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I. INTRODUCTION 

 Both physics and economics deal with systems 

of many interacting components that obey specific rules. 

Finance deals with empirical observation of regularities 

in market data, the dynamics of price formation and 

understanding of bubbles and panics. . The power laws 

and associated complex exponents and log-periodic 

patterns were found to perform quite reliably for 

prediction purposes. Feigenbaum, Freund and Sornette 

independently suggested that  the same concept be 

applied to study large financial crashes. The existence of 
stock market bubbles is at odds with the assumptions of 

efficient market theory which assumes rational investor 

behavior. Behavioral finance theories attribute stock 

market bubbles to cognitive biases that lead to 

„groupthink‟ and „herd‟ behavior. Bubbles occur not 

only in real-world markets, with their inherent 

uncertainty and noise, but also in highly predictable 

experimental markets. The two most famous bubbles of 

the twentieth century, the bubble in American stocks in 

the 1920s, he Nifty Fifty stocks in the early 1970s, 

Taiwanese stocks in 1987, Japanese stocks in the late 

1980s and the Dot-com bubble of the late 1990s were 
based on speculative activity surrounding the 

development of new technologies. 

 Stock market bubbles frequently produce hot 

markets in Initial Public Offerings, since investment 
bankers and their clients see opportunities to float new 

stock issues at inflated prices. These hot IPO markets 

misallocate investment funds to areas dictated by 

speculative trends, rather than to enterprises generating 

longstanding economic value. . The bubble in closed-

end country funds in the late 1980s were the bubbles 

that occurred  in experimental asset markets. For closed-

end country funds, observers compare the stock prices to 

the net asset value per share (the net value of the fund's 
total holdings divided by the number of shares 

outstanding). For experimental asset markets, observers 

compare the stock prices to the expected returns from 

holding the stock (which the experimenter determines 

and communicates to the traders). In both instances, 

closed-end country funds and experimental markets, 

stock prices diverge from fundamental values.   

 Given the puzzling and violent nature of stock 

market crashes, it is worth investigating whether it is 

entirely possible to build a dynamic model of the stock 

market exhibiting well defined critical points that lie 

within the strict confines of rational expectations, a 
landmark of economic theory, and is also intuitively 

appealing.  

 A crash happens when large groups of agents 

place sell orders simultaneously. This group of agents 

must create enough of an imbalance in the order book 

for market makers to be unable to balance the sell orders 

without lowering prices substantially. One curious fact is 

that the agents in this group typically do not know each 

other.  

 Sornette claimed that any model of a crash 

would combine the following features: A system of 
noise traders who are influenced by their neighbors. 

Local imitation propagating spontaneously into global 

cooperation.Global cooperation among noise traders 

causing a crash. Prices related to the properties of this 

system. System parameters evolving slowly through 

time. 

 Such a system would display certain 

characteristics, namely prices following a power law in 

the neighborhood of some critical date, with either a real 

or complex critical exponent. What all the models in this 

class would have in common is that the crash is most 

likely to occur when the locally imitative system goes 

through a critical point.  
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 In the spirit of “mean field” theory of collective 
systems, the simplest way to describe an imitation 

process is to assume that the hazard rate h(t) evolves 

according to the following equation  dh / dt = C hδ  with 

δ>1 and 2< δ < <+ ∞ -(1)  where h(t) is called as the 

hazard rate defined to be the probability per unit time 
that the crash would happen in the next instant, provided 

it has not already happened, δ  is the number of market 

players he exchanges information with, apart from 

himself. C is a positive constant. The mean field theory 

amounts to embody the diversity of trader actions by a 

single effective representative behaviour determined 

from an average interaction among the traders. The 

network of friends/media reports could be such an 

indicator. In this sense, h (t) is the collective result of the 

interactions among traders. The term hδ in the r.h.s. of 

(1) accounts for the fact that the hazard rate will increase 

or decrease due to the presence of interactions between 
the traders. The condition δ>1 is crucial to model 

interactions and is essential to obtain a singularity 

(critical point) in finite time. Integrating (1) we get h (t) 

= B / (tc – t)α  with α ≡ 1 / (δ – 1)  - (2) 

 The critical time tc is determined by the initial 
conditions at some origin of time. The exponent α must 

lie between zero and one for an economic reason: 

otherwise the price would go to infinity when 

approaching tc (if the bubble has not crashed in the mean 

time). This condition translates into 2 < δ < + ∞: a 

typical trader must be connected to more than one other 

trader.  

