
International Journal of Engineering Trends and Technology (IJETT) – Volume 18 Number 6 – Dec 2014 

ISSN: 2231-5381                    http://www.ijettjournal.org  Page 283 
 

A Multi-Layer Commingled Composite Reservoir Model for Thermal Well Test 
Analysis 

Ashkan Jahanbani G.#1, Tom A. Jelmert#2 
#1,2 Department of Petroleum Engineering and Applied Geoscience, Norwegian University of Science and Technology (NTNU) 

S.P. Andersens vei 15 A, 7491 Trondheim, Norway 

 
Abstract— Many enhanced oil recovery projects like steam 
injection into an oil reservoir are analyzed using composite 
reservoir models. Most of the models used assume two-region 
composite reservoirs with highly different properties separated 
by a vertical front. Applicability of thermal well test analysis 
method was evaluated previously using simulation studies of both 
vertical and horizontal steam injection wells with the conclusion 
that simplifying assumptions of the conventional two-region 
models may not explain some pressure behavior and may cause 
significant errors in the estimates. The main objective of this 
paper is therefore to develop a new analytical model for well test 
analysis to improve previous models. The model is a three-region 
composite model with an intermediate region characterized by 
power-law decline of properties. Fronts are tilted due to the 
gravity override and are modeled using the multi-layer reservoir 
concept assigning different front radii to each layer. A 
commingled model is assumed in which there is no cross-flow 
between the layers and all the communication happens through 
the wellbore. Steam condensation is included in the form of heat 
loss to the formation. Pressure type curves are generated and 
validated. Effects of the important parameters included in the 
model are investigated. The model developed in this work will be 
used in type curve matching for improved well test analysis.  
 
Keywords— commingled system, composite reservoir, gravity 
override, heat loss, multi-layer, thermal well test  

I. INTRODUCTION 
Well test analysis is a deconvolution or inverse solution. 

The input (for example change of flow rate) and the output 
(for example pressure data) are known, and the objective is to 
characterize and identify the system (reservoir properties) by 
matching the obtained data to the model type curves. Selection 
of the model is very important. A composite reservoir may be 
formed artificially by applying enhanced oil recovery (EOR) 
methods such as steam injection for reducing the viscosity of 
oil or cold water injection into a hot oil reservoir. Radial 
composite reservoirs have been investigated since early 
1960’s (for instance in [1] and [2]). 

 
In most of the EOR projects and specifically steam 

injection, the composite model developed in [3] is used for the 
analysis of data. The analysis method (also called pseudo-
steady-state or PSS method) assumes a model consisting of 
two regions, each defined by its particular rock and/or fluid 
properties that are highly different from the other region to 
model the condition of an impermeable boundary at the front 
location. Due to the irregularity in the shape, it is better to 
express the front radius in terms of swept volume.  

 

Fall off test analysis offers an inexpensive and quick 
method for estimation of the swept volume which is very 
important for assessing the success of a project and thermal 
efficiencies in thermal processes. Reference [4] introduced the 
use of pressure falloff data to approximate the location of a 
burning front in an in-situ combustion process. 

 
The two-region simplification of composite reservoirs was 

improved by analytical two, three and multi-region composite 
reservoir models ([5]-[13]). Reference [14] used the fractal 
concept for property variation in the intermediate-region of 
their three-region model to account for gradual change of 
properties. 

 
To model a tilted front due to gravity effects or various 

shapes of fronts formed due to viscous fingering, multi-
layered reservoir model is used. A reservoir model in which 
there is no vertical flow between layers is referred to as a 
commingled system. In the case of inter-layer communication, 
the reservoir is called a layered system with cross-flow. 
Reference [15] studied the behaviour of commingled systems 
composed of n-layers, each with distinct properties. They 
presented both pressure and layer flow rate transient responses 
for analyzing bounded reservoir characteristics. Application of 
multi-layer models was extended to composite reservoirs (as 
in [16] and [17]) to study the effects of a tilted front. These 
references presented pressure responses for a commingled, 
multi-layered composite system with tilted front. References 
[18] and [19] presented pressure solution for interference in a 
two-layer model with cross-flow. A general analytical solution 
for multi-layered composite reservoir with formation cross-
flow was presented in [20]. To best of our knowledge, not 
much analytical work has been done in this field since then. 
Regarding horizontal wells, recently a few simulation studies 
have been reported ([21] and [22]).   

