
International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 687

Comparative Study of Various Improved
Versions of Apriori Algorithm

Shruti Aggarwal#1, Ranveer Kaur*2

#1Dept of CSE, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
*2Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India

Abstract— In Data Mining Research, Frequent Item set Mining
has been considered an important task. These item sets leads to
the generation of Association rules. These rules tell about the
presence of one item with respect to the presence of another item
in large dataset. There are efficient methods for generating
Association Rules from large databases. This paper describes
methods for frequent item set mining and various improvements
in the classical algorithm “Apriori” for frequent item set
generation.

Keywords— Frequent Item sets, Apriori Algorithm, AIS
Algorithm, Association Rule Mining (ARM), Partition
Algorithm.

I. INTRODUCTION
 There are many databases and data warehouses available all
around the world and the major task is to utilize the
information or knowledge from these databases. Implicit
knowledge within the databases can provide important
patterns like association rules which may lead to decision
support making, medical diagnosis and many other
applications. Association rule mining is task of finding
interesting association or correlation relationships among
large databases [2].

 Association Rules are considered to be interesting as well as
useful if they satisfy both a minimum support threshold and a
minimum confidence threshold [1][2][7]. Association Rules
can be defined by formal definition as Let I = {i1,i2, …, im}
be a set of items. Let D, be a set of database transactions
where each transaction T is a set of items such that T ⊆I.
Each transaction must have an identifier, called TID. Let A be
a set of items. A transaction T is said to contain A if and only
if A ⊆ T. An association rule is of the form A ⇒ B, where A
⊂ I, B ⊂ I, and A ∩B = ∅.

The rule A ⇒B holds in the transaction set D with:

 Support; s, where s is the percentage of transactions
in D that contain A ∪ B (i.e., both A and B). This is
taken to be the probability, P(A ∪ B).

 Confidence; c in the transaction set D if c is the
percentage of transactions in D containing A that

also contain B. This is taken to be the conditional
probability, P(B|A). That is,

support(A ⇒ B) = P(A ∪ B)
confidence(A ⇒ B) = P(B | A)

The problem of finding the Association Rules can be divided
into two parts [2]:

1. Find all frequent item sets: Frequent item sets will occur
at least as frequently as a pre-determined minimum support
count i.e. they must satisfy the minimum support [2].
2. Generate strong association rules from the frequent
item sets: These rules must satisfy minimum support and
minimum confidence values [2].

II. ALGORITHMS IN ASSOCIATION RULE MINING

 Association Rule Mining has attracted a lot of intention in
research area of Data Mining and generation of association
rules is completely dependent on finding Frequent Item sets.
Various algorithms are available for this purpose.

A. AIS Algorithm

 In [2], an algorithm for frequent item set generation is
proposed. This is the first algorithm being available to us for
Frequent Item set discovery. It is known as AIS algorithm.

 In this algorithm candidate itemsets are generated and
counted at run time as database is scanned. AIS algorithm
makes multiple passes over the dataset for the frequent item
set generation. The term which is used in this algorithm is
Frontier Set. This set undergoes extension during the pass. In
each pass, the support for certain itemsets is measured. These
itemsets, called candidate itemsets, are derived from the tuples
in the database and the itemsets contained in the frontier set
[2][3][6].

 Initially the frontier set consists of only one element, which
is an empty set. At the end of a pass, the support for a
candidate itemset is compared with minsupport threshold
value to check out if it is a large itemset (frequent itemset). At

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 688

the same time, it is determined if this itemset should be added
to the frontier set for the next pass. Those itemsets are added
to the Frontier set which were expected to be less frequent but
became frequent (large for current pass). The algorithm
terminates when the frontier set becomes empty[2][3].

B. Apriori Algorithm

 Apriori algorithm is given by Agrawal. It is used to generate
frequent itemsets from the database. The Apriori algorithm
uses the Apriori principle, which says that the item set I
containing item set (say) X is never large if item set X is not
large [1][7] or All the non empty subset of frequent item set
must be frequent also.

TABLE I
NOTATIONS BEING USED IN APRIORI ALGORITHM

k itemset Any itemset which consist of k items.
Ck Set of Candidate k itemsets
Lk Set of large k itemsets (frequent k itemsets).

These itemsets are derived for the candidate
itemsets in each pass.

 Based on this principle, the Apriori algorithm generates a set
of candidate item sets whose lengths are (k+1) from the large
k item sets and prune those candidates, which does not contain
large subset. Then, for the rest candidates, only those
candidates that satisfy the minimum support threshold
(decided previously by the user) are taken to be large (k+1)-
item sets. The Apriori generate item sets by using only the
large item sets found in the previous pass, without considering
the transactions.
Steps involved are:

 Generate the candidate 1-itemsets (C1) and write their
support counts during the first scan.

 Find the large 1-itemsets (L1) from C1 by eliminating
all those candidates which does not satisfy the
support criteria.

