vertices. 

For two vertices u and v, there is an edge (u, v) in G if u and v 

are connected through a road segment. Each edge is associated 

with a weight that is the sum of two parameters: “hop count” 

and “delta count.” Let R denote the transmission range. For an 

edge (u, v) of length L, the hop count is given by (L/R) + 1 if a 

direct line-of-sight path exists between u and v. However, for 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 470 
 

a curved path, the hop count is equal to the possible number of 

small line-of-sight paths. The parameter delta count represents 

the degree of disconnection of an edge. It is evident that the 

higher the number of lanes, the higher the connectivity. We 

specify a threshold value for the number of lanes, and an edge 

having a number of lanes higher than the threshold is 

considered as a connected edge. Otherwise, it is necessary to 

determine the disconnection level. 

Let hc and dc denote the hop count and delta count of 

a road segment. To determine the weight, the delta count can 

be normalized as dc = σ ∗ hc. Note that σ > 1 as the delay of a 

disconnected edge is larger than the delay of a connected edge. 

We derive the value of σ in the next section. “S” denotes the 

source vertex from which a minimum weight path is sought to 

the destination vertex denoted as “D.” The pseudocode of the 

main algorithm is shown in Fig. 6. All notations used in the 

algorithm are summarized in Table 1. 

 

TABLE 1 

SUMMARY OF NOTATIONS 

NOTATION DEFINITION 

V[G] Set of vertices of graph G 

E[G] Set of edges of graph G 

Q Min-Priority Queue formed using V[G] 

b, c Any two vertices in V[G] 

Prev[b] Predecessor of vertex b 

Wt[b] Weight of vertex b 

T_Prev Temporary vertex 

T_Wt[b] Temporary weight of a vertex b 

VS Set of vertices already visited 

Adj[b] 

(Adj: Adjacency 

Matrix of Graph 

G) 

Set of all vertices c such that there is an 

edge (b, c) in E[G] 

LOS(b, c) 
Returns true if vertex c are in line-of-

sight or they share a common Road ID 

HOP-COUNT (b, 

c) 

Returns number of hops in the edge 

formed by vertex b and vertex c. 

LANE (c) 
Returns number of lanes connected to a 

vertex 

th 
Threshold for number of lanes connected 

at a vertex. 

σ Ratio of delta-count and hop-count 

hc Hop-count of a road segment 

dc Delta-count of a road segment 

 

       H – INITIALIZE (G, s) 

1 for each vertex v Є  V[G] 

2 do Prev[v] ← Nil 

3  Wt[v] ← ∞ 

4 Wt[s] ← 0 

        Fig. 3 Initialization Procedure 

 

      DELTA – COUNT (v, hc) 

1 f ← LANE (v) 

2 if  f  > th then return 0 

3 else return σ * hc 

Fig. 4 Procedure to evaluate connectivity (delta count) 

 

       H – RELAX (u, v) 

1 k ← Prev[u] 

2 LS ← LOS(k, v) 

3 if k!= Nil AND LS = true 

4           then T_Prev ← k 

5 else T_Prev ← u 

6 hc ← HOP – COUNT (T_Prev, v)  

7 dc ← DELTA – COUNT (v, hc) 

8 T_Wt[v] = Wt[T_Prev] + hc + dc 

9 if Wt[v] > T_Wt[v] 

10          then Wt[v] ← T_Wt[v] 

11                   Prev[v] ← T_Prev 

Fig. 5 Relax Procedure 

 

H – DIJKSTRA (G, s) 

1 H – INITIALIZE(G, s) 

2 VS ← ф 

3 Q ← V[G] 

4 while Q!= ф 

5  do u = EXTRACT – MIN(Q) 

6  VS = VS U {u} 

7  for each vertex v Є Adj[u] 

8  do   H – RELAX(u, v)   

Fig. 6 Hop Greedy Procedure 

 

Fig. 3 to 6 represents the pseudo codes of our 

proposed algorithms. 

The algorithm starts by initializing the weight of all 

vertices in V [G] using the initialization routine shown in Fig. 

3. Initially, the weight estimate of each vertex is set to ∞, 

except for the source vertex, whose weight estimate is set to 0. 