 The critical time tc signals the death of the 

speculative bubble but tc is not the time of the crash 

because the crash could happen at any time before tc, 
even though this is not very likely. 

So  tc is the most probable time of the crash. Thus there 

exists a finite probability  

1 - tc∫to h(t) dt > 0 - (3)    of “landing” smoothly, i.e. of 
attaining the end of the bubble without crash. This 

residual probability is crucial for the coherence of the 

model, because otherwise agents would anticipate the 

crash and not remain in the market.  

 As a first-order approximation of the market 

organization, we assume that traders do their best and 

price the asset so that a fair game condition holds. 
Mathematically, this stylized rational expectation model 

is equivalent to the familiar martingale hypothesis which 

states that “in a stylised framework of a purely 

speculative asset that pays no dividends, and ignoring  

the interest rate, risk aversion, information symmetry 

and the market-clearing condition, rational expectations 

are given by: ᴪt` > t  Et [p(t`)] = p(t) - (4)  where 

Et[·] denotes the expectation conditional on information 

revealed up to time t.  Furthermore, assuming for 

simplicity: during a crash, the price drops by a fixed 

percentage κ ε (0, 1), say between 20 and 30% of the 

price increase above a reference value p1. μ is the returns 

and p(t) refers to price of the asset at time t.Then, the 
dynamics of the asset price before the crash are given by   

dp = μ(t) p(t) dt − κ[p(t) − p1]dj  - (5)    where j 

denotes a jump process whose value is zero before the 

crash and one afterwards,  μ is the returns and p(t) refers 

to price of the asset at time t. In this simplified model, 

we neglect interest rate, risk aversion, information 

asymmetry, and the market clearing condition.  

If we do not allow the asset price to fluctuate under the 
impact of noise, the solution to Equation (5) is a 

constant: p(t) = p(t0), where t0 denotes some initial time. 

p(t) can be interpreted as the price in excess of the 

fundamental value of the asset. Taking Et [dp] = 0 and Et  

[dj] = h(t)dt  on combining the equation with the 

martingale hypothesis  we get  

μ(t)p(t) = κ[p(t) − p1] h(t) - (6) 
 In words, if the crash hazard rate h(t) increases, 

the return μ increases to compensate the traders for the 

increasing risk. Plugging (6) into (5), an ordinary 

differential equation is obtained. For p(t) − p(t0) < p(t0) 
− p1, its solution is  p(t) ≈ p(t0) + κ[p(t0) – p1]  t0∫

t  h(t`) 

dt` before the crash -(7) The higher the 

probability of a crash, the faster the price must increase 

(conditional on having no crash) in order to satisfy the 

martingale (no free lunch) condition. Intuitively, 

investors must be compensated by the chance of a higher 

return in order to be induced to hold an asset that might 

crash. This effect may go against the naive 

preconception that price is adversely affected by the 

probability of the crash. Using (2) into (7) gives the 

following price law: p(t) ≈ pc – κB/β  x (tc – t)β   

before the crash -(8) where β = 1 – α ε (0, 1) and pc is 
the price at the critical time (conditioned on no crash 

having been triggered). The price before the crash 

follows a power law with a finite upper bound pc. The 

trend of the price becomes unbounded as we approach 

the critical date. This is to compensate for an unbounded 

crash rate in the next instant. Market anticipates the 

crash in a subtle self-organized and cooperative fashion, 

hence releasing precursory "fingerprints" observable in 

the stock market prices i.e. market prices contain 

information on impending crashes. The results obtained 

by  Sornette suggest a weaker form of the "weak 
efficient market hypothesis", according to which the 

market prices contain, in addition to the information 

generally available to all, subtle information formed by 

the global market that most or all individual traders have 

not yet learned to decipher and use. Instead of the usual 
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interpretation of the efficient market hypothesis in which 