 
The application of thermal well testing method to different 

cases was investigated in some initial simulation studies to 
consider some fundamental concepts and to evaluate the 
applicability and accuracy of thermal well test analysis 
method and the effects of several parameters on the results 
([23]-[25]). Errors in some cases are reported significant and 
there are trends on the pressure plots which cannot be 
explained correctly using the existing models. It is therefore 
intended in this paper to develop an analytical model for the 
pressure behaviour of a three-region composite model with 
power-law variation of properties in the intermediate region. 
Gravity override is modelled using the concept of multi-layer 
system. Each layer acts like a composite reservoir having 
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three regions with different front radii resulting in a tilted 
front. Steam condensation is included in the model by 
considering heat loss from the steam zone to the overburden 
and underburden.  

 
The proposed model is validated and a sensitivity study to 

the parameters included in the model is done using the 
pressure derivative responses. This model will update the 
previous composite reservoir models with inclusion of 
additional parameters and more realistic assumptions.  

II. MATHEMATICAL MODEL 
Unlike the traditional composite model assumption, in 

reality and in most of the cases studied in [23]-[25], three 
zones are formed: steam zone, hot water zone and the cold oil 
zone. A three-region model is introduced in this section. The 
following assumptions are applied: 

1) Slightly compressible fluid (small compressibility) 
2) Isotropic porous medium 
3) Small pressure gradient  
5) Radial flow  
6) Applicability of Darcy’s law (also called laminar flow) 
7) Negligible gravity and capillary forces 
8) Very long injection period 
9) Stationary fronts of infinitesimal thickness. 
10) No cross-flow between layers. 
11) Single injector located at the center of the reservoir.  
 
The mass balance on a cylindrical element of flow is 

written using the general continuity equation for flow in 
cylindrical coordinates. Steam condensation as a result of heat 
losses to the surroundings is included in the continuity 
equation using the concepts discussed in [26] and [27]. 
Assuming a three-region multi-layer composite reservoir 
model (Fig. 1), diffusivity equation for flow in the first region 
for any layer i can be written as:  
1
ݎ
߲
ݎ߲
൬ݎ
ଵ௜݌߲
ݎ߲

൰ =
(߮ܿ௧)ଵ௜

ቀ݇ߤቁଵ௜

	
ଵ௜݌߲
ݐ߲ + ௜ܩ

݁ܨ) − 1)

ቀ݇ߤቁଵ௜

																									(1) 

Indices 1 and i refer to the first region and the ith layer, 
respectively. In this model, Gi is the volume of liquid water 
generated by condensation per unit reservoir volume and time 
or rate of condensation per unit volume, described in terms of 
the rate of heat loss from region 1 of layer i as: 

௜ܩ =
ቀ−ݖ߲߲ܶܭ ݖ| = ୧ݖ 	× ଵ௜ܴߨ

ଶ ቁ + ቀ−ݖ߲߲ܶܭ ݖ| = ୧ݖ	 + ℎ௜ 	× ଵ௜ܴߨ
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	(2) 

Identical heat loss from top and bottom bases of the 
cylinder is assumed in [26] and [27], and we applied this to 
individual layers. The lower-bound expression given in [26] 
for the heat loss is applied since it can better approximate the 
fall-off test conditions. Therefore:  

ܭ−
߲ܶ
ݖ߲ ≅

ܭ
ߙߨ√

( ௦ܶ − ௜ܶ)
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																																																														(3) 

 

And so, the expression for Gi becomes: 

௜ܩ =
ܭ2

௏ܮ௪ߩℎ௜		ߙߨ√

( ௦ܶ − ௜ܶ)
ݐ√

																																																							(4) 

 
Lower-bound represents the case in which temperature 

assumes the constant value Ts as soon as the steam injection 
begins, while the upper-bound represents a reservoir at initial 
temperature which reaches Ts as soon as the steam front 
arrives (there is a delay compared to the first case).  
 

 
Fig. 1 Representation of the 3-region composite multi-layer reservoir model 
with tilted fronts and heat loss effect  

 
In Fig. 1, the inner region is composed of a number of 

cylinders of varying radii stacked on top of each other. The 
volume of the cone frustum shown by the imaginary dashed 
line intersecting the layers’ fronts should be equal to the 
volume of the cylinders. Reference [28] shows the 
calculations, knowing the values of the front angle, thickness, 
number of layers and a minimum front radius (corresponding 
to the bottom layer). Values of front radii corresponding to 
different front angles in this study result from such a volume 
balance calculation.     