 Join the L1 to form C2 and use Apriori principle and
repeat until no frequent itemset is found.

C. Direct Hashing and Pruning

 In [10] DHP algorithm has been described which utilizes the
extra data structure i.e. Hash Bucket for candidate itemset
generation. The DHP (Direct Hashing and Pruning) algorithm
is an effective hash-based algorithm for the candidate set
generation. The DHP algorithm consists of three steps. The
first step is to get a set of large 1-Item-sets and constructs a
hash table for 2-Item-sets. The second step generates the set of
candidate Item-sets Ck, but it only adds the k-Item-set into Ck
if that k-Item-set is hashed into a hash entry whose value is
greater than or equal to the minimum transaction support. The
third part is essentially the same as the second part except it
does not use the hash table in determining whether to include
a particular Item-set into the candidate Item-sets.

TABLE II

DHP ALGORITHM PARAMETERS

Technique Using Hashing Technique for finding large
itemsets.

Time Execution time is less consumed than
Apriori algorithm for small databases.

Storage
Structure

Array based technique is used.

D. Partition Algorithm

 In [10][3] Partition Algorithm is discussed. It is variation of
Apriori algorithm. In Apriori and DHP, there is problem of
repeated passes on the database. In contrast Partition
algorithm is composed of two passes on the database. The
Partition algorithm logically partitions the database D into n
partitions, and only reads the entire database at most two
times to generate the association rules.

TABLE III
PARTITION ALGORITHM PARAMETERS

Technique Partition the dataset to achieve local

frequent itemset and hence finding global
frequent itemset form them

Time Execution time is bit more because of local
frequent itemset generation

Storage
Structure

Arrays are used generally.

III. IMPROVED TECHNIQUES FOR APRIORI ALGORITHM

 Classical Apriori algorithm suffers from various drawbacks.
Few of them are large candidate item set generation leading to
high I/O cost , large number of scams on the database to find
the support count in each pass.

Ways to improve the Apriori Algorithm[7]:

1. Reduce the number of transactions in the database.
2. Reduce the number of scans on the database.
3. Cut off the large candidates which cause high I/O

cost.

 The approach given in [4] provided a way to improve
efficiency and reducing complexity. Firstly, database scanning
is performed only once and further temporary tables have
been used for scanning purpose. Secondly, it uses logarithmic
decoding technique for reducing the complexity. Scheme
provides good performance.

 In [9], a method has been proposed to improve the
efficiency of Apriori Algorithm using Transaction Reduction.
Typical Apriori Algorithm generates a large set of Candidate

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 689

sets if database is large. This method reduces the size of
database which leads to reduced I/O cost. An attribute ‘Size of
Transaction (SOT) has been used which stores number of
items in individual transaction in database. Transaction will be
deleted according to the values of k (Pass number). Whatever
will be the value of k, algorithm searches for the same value
in database and when K= SOT, delete that particular
transaction. In this way performance of Apriori algorithm has
been improved by mining associations from massive data
faster and better.

In [8], a new approach has been given for reducing the
candidate item sets by reducing the connecting item sets i.e.
frequent item sets of previous pass. In Classical Apriori
algorithm:

 Ck-1 is compared against support value.
 Item sets whose support count is less than support

value (set by the user) will be eliminated /pruned and
Lk-1 will come out.

 Lk-1 is connected with itself to form Ck.

The optimized algorithm is given by:
 Ck-1 is compared against support value.
 Item sets less than support value will be eliminated/

pruned and Lk-1 will come out.
 Before Ck will be generated, Lk-1 will be further

pruned on the basis of count the times of all the items
occurred in Lk-1 and delete those item sets with this
number less than k-1 in Lk-1.

 For large database, this optimized algorithm can save cost as
well as time and hence increase the efficiency than the Apriori
algorithm [8].

 In [5], an approach has been suggested by using Bottom up
approach along with using matrix and reduced transactions.
The proposed algorithm composed of two phases i.e.
Probability Matrix Generation and bottom up approach to find
large item sets. Phases of the algorithm are:

Phase1: For the given dataset, an Initial matrix M1 will be
generated for. Rows will represent transaction and Columns in
matrix represent items. Each position in matrix will be having
the value either 0 or 1which represents the presence or
absence of item in particular transaction respectively.

 From M1 Probability matrix M2 will be generated, where
entry value of 1will is replaced by the probability of
occurrence of corresponding item to the total number of
transactions and two more columns will be added to the M2
which will store the total probability and count of elements in
each row respectively. Then M2 will be arranged in
descending order of Total Probability which leads to the
formation of Sorted Probability Matrix M3 [5].

Phase 2: Non-zero entries in Sorted Probability Matrix M3
will be replaced by the value of 1 leads to the generation of
Sorted Probability Matrix M4. Select first transaction from
M4 and compare its total probability and count with next
transaction total probability and count respectively.