The predecessor of each vertex denoted as Prev[v] is also 

initialized. In Fig. 6, line 2 shows initializing the set of visited 

vertices as an empty set, and in line 3, the min priority queue 

is populated with the vertices in V [G]. The vertices are keyed 

by their weight estimates. Starting with the source vertex, in 

each iteration, the vertex having the smallest weight is 

extracted from the min priority queue, and the weight 

estimates and predecessors of its neighbors are updated by 

executing the H-RELAX procedure, whose pseudo code is 

given in Fig. 5. 

 Suppose a vertex u executes H-RELAX to relax an 

edge (u, v). Suppose vertex k represents the predecessor of u. 

If k and v are in the line of sight or they share a common road 

ID (i.e., they are located on a same major road), then k will be 

chosen as the predecessor of v. Otherwise, u will be chosen as 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 471 
 

the predecessor. The potential predecessor is stored in variable 

T_Prev. This step aims at minimizing the number of 

intermediate intersections along a path. In other words, the 

algorithm seeks to find the straightest possible path between 

source and destination. It is shown that selecting more number 

of intermediate intersections results in a longer path. The 

actual predecessor is decided only after the new weight of v is 

computed and compared against the stored value. Line 8 in 

Fig. 5 estimates the weight for v considering T_Prev as its 

immediate predecessor in the path from “S” to v. For the edge 

(T_Prev, v), the hop count is obtained as previously described, 

whereas the delta count is computed using the pseudocode 

given in Figs. 4 and 5. If the estimated weight of v is less than 

the stored weight, then T_Prev becomes the predecessor of v, 

and its weight components are updated. This way, the H-

RELAX procedure processes all the neighbors of the vertex 

having the minimum weight. Note that the functions INSERT 

and DECREASE-KEY are implicit in lines 3 and 8 of Fig. 6, 

respectively. These two functions, along with the EXTRACT-

MIN shown in line 5 of Fig. 6, are taken from [29]. 

 

 
Fig. 7 Weighted Graph G with Edge Distance and Number of 

Lanes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 7, the source vertex is “S,” and the destination 

vertex is “D.” The algorithm H-DIJKSTRA is executed to find 

the minimum weight path from the source “S” to the 

destination “D.” The parameter th is set to 4. The distance and 

number of lanes of a road segment are represented as a pair of 

values that appear along all road segments in Fig. 7. As the 

weight of “S” is minimum, in the first iteration of the H-

DIJKSTRA procedure, the H-RELAX procedure is called for 

all neighbors of “S.” Here, “A1” is the only neighbor of “S.” 

At “A1,” the total number of lanes is equal to 4, and hence, 

the delta count is evaluated as 0. There is only one hop 

between “S” and “A1.” The weight of “A1” is updated, and “S” 

is set as its predecessor vertex. In the second iteration, “A1” is 

extracted and executes H-RELAX for its neighbors “A2” and 

“B1.” “B1” finds itself in the line of sight of “S,” which is the 

predecessor of “A1.” Hence, the hop count estimate of “B1” 

will be computed as the number of hops between “S” and “B1.” 

Similarly, the delta count estimate is computed to be 0. “S” is 

set as the predecessor vertex of “B1.” In a similar fashion, all 

the vertices are processed. Table II shows the final values of 

the predecessor, delta count, and hop count of each vertex 

after the execution of the hop greedy (H-DIJKSTRA) 

algorithm. From Table II, using the predecessor values, the 

path to be followed from “S” to “D” is determined as S → F1 

→ F3 → D. The algorithm follows the same time complexity 

and correctness pattern as the Dijkstra algorithm [29] by 

adding two weight parameters to form a single weight. 

3.  Normalization of Delta Count 

To find the value of σ, we are interested in 

calculating the average delay incurred for an unconnected 

road segment. Let R denote the transmission range. We derive 

the average delay considering road segments of length less 

than R. For road segments having length greater than R, the 

delay calculation is repeated for each R. We define an 

unconnected road segment between two intersections I1 and 

I2 as follows. Since the length of the road segment is less than 

R, forwarders must be chosen from the intersections I1 and I2. 