Dimensionless parameters are defined here to rewrite the 
equations in dimensionless form: 
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Dimensionless radius could be defined as ݎ஽ = ௥

ோభ೔
. Then, 

instead of rw in the definition of dimensionless parameters and 
in the flow equations, R1i will appear. However, in this study 
the traditional definition of rD is used since R1i is different for 
each layer.  

Using the definition provided for dimensionless parameters, 
equation 1 can be written as: 
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																																	for										1 < ஽ݎ < ܴଵ௜஽																																(5) 

Flow in the second region of each layer is described by: 
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In this region, properties are not constant and vary 
exponentially with the ratio of radial distance to the first front 
radius at any layer as: 
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In the same way, for storage in the second region: 
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M12i and F12i are mobility and storativity ratios at the first 
front in each layer, respectively. Equation 6 after some 
manipulations can be written in dimensionless form as:  
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                      for									ܴଵ௜஽ < ஽ݎ < ܴଶ௜஽ 																													(7) 
The flow equation in the third region of each layer is: 
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Considering constant properties in this region, equation 8 is 
written in dimensionless form as: 
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							for				ݎ஽ > ܴଶ௜஽					(9) 

To solve the derived flow equations for different regions, 
initial and boundary conditions are introduced first. Initially, 

the system is at equilibrium or initial pressure. In 
dimensionless form: 

ଵ௜஽݌ = ଶ௜஽݌ = ଷ௜஽݌ = ஽ݐ   @    0 = 0																																				(10) 

Wellbore storage is not considered in the analysis at the 
moment, however, effect of skin for each layer is written as: 
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Interface equations are written assuming the continuity of 
pressure and flux across the fronts. The continuity of pressure 
across the fronts is written in dimensionless form as: 

ଵ௜஽݌ = ஽ݎ @ ଶ௜஽݌ = ܴଵ௜஽																																					(12) 

ଶ௜஽݌ = ஽ݎ @ ଷ௜஽݌ = ܴଶ௜஽																																					(13) 

The condition of continuity of flux across the fronts is also 
written in dimensionless form as: 
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The outer boundary condition is written for different types 
of boundaries in dimensionless form as: 

1) Infinite-acting reservoir: 

lim
௥ವ→ஶ

ଷ௜஽݌ = 0 																																																																													(16) 

2) No-flow boundary: 
ଷ௜஽݌߲
஽ݎ߲

஽ݎ)| = (௘஽ݎ = 0																																																																(17) 

3) Constant-pressure boundary: 
ଷ௜஽݌ = ஽ݎ       @      0 = ௘஽ݎ 																																																					(18) 
 

In addition to equation 11, another inner-boundary 
condition (including contributions from all layers) is the steam 
injection at constant rate (in dimensionless form): 
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The next step is to take the Laplace of the differential 
equations and the initial and boundary conditions in order to 
form a system of equations and then solve it. Taking the 
Laplace of equation 5 yields: 
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Solution to this equation is: 
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Taking the Laplace of equation 7 gives: 
߲ଶ݌ଶ௜஽
஽ݎ߲

ଶ +
1 − ଵߠ
஽ݎ

ଶ௜஽݌߲
஽ݎ߲

−
߱ଵ௜

ଵ௜ߣ

ଵଶ௜ܯ

ଵଶ௜ܨ
(ܴଵ௜஽)ఏଶିఏଵ	ݎ஽ఏଵିఏଶ	݌ݏଶ௜஽ = 0														(22) 

Solution to equation 22 is obtained by comparison with the 
general Bessel equation as (explained in Appendix A):  
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Solution to this equation is: 
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The next step is to take the Laplace of the boundary 
conditions discussed and substituting for the above pressure 
solutions (equations 21, 23, 25) in these conditions. The set of 
equations to be solved is: 

ܽଵଵ௜ܣ௜ + ܽଵଶ௜ܤ௜ − ௪஽݌ = ݀ଵ௜ 

ܽଶଵ௜ܣ௜ + ܽଶଶ௜ܤ௜ + ܽଶଷ௜ܥ௜ + ܽଶସ௜ܦ௜ = ݀ଶ௜ 
ܽଷଷ௜ܥ௜ + ܽଷସ௜ܦ௜ + ܽଷହ௜ܧ௜ + ܽଷ଺௜ܨ௜ = ݀ଷ௜ 
ܽସଵ௜ܣ௜ + ܽସଶ௜ܤ௜ + ܽସଷ௜ܥ௜ + ܽସସ௜ܦ௜ = ݀ସ௜ 

