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Abstract—Monte Carlo simulation are a wide class of 
computational algorithms that use repeated random sampling to 
arrive at numerical results. In other words, a simulation is run 
repeatedly in order to obtain the distribution of an unknown 
probabilistic entity. In this paper we have proposed a new 
approach to Monte Carlo simulation of operations thereby 
optimizing multi -server operations. A case study of a hospital is 
presented. Besides we have analysed the Monte Carlo methods 
against the deterministic methods. 
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I. INTRODUCTION 
Monte Carlo Simulation is a computerized mathematical 

technique that allows people to account for risk in quantitative 
analysis and decision making. It furnishes the decision-maker 
with a range of possible outcomes and the probabilities with 
which they will occur for any choice of action. 

Monte Carlo simulation performs risk analysis by building 
models of possible results by substituting a range of values—a 
probability distribution—for any factor that has inherent 
uncertainty. It then calculates results over and over, each time 
using a different set of random values from the probability 
functions. Depending upon the number of uncertainties and 
the ranges specified for them, a Monte Carlo simulation could 
involve thousands or tens of thousands of recalculations 
before it is complete. Monte Carlo simulation produces 
distributions of possible outcome values. 

 

II. LITERATURE REVIEW 
Monte Carlo simulations play an important role in 

computational science and engineering, with applications 
ranging from materials science to biology to quantum physics 
[1]. They also play an important role in a variety of other 
fields, including computer imaging, architecture, and 
economics. The background of Monte Carlo methods in 
various domain is given as under: 

 
 In microelectronics engineering, Monte Carlo 

methods are applied to analyze correlated and 
uncorrelatedvariations 
in analog and digital integrated circuits. 

 In geostatistics and geometallurgy [5], Monte 
Carlo methods underpin the design of mineral 

processing flow sheets and contribute to 
quantitative risk analysis. 

 In wind energy yield analysis [6], the predicted 
energy output of a wind farm during its lifetime 
is calculated giving different levels of 
uncertainty. 

 Monte Carlo approaches are an attractive option 
for turbulence simulations [3] due both to their 
capacity for investigating systems with many 
degrees of freedom and to their natural 
generation of a disordered velocity field 
structure and irregular particle trajectories. 

 In aerospace engineering [7], Monte Carlo 
methods are used to ensure that multiple parts of 
an assembly will fit into an engine component. 

 Path Tracing, occasionally referred to as Monte 
Carlo Ray Tracing, renders a 3D scene by 
randomly tracing samples of possible light paths. 
Repeated sampling of any given pixel will 
eventually cause the average of the samples to 
converge on the correct solution of the rendering 
equation [4], making it one of the most 
physically accurate 3D graphics rendering 
methods in existence. 

 Monte Carlo methods have been developed into 
a technique called Monte Carlo tree search 
[2] that is useful for searching for the best move 
in a game. Possible moves are organized in 
a search tree and a large number of random 
simulations are used to estimate the long-term 
potential of each move. A black box simulator 
represents the opponent's moves. Monte Carlo 
Tree Search has been used successfully to play 
many games.  

 Monte Carlo methods in finance are often used 
to evaluate investments in projects at a business 
unit or corporate level, or to evaluate financial 
derivatives. They can be used to model project 
schedules, where simulations aggregate 
estimates for worst-case, best-case, and most 
likely durations for each task to determine 
outcomes for the overall project. 

 Monte Carlo methods provide a way out of 
exponential increase in computation time. As 
long as the function in question is 
reasonably well-behaved, it can be estimated by 
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randomly selecting points in 100-dimensional 
space, and taking some kind of average of the 
function values at these points. By the central 
limit theorem, this method 
displays  convergence—i.e., quadrupling 
the number of sampled points halves the error, 
regardless of the number of dimensions [1]. 

 

III. METHODOLOGY 
 
By using probability distributions, variables can have 

different probabilities of different outcomes occurring.  
Probability distributions are a much more realistic way of 
describing uncertainty in variables of a risk analysis.  
Common probability distributions include: 
 

 Normal – Or “bell curve.”  The user simply defines 
the mean or expected value and a standard deviation 
to describe the variation about the mean.  Values in 
the middle near the mean are most likely to occur.  It 
is symmetric and describes many natural phenomena 
such as people’s heights.   

 Lognormal – Values are positively skewed, not 
symmetric like a normal distribution.  It is used to 
represent values that don’t go below zero but have 
unlimited positive potential.  Examples of variables 
described by lognormal distributions include real 
estate property values, stock prices, and oil reserves. 

 Uniform – All values have an equal chance of 
occurring, and the user simply defines the minimum 
and maximum.  Examples of variables that could be 
uniformly distributed include manufacturing costs or 
future sales revenues for a new product. 

 Triangular – The user defines the minimum, most 
likely, and maximum values.  Values around the 
most likely are more likely to occur.  Variables that 
could be described by a triangular distribution 
include past sales history per unit of time and 
inventory levels. 

 PERT- The user defines the minimum, most likely, 
and maximum values, just like the triangular 
distribution.  Values around the most likely are more 
likely to occur.  However values between the most 
likely and extremes are more likely to occur than the 
triangular; that is, the extremes are not as emphasized.   