However, if I2 does not have any vehicles, then the forwarder 

at I1 chooses the farthest vehicle moving on the road segment 

between I1 and I2 as the next forwarding node, which then 

carries the message until it reaches I2. We divide the 

transmission range into w cells, where each cell can occupy at 

most one vehicle. The length of a cell denoted as l is given by  

the sum of the average vehicle length and the minimum safety 

distance. w is a factor of R such that w = R/l.  

 

 

 

 

 

 

 

 

 

 

 

 

The smaller the road segment, the lesser the delay 

incurred by the store and carry approach. Considering that 

vehicles are located near the edge of the cell, the smallest 

delay corresponds to the case when the road  segment contains 

two cells, and the forwarding vehicle chosen from first cell 

TABLE 2 
RESULT OF H- DIJKSTRA EXECUTION ON THE GRAPH IN FIG. 7  

Vertex S A1 B1 F1 B2 B3 A2 F2 F3 C2 C1 E2 E1 E3 D C3 

Predecessor NIL S S S B1 B1 A1 F1 F1 B3 F2 B3 F2 F3 F3 F3 

Delta Count 0 0 0 0 σ σ σ 0 0 2σ σ 2σ σ σ σ σ 

Hop Count 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 

 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 472 
 

has to travel only one cell, whereas delay is largest when the 

road segment contains w − 1 cells. Let the vehicles be 

randomly distributed, and λ denotes the average vehicle 

density per R (R is normalized to 1). A cell locates a 

forwarding node only when it contains at least one vehicle and 

all cells farther from the sender than it are empty. Suppose the 

cells are indexed as 1, 2, 3, and so on. Then, for a road 

segment having k cells, the delay incurred by the store and 

carry approach is given by 

  

   ∑[(    
 
 ) ∗  ∏   

 
 

 

     

]

 

   

∗              

where the expression (1 − e−
(λ/w)

) represents the probability of 

selecting a forwarder in cell i. The variable dj represents the 

time elapsed before the forwarder reaches the intersection and 

is given by  

         ∗  
 

   
                      

where Vav represents the average velocity of the vehicle.  

Then, the average delay considering all possible cases is 

obtained as 

 

     
 

   
 ∑ [

 

 
 ∑    

 

   

]                

   

   

 

In (3), for a road segment having k cells, we choose q 

densities, which are denoted as λs, s = 1, 2 . . . q, to find the 

delay Ds,k, which is evaluated using (1) by replacing λ = λs. 

Note that Ds,k decreases with the increase in density, and in 

fact, it remains zero after a certain density that indicates that 

the road segment is connected. Hence, q density values 

represent densities for which Ds,k > 0. According to the 

foregoing description of an unconnected road segment, the 

total delay consists of the transmission delay at one hop and 

the delay incurred by the store and carry approach. The packet 

transmission delay in one hop is expressed as 

 

                                         

where TOther includes other delays associated with unicast 

packet transmission, as specified in IEEE 802.11b, such as 

interframe spaces, transmission time of RTS and CTS, 

propagation delay, back-off delay, and physical layer 

overhead. TPacket represents the transmission time of data, 

request, or reply packets. 

  Let Dconn and Dunconn denote the delay incurred if the 

segment is connected and disconnected, respectively. Dconn is 

same as one hop delay Dhop. On the other hand, Dunconn is 

given by the sum of Dav and Dhop. Now, the value of σ is 

determined as 

 

   
       

     

  
  

  
                    

Considering a minimum density of 10 vehicles per R, which is 

set to 300 m, Dav is calculated as 0.12264 s. For a data packet 

of size 512 B, σ is calculated to be 40.182. 

4.  Algorithm Evaluation 

Fig. 8 shows a routing path from the source “S” to 

the destination “D.” The intersections where the routing path 

changes directions are considered as intermediate intersections 

(i.e., A, B, and C). In the following evaluation, we refer to the 

group of road segments between two intermediate 

intersections as a single road segment. 