ܽହଷ௜ܥ௜ + ܽହସ௜ܦ௜ + ܽହହ௜ܧ௜ + ܽହ଺௜ܨ௜ = ݀ହ௜ 
ܽ଺ହ௜ܧ௜ + ܽ଺଺௜ܨ௜ = ݀଺௜		 

                     ∑ (ܽଵ௜ܣ௜ + ܽଶ௜ܤ௜)௜ = ݀଺௡ାଵ	 

 

Equations introduced above form a system of equations 
with contribution from all the layers which can be written in 
matrix form as aX=d. With the coefficients defined in 
Appendix B and the unknowns Ai to Fi and ݌௪஽ , the system of 
6n+1 equations is solved and the unknown matrix is obtained 
to give the wellbore pressure as well as the pressure of 
different regions in individual layers (in Laplace space). In 
this system, notice that equation 11 for each layer is written in 
such a way that  ݌௪஽  is the (6n+1)th unknown which is directly 
obtained from the solution of the system of equations where n 
is the number of layers. The last equation in this system 
contains contribution from all layers in a single equation. This 
is obtained by taking the Laplace of equation 19 and 
substituting for p1iD. 

To obtain the dimensionless wellbore pressure and pressure 
derivative, the last unknown, ݌௪஽  is inverted numerically 
from Laplace space to real space by Stehfest algorithm [29]. 
Wellbore pressure obtained does not include any wellbore 
storage effect. To include this effect in the solution, procedure 
of [30] is applied as: 

௪஽݌ =
1

ଶݏ஽ܥ + 1
௪஽஼஽ୀ଴݌	

																																																											(26) 

This equation is again numerically inverted to obtain the 
dimensionless wellbore pressure and pressure derivative 
including wellbore storage and skin. 

Decline curve analysis for the proposed model can also be 
done. If the inner boundary condition is constant pressure 
injection at wellbore, the injection rate varies. In this case, 
variation of rate with time is of interest. Reference [30] 
suggested that the solution is related to the previously 
obtained constant rate solution using the superposition 
principle. This issue is not discussed further in this paper. 

 

III. RESULTS AND DISCUSSION 
 

A. Model Verification 
The model presented in the previous section is validated 

against some of the traditional composite reservoir models. 
The new model will repeat these models by setting values to 
the parameters of the model.  

Notice that if ߱ଵ௜ = ଵ௜ߣ = 1	and index i is dropped; the 
equations represent the single layer reservoir model. The 
model will reproduce the model of [14] by setting heat loss 
coefficient (β) to zero and assuming vertical fronts (either by 
assigning identical front radii to all layers or by using a single 
layer model). This model will further reproduce many of the 
two-region composite models such as [3] and [31]. To 
generate the two-region models, R2D is set equal to R1D and 
fronts are assumed vertical. θ1 and θ2 are set to zero to model 
constant properties in the two regions. Fig. 2 shows the 
derivative response for different values of mobility ratio 
between the two regions.  

 
 

 
Fig. 2 Comparison of this study with 2-region composite reservoir models, 
CD=0; S=0; R1D=R2D=500; M12=1; F13=10; F12=1 
 

 
The model will further reproduce three-region composite 

models such as [7] and [31]. Exponents θ1 and θ2 are set to 
zero to model constant properties in the regions. Fig. 3 shows 
the perfect match for different storativity ratios. 
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Fig. 3 Comparison of this study with 3-region composite reservoir models, 
CD=0; S=0; R1D=500; R2D=750; M12=5; M13=10; F13=100 
 

The model also matches the model of [27] including the 
heat loss effect. This effect is discussed later in this paper. 
Effect of gravity is usually investigated by multi-layer models, 
such as in [16] or [17]. Fig. 4 shows a perfect match between 
this study and the multi-layer composite model of [16]-[19] 
and also [20] assuming negligible cross-flow, with tilted front.  
 

 
Fig. 4 Comparison of this study with multi-layer composite reservoir model of 
[16]-[20], CD=0; S=0; Rm=200; M=10; F=100; α=60°; N=3 

Fig. 5 shows the reproduction of the pressure and derivative 
responses of the commingled multi-layer model of [16] by the 
model presented in this work, using data of Table 1 of [16]. 