 Discrete – The user defines specific values that may 
occur and the likelihood of each.  An example might 
be the results of a lawsuit: 20% chance of positive 
verdict, 30% change of negative verdict, 40% chance 
of settlement, and 10% chance of mistrial. 

 
During a Monte Carlo simulation, values are sampled at 
random from the input probability distributions.  Each set of 
samples is called iteration, and the resulting outcome from 
that sample is recorded.  Monte Carlo simulation does this 

hundreds or thousands of times, and the result is a probability 
distribution of possible outcomes.  In this way, Monte Carlo 
simulation provides a much more comprehensive view of 
what may happen.  It tells you not only what could happen, 
but how likely it is to happen. 
 

 
  

Fig.1. Monte Carlo simulation 
 

The figure above represents Monte Carlo simulation of 
operations. 

IV. ILLUSTRATIVE SCENARIO 
 
The example given under studies the arrival rate of patients 

in a hospital and performs Monte Carlo simulation to 
determine the average waiting time for each patient and the 
average service time for each operation in a two-hour time 
period. 

 
The following table lists the time required for the various 

operations in a hospital. 
 

Table.1 Time required for various operations in a Hospital 

 
The Monte- Carlo method is used for simulating the given 

problem. The solution is given as under: 
Random numbers used are:  
R = 86, 21, 42, 13, 52, 66, 92, 61, 34, 73, 87, 12, 28. 

OPERATION TIME 
REQUIRED 

PROBABILITY 
OF 
OPERATION 

Blood Test 5 0.40 

Root Canal 
treatment 

30 0.15 

Laser Therapy 20 0.20 

X Ray 20 0.10 

OPD 15 0.10 

USG 15 0.05 
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Table 2 Monte Carlo Simulation of Operations 

 
 

                                         Table.3. Waiting time of each of the operations

 
 

 

  
  

OPERATION TIME 
REQUIRED 
(in minutes) 

PROABABITY 
OF 
OPERATION 

CUMULATIVE 
PROBABILITY 

RANDOM 
INTERVAL 

RANDOM NUMBER 
FILLED 

Blood Test 
5 0.40 0.40 0-29 21(2), 13(4), 12(2), 

28(13) 

Root Canal 
treatment 

30 0.15 0.55 30-44 42(3), 34(7) 

Laser Therapy 
20 0.20 0.75 45-59 52(5) 

X Ray 
20 0.10 0.85 60-74 66(6), 61(8), 73(10) 

OPD 
15 0.10 0.95 75-89 86(1), 87(11) 

USG 
15 0.05 1.00 90-100 92(7) 

ARRIVAL TIME OPERATION STARTS AT OPERATION ENDS AT WAITING TIME (in 
minutes) 

3:00 3:00 3:15 0 

3:10 3:15 3:20 5 

3:20 3:20 3:50 0 

3:30 3:50 3:55 20 

3:40 3:55 4:15 15 

3:50 4:15 4:35 25 

4:00 4:35 4:50 35 

4:10 4:50 5:10 40 

4:20 5:10 5:40 50 

4:30 5:40 6:00 70 

4:40 6:00 6:15 80 

4:50 6:15 6:20 85 

5:00 6:20 6:25 80 
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The final values are as under: 

Average waiting time for each person = 505/13 = 38.846 
minutes. 

Average service time for each operation = 205/13 = 15.76 
minutes. 

V. RESULTS AND DISCUSSIONS 
Monte Carlo simulation is a valuable technique for 

analyzing risks, specifically those related to time and schedule. 
The fact that it is based on numeric data gathered by running 
multiple simulations adds even greater value to this technique. 
We have taken six operations in a hospital in duration of two 
hours considering its probability and time required for each 
operation. 

 
We have observed Average waiting time for each person is 
38.846 minutes and Average service time for each operation 
15.76 minutes. Though there are numerous benefits of the 
Monte Carlo simulation, the reliability of the outputs depends 
on the accuracy of the range values and the correlation 
patterns. 
 
There are multiple advantages of using Monte Carlo 
Simulations. They are given as under: 
 

 The results obtained from Monte Carlo simulation 
not only reveal what could possibly happen but also 
the extent of possibility for each outcome. 

 Due to the data generated by a Monte Carlo 
simulation, it becomes easier to create graphs of 
various outcomes as well as their chances of 
occurrence. This is imperative for communicating 
findings to other stakeholders. 

 With just a few cases, it becomes difficult with 
deterministic analysis to look for the variables which 
affect the outcome the most. In Monte Carlo 
simulation, it is easier to find inputs showing the 
largest impact on bottom-line results. 

 In Monte Carlo simulation, it is possible to form 
independent relationships between input variables. 
Moreover, it is important for precision to signify how, 
actually, when certain factors go up, other go down 
correspondingly. 