 
Routing Path       S → A → B → C → D 

Fig. 8 Routing path and Road segment 

If an intersection does not have any forwarder, the 

back-bone nodes store the request message until a node 

arrives at the intersection. 

V. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the 

BAHG protocol using an ns-2.35 simulator [23]. A city traffic 

scenario is considered to demonstrate the protocol 

performance. 

5.1. Simulation Environment 

The simulation scenario is shown in Fig. 12. We used 

the open- source NS-2 simulator to generate vehicle 

movements. Vehicles belong to one of seven vehicle types, 

where each type is represented by certain maximum velocity 

(ranges from 5 to 35 m/s). A total of 11 moving vehicles, 10 

Road Side Units and 1 Back-bone node are generated by the 

simulator. Once generated, they start moving along the 

specified route. We considered randomly selected src–dst pair 

that begins to communicate and remain active until the end of 

the simulation. Simulation is conducted for multiple scenarios 

represented by different vehicular movements, and the 

outcomes are averaged to obtain the performance graphs. 

 

TABLE 3 

SIMULATION PARAMETERS 

Parameters Values 

Area 200mX200m 200X200m 

Channel WirelessChannel 

Propagation Model TwoRayGround 

Antenna OmniAntenna 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 473 
 

Ad hoc Routing protocol AODV 

Number of nodes 32 

Simulation Time 20ms and 100ms 

Data Rate 10Mbps 

Vehicle Speed 5 – 35 m/sec 

Pkt. Gen. Rate (CBR) 0.5 – 5 packets/msec 

Transmission Range (Node) 100 meters 

5.2  Routing Metrics 

1) Packet delivery ratio (%): This is the ratio of the total 

number of packets received at   the destination to the total 

number of packets generated by the source. 

2) End-to-end(Revocation) delay: This is the delay 

elapsed between packet generation at the source and 

successful reception at the destination. 

5.3  Simulation Results and Analysis 

In this section, the packet delivery ratio, packet loss 

ratio, authentication delay and end-to-end(revocation) delay 

are investigated with respect to simulation time and number of 

packets. In the simulations, the initial src–dst distance implies 

the distance between the source and the destination when the 

source generates the first packet. The second factor 

destination dislocation distance refers to the distance travelled 

by the destination during the entire communication period.  

Fig 9 shows neighbouring nodes and their distances 

from the current node and also distance from one node to all 

other movable nodes in the simulation environment. 

 
Fig 9 Snapshot showing distances of neighbouring 

nodes from current node. 

 
Fig 10 Snapshot showing intermediate nodes between source 

and destination nodes. 

Snapshot in fig. 10 shows routing from one node to 

the other node. While finding shortest routes from source to 

destination, it also lists the intermediate nodes through which 

routing takes place.  

Snapshot in fig. 11 shows how vehicle to vehicle 

communication begins. Each vehicle is given with a vehicle id 

(node id). The vehicle which wants to send a message (or data) 

is treated as source vehicle and the vehicle which receives the 

message is treated as destination vehicle. Both source and 

destination vehicle ids have to be defined before the routing 

takes place. 

 

 
Fig. 11 Snapshot showing vehicle to vehicle communication. 

 

$ wish main.tcl 
On successful execution of the above command, an out.nam 

network animator file as shown in fig. 12 opens up. Fig. 13 

gives trace file of out.nam file called as out.tr, in which we 

can find out the list of events occurred when the simulation 

started till its completion. 

In the out.tr file, we can see the presence of request-reply 

signals like RTS and CTS. 

 

 
Fig. 12 Snapshot of Network Animator file showing 

different lanes and nodes. 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 474 
 

Fig. 14 to fig. 18 shows snapshots of various graphs 

like Packet Delivery Ratio, Packet Loss Ratio, End-to-end 

delay and Authentication Delay. Description of the fig. 14 to 

fig. 18 are given in the below section. 

 
Fig. 13. Snapshot of Trace file showing the presence 

of RTS and CTS (Request and Reply) signals. 

 
Fig. 14 Snapshot showing Packet Delivery Ratio graph. 

 

 
Fig. 15 Snapshot showing Packet Loss Ratio graph. 

 

 
Fig. 16 Snapshot showing graph of End-to-end delay 

for 20ms. 