 If the current transaction total probability and count greater
than the next transaction probability then perform the
BITWISE AND operation between the transaction, if the
resultant is equal to first transaction structure then increase the
support count of first transaction item set by 1. Continue this
process of Comparing and Bitwise AND operation with
remaining transaction until it satisfies the condition of First
transaction total probability and count is less than or equal to
next transaction and checks the total support count if its
greater than the required support count extract the item set of
that transaction and all its subset and move it to frequent Item
set until it finds unseen transaction in the given data set [5].

 Hence proposed algorithm in [5] paper outperforms the
Apriori Algorithm. Another advantage of this algorithm is
once the largest frequent item set is found; all its subsets will
be also moved to frequent items set. For next transaction, to
find next largest frequent item set, first it checks whether item
set of transaction under scanning process is already in
frequent items Set or not. If present, then it will avoid
scanning that transaction, hence leading to reduce complexity.

Hence on the basis of above approaches, these improvements
have been compared on the basis of technique and benefits of
each approach.

TABLE IV
COMPARISON OF IMPROVED VERSIONS OF APRIORI ALGORITHM

Authors Technique Benefit

Suhani
Nagpal

-Temporary Tables
for scanning.
-Logarithmic
Decoding

-Low system
overhead and good
operating
performance [4].
-Efficiency higher
than Apriori
Algorithm.

Jaishree
Singh, Hari
Ram

Variable Size Of
Transaction on the
basis of which
Transactions are
reduced.

-Reduces the I/O
cost.
- Reduce the size of
Candidate Item sets
(Ck) [9].

Jaio Yabing

-Double Pruning
method is used.
-States that before
Ck come out, prune
Lk-1

For large datasets, it
saves time and cost
and increases the
efficiency [8].

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 690

Sunil Kumar

–Probability Matrix
has been used.
-Uses Bottom Up
approach.

Reduced Execution
time than Apriori
Algorithm [5].

IV. CONCLUSION
Various Classical Algorithms have been discussed in this

paper like AIS, Apriori, Direct Hashing and Pruning and
Partitioning algorithm. Different parameters has been
discussed which are required for these algorithms to execute.
Then methods to improve the Apriori Algorithm are
mentioned and improved approaches have been discussed here
also. A comparative study shows benefits of different
approaches and technique used by these algorithms/
approaches.

V. REFERENCES

[1] Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms
for Mining Association Rules, Proceedings of the 20th VLDB
Conference Santiago, Chile, 1994.

[2] Rakesh Agrawal, Tomasz Imielinski, Arun Swami,
 Mining Association Rules between Sets of Items in Large
Databases, Proceedings of the 1993 ACM SIGMOD
Conference Washington DC, USA, May 1993.

[3] Anurag Choubey, Ravindra Patel, J.L.Rana, “A Survey of
Efficient Algorithms and New Approach for Fast Discovery of
Freqent itemset for Association Rule Mining”, IJSCE ,ISSN:
2231-2307, vol. 1, issue 2,May 2011.

[4] Suhani Nagpal, Improved Apriori Algorithm using
logarithmic decoding and pruning, International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-
9622, Vol. 2, Issue 3, May-Jun 2012, pp.2569-2572.

[5] Sunil Kumar , Shyam Karanth , Akshay K , Ananth
Prabhu,Bharathraj Kumar M, Improved Apriori Algorithm
Based on bottom upapproach using Probability and Matrix,
IJCSI International Journal of Computer Science Issues, Vol.
9, Issue 2, No 3, March 2012,ISSN (Online): 1694-0814.

[6] R.Divya , S.Vinod kumar, Survey on AIS, Apriori and FP-
Tree Algorithms,International Journal of Computer Science
and Management Research,Vol 1 Issue 2 September 2012.

[7] Jiawei Han, Micheline Kamber. “Data Mining: Concepts
and Techniques”, Morgan Kaufmann Publishers,
Champaign:CS497JH, fall 2001.

[8] Jiao Yabing, “Research of an Improved Apriori Algorithm
in Data Mining Association Rules”, International Journal of

Computer and Communication Engineering, Vol. 2, No. 1,
January 2013.

[9] Jaishree Singh, Hari Ram, Dr. J.S. Sodhi, ”Improving
Efficiency of Apriori Algorithm using Transaction Reduction”
International Journal of Scientific and Research Publications,
Volume 3, Issue 1, January 2013 ISSN 2250-3153

[10] John D. Holt and Soon M. Chung, Efficient Mining of
Association Rules in Text Databases, ACM 1999.

[11] Patel Tushar, Panchal Mayur, Ladumor Dhara, Kapadiya
Jahanvi, Desai Piyusha, Prajapati Ashish, Prajapati, Research
Journal of Computer and Information technology Sciences,
Vol 1,2-5, February 2013.