 

VI. APPLICATIONS  
Monte Carlo methods are especially useful for simulating 
phenomena with significant uncertainty in inputs and systems 
with a large number of coupled degrees of freedom. Areas of 
application include research, engineering, geophysics, 
meteorology, and computer applications, public Health studies, 
and finance. Few explanations are as follows: 

 
 
 

 Engineering: 
Monte Carlo methods are widely used in engineering 
for sensitivity analysis and 
quantitative probabilistic analysis in process design. 
The need arises from the interactive, co-linear and 
non-linear behavior of typical process simulations. 

 
 Computer Graphics: 

Path Tracing, occasionally referred to as Monte Carlo 
Ray Tracing, renders a 3D scene by randomly tracing 
samples of possible light paths. Repeated sampling of 
any given pixel will eventually cause the average of 
the samples to converge on the correct solution of 
the rendering equation, making it one of the most 
physically accurate 3D graphics rendering methods 
in existence. 

 
 Computational biology: 

Monte Carlo methods are used in computational 
biology, such for as Bayesian inference in phylogeny. 
Biological systems such as proteins membranes, 
images of cancer, are being studied by means of 
computer simulations. 
The systems can be studied in the coarse-grained 
or ab initio frameworks depending on the desired 
accuracy. Computer simulations allow us to monitor 
the local environment of a particular molecule to see 
if some chemical reaction is happening for instance. 
We can also conduct thought experiments when the 
physical experiments are not feasible, for instance 
breaking bonds, introducing impurities at specific 
sites, changing the local/global structure, or 
introducing external fields. 

 
 Design and visuals: 

Monte Carlo methods are also efficient in solving 
coupled integral differential equations of radiation 
fields and energy transport, and thus these methods 
have been used in global illumination computations 
that produce photo-realistic images of virtual 3D 
models, with applications in video 
games, architecture, design, computer 
generated films, and cinematic special effects. 

 
 Physical sciences: 

Monte Carlo methods are very important 
in computational physics, physical chemistry, and 
related applied fields, and have diverse applications 
from complicated quantum chromodynamics 
calculations to designing heat 
shields and aerodynamic forms. In statistical 
physics Monte Carlo molecular modeling is an 
alternative to computational molecular dynamics, and 
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Monte Carlo methods are used to compute statistical 
field theories of simple particle and polymer 
systems. Quantum Monte Carlo methods solve 
the many-body problem for quantum systems. In 
experimental particle physics, Monte Carlo methods 
are used for designing detectors, understanding their 
behavior and comparing experimental data to theory. 
In astrophysics, they are used in such diverse 
manners as to model both the evolution 
of galaxies and the transmission of microwave 
radiation through a rough planetary surface. Monte 
Carlo methods are also used in the ensemble 
models that form the basis of modern weather 
forecasting. 
 

VII. COMPARITIVE ANALYSIS 
Monte Carlo simulation provides a number of advantages 

over deterministic, or “single-point estimate” analysis: 
 
 Probabilistic Results. Results show not only what 

could happen, but how likely each outcome is. 
 

 Graphical Results. Because of the data a Monte Carlo 
simulation generates, it’s easy to create graphs of 
different outcomes and their chances of occurrence.  
This is important for communicating findings to 
other stakeholders. 
 

 Sensitivity Analysis. With just a few cases, 
deterministic analysis makes it difficult to see which 
variables impact the outcome the most.  In Monte 
Carlo simulation, it’s easy to see which inputs had 
the biggest effect on bottom-line results. 
 

 Scenario Analysis: In deterministic models, it’s very 
difficult to model different combinations of values 
for different inputs to see the effects of truly different 
scenarios.  Using Monte Carlo simulation, analysts 
can see exactly which inputs had which values 
together when certain outcomes occurred.  This is 
invaluable for pursuing further analysis. 
 

 Correlation of Inputs. In Monte Carlo simulation, it’s 
possible to model interdependent relationships 
between input variables.  It’s important for accuracy 
to represent how, in reality, when some factors go up, 
others go up or down accordingly. 
 
 
 
 
 

VIII. CONCLUSIONS 
Monte Carlo methods (or Monte Carlo experiments) are a 
broad class of computational algorithms that rely on 
repeated random sampling to obtain numerical results; i.e., by  
running simulations many times over in order to calculate 
those same probabilities heuristically just like actually playing 
and recording your results in a real casino situation: hence the 
name.  

They are often used in physical and mathematical problems 
and are most suited to be applied when it is impossible to 
obtain a closed-form expression or infeasible to apply 
a deterministic algorithm. Monte Carlo methods are mainly 
used in three distinct problems: optimization, numerical 
integration and generation of samples from a probability 
distribution. 

Monte Carlo methods are especially useful for simulating 
systems with many coupled degrees of freedom, such as fluids, 
disordered materials, strongly coupled solids, and cellular 
structures (see cellular Potts model). They are used to model 
phenomena with significant uncertainty in inputs, such as the 
calculation of risk in business. They are widely used in 
mathematics, for example to evaluate 
multidimensional definite integrals with complicated 
boundary conditions. When Monte Carlo simulations have 
been applied in space exploration and oil exploration, their 
predictions of failures, cost overruns and schedule overruns 
are routinely better than human intuition or alternative "soft" 
methods. 
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