 

 
Fig. 17 Snapshot showing graph of End-to-end delay 

for 100ms. 

 

 
Fig. 18 Snapshot showing graph of Authentication 

delay. 

 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 475 
 

 4.3.1  End-to End (Revocation) Delay 

 Fig. 16 and 17 shows the average end -to- end delay with 

respect to simulation duration. Here, every source sends one 

packet per millisecond. It is observed that the end-to-end 

delay BAHG shows the least variation. In city scenarios, the 

distance between two adjacent intersections is much smaller 

than the transmission range of a node. Then, the routing path 

may involve numerous intersections, and the hop count 

increases and contributes to the end-to-end delay. The BAHG 

protocol incurs minimum delay as the source can predict the 

hop count before actually sending any data packet. The lowest 

hop count path translates to the minimum end-to-end delay 

path, which is evident from Fig. 16 and 17. 

It is noticed that, with the increase in distance 

between the source and the destination, the end-to-end delay 

increases. The initial src–dst distance also has an impact on 

the location service, which gradually becomes ineffective and 

takes longer to provide the destination position information. 

Moreover, the hop count increases with the increase in 

distance from the source to the destination and is one of the 

reasons behind the increase in end-to-end delay.  

As far as BAHG is concerned, the routing path is 

selected considering the minimum number of hops. It directly 

follows that fewer number of intersections are involved to 

forward a packet from the source to the destination, keeping 

the end-to end delay as low as possible.  

 When the destination moves away from its current 

position, the location-service based protocol uses the updated 

position along with the move. Therefore, the packet intended 

for the old position is redirected to the new position. If a new 

path is sought when a data packet is already halfway, the hop 

count will be elevated, and it will lead to a longer delay. For 

longer destination dislocation, the delay will be larger for 

location-assisted protocols like GPCR and GyTAR. This is 

due to the swinging movement of packets. However, BAHG is 

not affected by such phenomenon, because short movements 

of destination are managed by the back-bone nodes. In 

addition, whenever the destination changes its zone (i.e., 

longer movements), the updated position information of the 

destination is supplied to the source in the form of a reply 

message. Therefore, BAHG achieves the lowest end-to-end 

delay, which remains low across all dislocation distances. 

4.3.2 Packet Delivery Ratio and Packet Loss Ratio 

In Fig. 14, the packet delivery ratio is measured with varying 

simulation period. One common factor responsible for this 

drop is the dependence on intersection node for packet 

forwarding.  An increase in the src–dst distance reduces the 

chance of finding an intersection node. BAHG does not suffer 

from the so-called intersection node probing problem as it 

avoids forwarding through intersections. The outcome is 

expected as BAHG makes minimal use of intersections. 

However, the update mechanism of the BAHG protocol with 

the help of back-bone nodes enables the source to be 

connected with the destination through a reliable path. 

Therefore, the packet delivery ratio of BAHG is maintained 

high, irrespective of the destination dislocation distance. From 

fig. 15, we found that, Packet Loss Ratio is almost zero 

because it makes use of Back-bone node and Road Side Units. 

Fig. 18 shows Authentication Delay w.r.t simulation time. The 

time taken to authenticate a particular message from valid 

source to valid destination is less. Authentication provides 

security to the transmitted message. 

V. CONCLUSION 

In this paper, we conclude that hop greedy routing 

protocol reduces end-to-end delay by yielding a routing path 

that includes the minimum number of intermediate 

intersections. The zone wise partitioning of a city road 

network is an important design framework for the efficient 

functioning of the destination discovery procedure. The hop 

greedy algorithm finds the best possible path in terms of both 

hop count and connectivity. The concept of back-bone node is 

used to address connectivity issues in void/ sparse regions 

because of unavailability of forwarder nodes. Moreover, by 

employing unicast request messages, the proposed routing 

scheme eliminates packet loss and congestion noticed in 

contemporary routing protocols that use broadcast request 

messages. Destination movements are frequently updated. The 

simulation results confirmed that the packet generation rate, 

the distance between the source and the destination, and the 

distance of destination movement do not have a large impact 

on the performance of the proposed scheme in terms of packet 

delivery ratio and end-to-end delay. 