 

 
Fig. 5 Reproduction of the multi-layer composite model of [16], CD= 31.64; 
S=0; Rm=440; M=213; F=18; α=60°; N=2 

B. Sensitivity Analysis  
Effects of the parameters such as mobility and storage 

ratios on the pressure behaviour are not discussed here (reader 
is referred to [7] or [31] for detailed discussion as the same 
conclusions are valid for this study). Effect of other 
parameters like heat loss, gravity, size of regions, and 
variation of properties on the pressure response is investigated 
in this section. 

Unless mentioned, the following parameters are used in the 
generation of pressure responses: 

CD=0; S=0; Rm=500; M12=10; M13=1000; F12=10; F13=500; 
α=60; β=0; θ1=θ2=1; N=6; λ1i=0.1666; ω1i=0.1666; HD=100. 

In this paper, dpWD refers to the logarithmic pressure 
derivative or dpWD/dlntD. The value of 0.5 on derivative plot 
refers to the initial radial flow in the inner region. As can be 
observed from the equations, average properties of the inner 
region are used in the definition of dimensionless parameters. 
Late time derivative stabilization refers to the radial flow in 
the outer region. 

1)  Effect of Heat Loss 
The model presented in [27] includes heat loss effect and 

concludes that under certain conditions, heat loss could have a 
significant effect on the pressure behavior and dominate the 
flow regimes. It is shown in Fig. 6 that for low values of β, 
pressure responses are similar. However, higher values of β 
cause some deviation due to significant heat loss as observed 
here for the β of 0.1.  

 

 
Fig. 6 Pressure and derivative responses for different values of heat loss 
coefficient, HD=30; Rm=200 

 
A half slope line on log-log plots of pressure and derivative 

responses appear for higher values of β which is similar to the 
response of linear flow. The effect is not significant on the late 
time response due to huge mobility decrease in the outer 
region and domination of mobility term, as shown in Fig. 6. 

2)  Effect of Gravity  
As mentioned in the previous section, gravity is usually 

modeled using the concept of multi-layered models (for 
instance in [16]-[20]). This requires setting different values of 
radii to fronts at each layer.  
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Fig. 7 shows the effect of front angle on pressure derivative 
plot. As the gravity effect becomes more significant or the 
front angle gets smaller, average front radius becomes larger 
and pressure has more time to diffuse in the inner region 
resulting in a longer initial radial flow and delayed deviation 
due to the second region. Huge gravity may even delay the 
occurrence of the transition hump and the last radial flow. 
 

 
Fig. 7 Effect of the front angle 

 
Fig. 8 shows derivative responses generated for different 

values of thickness. A thicker formation will exhibit more 
gravity override. The expected trend similar to that seen in Fig. 
7 also appears here. Again, longer initial radial flow is 
established for more significant gravity effect. 
 

   
Fig. 8 Effect of formation thickness 

 
The number of layers used to build the model does not change 
the pressure responses as shown in Fig. 9 
 

3)  Effect of the Intermediate Region  
Effect of the relative size of the intermediate region 

compared to the inner region is analyzed using the parameter 
rf2/rf1 in Fig. 10. This parameter is the ratio of the second to 
the first front radius (assumed to be the same for different 
layers) or a measure of the volume ratio.  

 
Fig. 9 Effect of the number of layers 

 
Larger size highly affects the middle-time response. It will 

show longer transition response and therefore delayed radial 
flow response from the outer region. It will also result in more 
deviation from the PSS flow regime as the corresponding 
transition unit slope line gradually disappears.  

 

 
Fig. 10 Effect of the size of the intermediate region 

 

As shown in Fig. 11, larger value of minimum front radius 
(Rm) or in another words, a bigger inner region obviously 
results in longer inner region radial flow and delayed 
intermediate and outer region responses. 

 
Fig. 11 Effect of the minimum front radius 
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Mobility and storativity in the intermediate region change 
with radial distance in a power-law fashion. As shown in Fig. 
12, value of mobility exponent (θ1) does not have an effect on 
the early response from the intermediate region. However, 
after this short period, deviation from the early response 
happens and the observed trend shows smooth and longer 
transition pressure curves for increased values of θ1. Smooth 
transition from the inner to the outer region indicates 
deviation from the PSS behavior. In fact, smooth decline of 
properties in the proposed model dampens the sharp property 
variation assumption of the PSS method.  

 

 
Fig. 12 Effect of the variation of mobility, HD=30; Rm=200 

 
Effect of the storativity exponent (θ2) is shown in Fig. 13. 

The general trend and conclusion of Fig. 12 is valid for Fig. 
13, as well. Deviation from the PSS behavior happens for 
smooth property variations (or increased value of exponent).  

 

 
Fig. 13 Effect of the variation of storativity, HD=30; Rm=200 

 

4)  Effect of the Boundary  
So far in this paper, infinite–acting reservoir model was 

used for the analysis. As presented in Appendix B, solutions 
for bounded reservoirs are also obtained using the 
corresponding coefficients. Fig. 14 shows the pressure and 
pressure derivative responses for both infinite-acting reservoir 
and no-flow boundaries for several values of external radius. 
Late time derivative response for infinite-acting model 
follows a horizontal (constant value) pattern. For the closed 

reservoir, pressure and pressure derivative curves are the same 
as the infinite model as long as the effect of the no-flow 
boundary is not felt (transient state). When the pressure waves 
hit the first reservoir boundary, response starts to deviate from 
the infinite model. After pressure waves hit all the reservoir 
boundaries and entering the PSS flow regime, pressure and 
pressure derivative curves converge and exhibit unit slope 
lines on log-log plot at late times. This behaviour is delayed 
for larger reservoirs.  
 

 
Fig. 14 Comparison of the infinite-acting and closed reservoir models 

 
Constant-pressure boundary model response is compared 

with the infinite and closed reservoir models in Fig. 15. For 
this model, again response is similar to infinite-acting model 
until effects of the boundaries are felt. Thereafter, steady-state 
flow regime is established because of the pressure support of 
the boundaries. Steady-state condition causes the pressure 
derivative to decline towards zero at late times.   

 

 

Fig. 15 Comparison of the infinite-acting, no-flow, and constant-pressure 
boundary models  

 

IV. CONCLUSIONS 
In this paper, an analytical three-region model for well test 

analysis of composite reservoirs including heat loss and 
gravity effects was proposed which is considered an 
improvement over the traditional two-region models. 
Different types of bounded and unbounded reservoir models 
are considered. The model was verified using some of the 
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conventional models. It can explain some of the anomalies 
seen on the pressure data.  

Heat loss to the formation can distort the pressure behavior. 
This effect may be misinterpreted as linear flow due to the 
presence of fractures or channel flow, since the corresponding 
heat loss term in the pressure equations takes the 
mathematical form of the linear flow. This can cause errors in 
the interpretation and calculations.  

The intermediate region included in the model is assigned a 
continuous decline of properties with distance that will 
prevent abrupt changes and abnormal pressure responses at 
the front location. The reservoir model is assigned tilted fronts 
due to gravity override. Generally, gravity effect results in 
longer radial flow from the inner region. If significant, it can 
also cause delays in the occurrence of the middle and late time 
responses. Increase in the relative size of the intermediate 
region considered in this study can result in a longer transition 
response and delayed late time radial flow. 

Application of the PSS method for volume estimation 
should be reconsidered for the conditions that cause deviation 
from this simple behavior. Several cases discussed in this 
work show smooth transition from the inner to the outer 
region. These include increased size of the intermediate region 
and continuous decline of properties in this region that in fact 
dampen the assumption of sharp variations in PSS method due 
to the presence of the intermediate region. Type curve 
matching method using the parameters discussed in the 
development of the model can serve as an alternative for 
reservoir characterization to obtain better estimates. The 
model developed in this study can be further applied to 
include other types of composite reservoirs.  
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NOMENCLATURE 
B Formation volume factor, m3/Sm3 
ct Total compressibility, Pa-1   
CD Dimensionless wellbore storage coefficient 
F Storativity ratio at the front between different regions 
Fρ Density ratio of water to steam, dimensionless 
G Rate of steam condensation, m3/ (s.m3) 
H Thickness of the reservoir, m 
k Permeability, m2  
K Thermal conductivity, W/(m.K) 
M Mobility ratio at the front between different regions 
p Pressure, Pa 
pD Dimensionless pressure change 
pi Initial reservoir pressure, Pa 
q Injection (production) flow rate, Sm3/s 