ACKNOWLEDGMENT 

Special Thanks to Prof. J. V. Vadavi, HOD, Dept. Of 

Computer Science, Dr. S. B. Vanakudre, Principal, SDMCET, 

Dharwad for providing necessary facilities to carry out the 

work. We extend our heartily acknowledgement to Dr. S. V. 

Gorabal and Prof. Santosh Bujari for the technical assistance. 

REFERENCES 

[1] J. Bernsern and D. Manivannan, “Unicast routing protocols for vehicular 

ad hoc networks: A    critical comparison and classification,” Pervasive 

Mob. Comput., vol. 5, no. 1, pp. 1–18, Feb. 2009. 
[2] Q. Yang, A. Lim, S. Li, J. Fang, and P. Agrawal, “ACAR: Adaptive 

connectivity aware routing for vehicular ad hoc networks in city 

scenarios,” Mob. Netw. Appl., vol. 15, no. 1, pp. 36–60, Feb. 2010. 
[3] V. Naumov and T. R. Gross, “Connectivity-aware routing (CAR) in 

vehicular ad hoc   networks,” in Proc. IEEE INFOCOMM, 2007, pp. 

1919–1927. 
[4] C. Lochert, H. Hartenstein, J. Tian, H. Füßler, D. Hermann, and M. Mauve, 

“A routing strategy for vehicular ad hoc networks in city environments,” 

in Proc. IEEE Intell. Veh. Symp., 2003, pp. 156–161. 
[5] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for 

wireless networks,” in Proc. ACM MOBICOM, 2000, pp. 243–254. 

[6] C. Lochert, M. Mauve, H. Füßler, and H. Hartenstein, “Geographic 
routing in city scenarios,” ACM SIGMOBILE Mobile Comput. 

Commun. Rev., vol. 9, no. 1, pp. 69–72, Jan. 2005. 

[7] H. Menouar, M. Lenardi, and F. Filali, “Movement prediction-based 
routing (MOPR) concept for position-based routing in vehicular 

networks,” in Proc IEEE VTC, 2007, pp. 2101–2105. 

[8] G. Liu, B. S. Lee, B. C. Seet, C. H. Foh, K. J. Wong, and K. K. Lee, “A 
routing strategy for metropolis vehicular communications,” in Proc. 

ICOIN, LNCS, Aug. 2004, pp. 134–143. 
[9] C. C. Hung, H. Chan, and E. H. K. Wu, “Mobility pattern aware routing 

for heterogeneous vehicular networks,” in Proc. IEEE WCNC, 2008, pp. 

2200–2205. 

http://www.ijettjournal.org/


International Journal of Engineering Trends and Technology (IJETT) – Volume 15 Number 9 – Sep 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 476 
 

[10] K. C. Lee, J. Häerri, U. Lee, and M. Gerla, “Enhanced perimeter routing 
for geographic forwarding protocols in urban vehicular scenarios,” in 

Proc. IEEE GlobeCom Workshops, 2007, pp. 1–10. 

[11] W. Kieß, H. Füßler, and J. Widmer, “Hierarchical location service for 
mobile ad-hoc networks,” ACM SIGMOBILE Mob. Comput. 

Commun. Rev., vol. 8, no. 4, pp. 47–58, Oct. 2004. 

[12] M. Käsemann, H. Füßler, H. Hartenstein, and M. Mauve, “A reactive 
location service for mobile ad hoc networks,” Dept. Comput. Sci., 

Univ. Mannheim, Mannheim, Germany, Tech. Rep. TR-14-2002, Nov. 

2002. 
[13] X. Jiang and T. Camp, “An efficient location server for an ad hoc 

networks,” Colorado School Mines, Golden, CO, Tech. Rep., MCS-

03-06, May 2003. 
[14] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, 

“Ascalable location service for geographic ad hoc routing,” in Proc. 