R Front radius, m 
rD Dimensionless radial distance 
re External boundary radius, m 
rw Wellbore radius, m 
s Laplace variable 
S Skin factor, dimensionless 
t Time, s 
tD Dimensionless time 
T Temperature, K 
TR Reservoir temperature, K  
TS Steam temperature, K 

Greek Letters 
α Thermal diffusivity, m2/sec 
β Steam condensation coefficient, dimensionless 
θ1 Exponent for mobility variation  
θ2 Exponent for storativity variation 
λ Relative mobility, dimensionless 
µ Viscosity, Pa.s 
ρ Density, kg/m3 

φ Porosity, fraction 
ω Relative storativity, dimensionless 
 

APPENDIX A: DEVELOPMENT OF THE SOLUTION TO FLOW 
EQUATION IN THE INTERMEDIATE REGION 

A solution to equation 22 is obtained by comparison with 
the solution for the general Bessel equation. The general 
Bessel equation in Laplace space is given in [32] as: 

݀ଶݕ
ଶݔ݀ +

݊
ݔ
ݕ݀
ݔ݀ −

ଶݍ

௡ି௠ݔ ݕ = 0 

A solution to this equation is: 

ݕ = ିݔܣ
ଵ
ଶ(௡ିଵ)ܭ௩ ൬

ݍ2
݉ − ݊ + ݔ2

ିଵଶ(௠ି௡ାଶ)൰

+ ିݔܤ
ଵ
ଶ(௡ିଵ)ܫ௩ ൬

ݍ2
݉ − ݊ + 2

ିݔ
ଵ
ଶ(௠ି௡ାଶ)൰ 

Where 

ݒ =
1− ݊

݉ −݊ + 2
 

Comparison of equation 22 with the general Bessel 
equation yields: 

ଶ୧஽݌ ≡ ஽ݎ ݕ ≡ −1  ݔ ଵߠ ≡ ݊ 
ఠభ೔
ఒభ೔

ெభమ೔
ிభమ೔

(ܴଵ௜஽)ఏଶିఏଵ ݏ	 ≡ −ଶ 1ݍ ଶߠ ≡ ݉ 

 

The equivalent solution to equation 22 is therefore: 

ଶ௜஽݌ = (஽௕ݎ	ߦ)௩ܫ஽ఊݎ௜ܥ +  (஽௕ݎ	ߦ)௩ܭ஽ఊݎ௜ܦ

Where 

ߛ = ఏభ
ଶ

   ܾ = ఏభିఏమାଶ
ଶ
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ݒ = ఏభ
ఏభିఏమାଶ

ߦ   = ටఠభ೔
ఒభ೔

ெభమ೔
ிభమ೔

	ݏ 	
ට	(ோభ೔ವ)ഇమషഇభ

௕
 

 
 

APPENDIX B: MATRIX OF COEFFICIENTS FOR PRESSURE 
SOLUTION 

Taking the Laplace of boundary conditions introduced in 
the description of the model, the elements of the matrix of 
coefficients are written as:  

ܽଵଵ௜ = ଴ቌඨܫ	
߱ଵ௜
ଵ௜ߣ

ቍ	ݏ − ௜ܵඨ
߱ଵ௜
ଵ௜ߣ

ଵቌඨܫ		ݏ
߱ଵ௜

ଵ௜ߣ
 ቍ	ݏ

ܽଵଶ௜ = ଴ܭ	 ቌඨ
߱ଵ௜
ଵ௜ߣ

+ቍ	ݏ ௜ܵඨ
߱ଵ௜
ଵ௜ߣ

ଵቌඨܭ		ݏ
߱ଵ௜
ଵ௜ߣ

 ቍ	ݏ

ܽ଺୬ାଵ = −1		 

ܽଶଵ௜ = ଴ቌඨܫ
߱ଵ௜

ଵ௜ߣ
	ݏ ଵܴ௜஽ቍ 

ܽଶଶ௜ = ଴ܭ ቌඨ
߱ଵ௜
ଵ௜ߣ

 ଵ௜஽ቍܴ	ݏ

ܽଶଷ௜ = −ܴଵ௜஽
ఊܫ௩൫ߦ	ܴଵ௜஽

௕൯ 
ܽଶସ௜ = −ܴଵ௜஽ఊܭ௩൫ߦ	ܴଵ௜஽௕൯ 
ܽଷଷ௜ = ܴଶ௜஽ఊܫ௩൫ߦ	ܴଶ௜஽௕൯ 
ܽଷସ௜ = ܴଶ௜஽ఊܭ௩൫ߦ	ܴଶ௜஽௕൯ 

ܽଷହ௜ = ଴ቌඨܫ−
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ଶ௜஽ቍܴ	ݏ

ܽଷ଺௜ = ଴ܭ− ቌඨ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ଶ௜஽ቍܴ	ݏ

ܽସଵ௜ = ଵଶ௜ඨܯ
߱ଵ௜
ଵ௜ߣ

ଵቌඨܫ	ݏ
߱ଵ௜
ଵ௜ߣ

 ଵ௜஽ቍܴ	ݏ

ܽସଶ௜ = ଵଶ௜ඨܯ−
߱ଵ௜
ଵ௜ߣ

ଵቌඨܭ	ݏ
߱ଵ௜
ଵ௜ߣ

 ଵ௜஽ቍܴ	ݏ

ܽସଷ௜ = ଵ௜஽௕൯ܴ	ߦ௩൫ܫଵ௜஽ఊିଵܴߛൣ− +  ଵ௜஽௕൯൧ܴ	ߦሖ௩൫ܫଵ௜஽ఊା௕ିଵܴ	ܾߦ
ܽସସ௜ = 	ߦ௩൫ܭଵ௜஽ఊିଵܴߛൣ− ଵܴ௜஽

௕൯ +  ଵ௜஽௕൯൧ܴ	ߦሖ௩൫ܭଵ௜஽ఊା௕ିଵܴ	ܾߦ
ܽହଷ௜ = ଶ௜஽ܴߛଶଷ௜ൣܯ

ఊିଵܫ௩൫ߦ	ܴଶ௜஽
௕൯

+  ଶ௜஽௕൯൧ܴ	ߦሖ௩൫ܫଶ௜஽ఊା௕ିଵܴ	ܾߦ
ܽହସ௜ = ଶ௜஽ܴߛଶଷ௜ൣܯ

ఊିଵܭ௩൫ߦ	ܴଶ௜஽
௕൯

+  ଶ௜஽௕൯൧ܴ	ߦሖ௩൫ܭଶ௜஽ఊା௕ିଵܴ	ܾߦ

ܽହହ௜ = −ඨ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
ଵቌඨܫ		ݏ

߱ଵ௜

ଵ௜ߣ
ଵଷ௜ܯ

ଵଷ௜ܨ
 ଶ௜஽ቍܴ	ݏ

ܽହ଺௜ = ඨ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
ଵቌඨܭ		ݏ

߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ଶ௜஽ቍܴ	ݏ

 
For infinite-acting reservoir: 

ܽ଺ହ௜ = ܽ଺଺௜ = 0 
 

For no-flow boundary: 

ܽ଺ହ௜ = ଵቌඨܫ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ௘஽ቍݎ		ݏ

ܽ଺଺௜ = ଵܭ− ቌඨ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ௘஽ቍݎ		ݏ

For constant-pressure boundary: 

ܽ଺ହ௜ = ଴ቌඨܫ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ௘஽ቍݎ		ݏ

ܽ଺଺௜ = ଴ܭ ቌඨ
߱ଵ௜
ଵ௜ߣ

ଵଷ௜ܯ

ଵଷ௜ܨ
 ௘஽ቍݎ		ݏ

The elements of matrix d are written as:  

݀ଵ௜ = −	
ߚ
߱ଵ௜

ߨ√
యݏ మൗ

 

݀ଶ௜ = −	
ߚ
߱ଵ௜

ߨ√
యݏ మൗ

 

݀ଷ௜ = 0		 
݀ସ୧ = 0 
݀ହ௜ = 0 
݀଺௜ = 0 

For the last equation of the  system we have: 

෍(ܽଵ௜ܣ௜ + ܽଶ௜ܤ௜)
௜

= ݀଺௡ାଵ 

where 

ܽଵ௜ = ඥߣଵ௜߱ଵ௜	ܫଵቌඨ
߱ଵ௜
ଵ௜ߣ

 ቍ	ݏ

ܽଶ௜ = −ඥߣଵ௜߱ଵ௜	ܭଵ ቌඨ
߱ଵ௜
ଵ௜ߣ

 ቍ	ݏ

݀଺௡ାଵ 	= −
1
యݏ మൗ
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