ACM MOBICOM, 2000, pp. 120–130. 
[15] J. Zhao and G. Cao, “VADD: Vehicle-assisted data delivery in vehicular 

ad hoc networks,” IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 

1910– 1922, May 2008. 
[16] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The dynamic source 

routing protocol for multi-hop wireless ad hoc networks,” in Ad Hoc 

Networking, C. E. Perkins, Ed. Reading, MA: Addison-Wesley, 2001, 
ch. 5. 

[17] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector 

routing,” in Proc. 2nd IEEE Workshop Mob. Comput. Syst. Appl., 
1999, pp. 90–100. 

[18] H. Menouar, M. Lenardi, and F. Filali, “Improving proactive routing in 

VANETs with the MOPR movement prediction framework,” in Proc. 
ITST, 2007, pp. 1–6. 

[19] H. Menouar, M. Lenardi, and F. Filali, “A movement prediction-based 

routing protocol for vehicle-to-vehicle communications,” in Proc. 1st 
Int. V2VCOM, San Diego, CA, Jul. 2005. 

[20] S. Y. Ni, Y. C. Tseng, Y. S. Chen, and J. P. Sheu, “The broadcast storm 

problem in a mobile ad hoc network,” in Proc. ACM/IEEE 
MOBICOM, 1999, pp. 151–162. 

[21] Y. Ding, C. Wang, and L. Xiao, “A static-node assisted adaptive routing 

protocol in vehicular networks,” in Proc. ACM VANET, 2007, pp. 59–
68. 

[22] H. Füßler, M. Mauve, H. Hartenstein, and D. Vollmer, “A comparison of 
routing strategies for vehicular ad-hoc networks,” Dept. Comput. Sci., 

Univ. Mannheim,Mannheim, Germany, Tech. Rep. TR-02-003, Jul. 

2002. 
[23] The Network Simulator-ns-2. [Online]. Available: http://www.isi.edu/ 

nsnam/ns/ 

[24] M. Jerbi, S. M. Senouci, T. Rasheed, and Y. Ghamri-Doudane, “Towards 
efficient geographic routing in urban vehicular networks,” IEEE Trans. 

Veh. Technol., vol. 58, no. 9, pp. 5048–5059, Nov. 2009. 

[25] P. K. Sahu, E. H. Wu, J. Sahoo, and M. Gerla, “DDOR: Destination 
discovery oriented routing in highway/freeway VANETs,” in Springer 

Telecommun. Syst.––Special Issue Vehicular Communications, 

Networks, Applications, 2010, pp. 1–18. 
[26] U. Lee, J. Lee, J. S. Park, and M. Gerla, “FleaNet: A virtual market place 

on vehicular networks,” IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 

344–355, Jan. 2010. 
[27] The CitySense Sensor Network Project. [Online]. Available:    

http://www.citysense.net 

[28] J. Nzouonta, N. Rajgure, G. Wang, and C. Borcea, “VANET routing on 
city roads using real-time vehicular traffic information,” IEEE Trans. 

Veh. Technol., vol. 58, no. 7, pp. 3609–3626, Sep. 2008. 

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Section 24.3: 
Dijkstra’s algorithm,” in Introduction to Algorithms, 2nd ed. 

Cambridge, MA: MIT Press, 2001, pp. 595–601. 

[30] N.Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and O. Tonguz, 
“Routing in sparse vehicular ad hoc wireless networks,” IEEE J. Sel. 

Areas Commun., vol. 25, no. 8, pp. 1538–1556, Oct. 2007. 

[31] M. M. Artimy, W. Robertson, and W. J. Phillips, “Connectivity in inter-
vehicle ad hoc networks,” in Proc. IEEE CCECE, May 2004, pp. 293–

298. 

[32] Q. Song and X. Wang, “Efficient routing on large road networks using 
hierarchical communities,” IEEE Trans. Intell. Transp. Syst., vol. 12, 

no. 1, pp. 132–140, Mar. 2011. 

[33] Z. C. Taysi and A. G. Yavuz, “Routing protocols for GeoNet: A survey,” 
IEEE Trans. Intell. Transp. Syst., vol. 13, no. 2, pp. 939–954, Jun. 

2012. 

 

 
 

http://www.ijettjournal.org/
http://www.isi.edu/
http://www/