traders extract and incorporate consciously (by their 

actions) all information contained in the market prices, it 

may be that the market as a whole can exhibit an 

"emergent" behavior not shared by any
 

of its 

constituents. In other words, we have in mind the 
process of the emergence of intelligent behaviors at a 

macroscopic scale of which the individuals at the 

microscopic scale have no idea. Blanchard (1979) and 

Blanchard and Watson (1982) introduced the concept of 

rational expectation (RE) bubbles, which allow for 

arbitrary deviations from fundamental prices while 

keeping the fundamental anchor point of economic 

modeling. A market crash is a “critical event” or a 

“phase transition” considering the market to be a 

physical system. At a critical point one expects a scale 

invariance to set in. A market can also be considered to 

be to a hierarchical model with investors which range 
from the individual small investor to the largest of 

mutual funds. The stocks in the market then arrange 

themselves into sectors, subsectors, industries etc - a 

fibre bundle-like model. As a rule, discrete scaling is 

connected with such hierarchical models. A 

mathematical model that encompasses all of these 

properties is that of log-periodicity. 

  

 The suggestion that log-periodicity may be 

associated with bubbles would thus provide a tool for 

their characterization and detection. In other words, the 
suggestion that the conundrum of bubble definition and 

detection could be resolved by using the log-periodic 

power law structures as one of the qualifying signatures. 

Imitation between investors and their herding behavior 

not only lead to speculative bubbles with accelerating 

overvaluations of financial markets possibly followed by 

crashes, but also to “anti-bubbles” with decelerating 

market devaluations following market peaks. There is 

thus a certain degree of symmetry between the 

speculative behavior of the “bull” and “bear” market 

regimes. 

 This degree of symmetry, after the critical time 
tc, corresponds to the existence of “anti-bubbles,” 

characterized by a power law decrease of the price (or of 

the logarithm of the price) as a function of time t>tc, 

down from a maximum at tc (which is the beginning of 

the anti-bubble) and by decelerating/expanding log-

periodic oscillations.  

 The classic example of such an anti-bubble is 

the long-term depression of the Japanese index, the 

Nikkei that has decreased along a downward path 

marked by a succession of ups and downs since its all-

time high of 31Dec1989. This is however a rather rare 
occurrence, probably because accelerating markets with 

log-periodicity often end-up in a crash, a market rupture 

that thus breaks down the symmetry (tc – t for t<tc into t 

- tc for t>tc )  Herding behavior can occur and 

progressively weaken from a maximum in “bearish” 

(decreasing) market phases, even if the preceding 

“bullish” phase ending at tc was not characterized by an 

imitation run-away. The symmetry is thus statistical or 

global in general and holds in the ensemble rather than 

for each single case individually. The decrease of the 
Nikkei index has been analyzed, starting from 1Jan. 

1990, using the first-order expression based on discrete 

scale invariance of stock indices read as Ln p (t) ≈ A1 + 

B1τ
α + Cτα Cos (ώ ln(τ) – Φ1)  - (2) where τ = t - tc 

, tc is the time of the beginning of the anti-bubble.  The 

inclusion of a non-linear quadratic term in the Landau 

expansion leads to the second-order log-periodic 

formula 

- (3) where τ = tc − t. The log-periodic frequency ω is 

related to the preferred scaling ratio by Ln λ = 2ᴨ/ω 

 These two equations (2, 3) describe the 

evolution of the price prior to a time tc, where a large 

crash may occur, i.e., t < tc. Equation 2 has been found 

to describe the price evolution up to 3 years prior to 

large crashes and eq. 3 up to 8 years. 

 
 In the figure, we see the logarithm of the 

Nikkei from 31 Dec. 1989 until 31 Dec. 1998. The fits 

are equations (2), (3) respectively with all nonlinear 
variables free for the two equations and where the 

interval used for the first equation is until mid-1992 and 

for the second equation until mid-1995. Not only do the 

equations (2) and (3) agree remarkably well with respect 

to the parameter values produced by the fits, but they are 

also in good agreement with previous results obtained 

from stock market and foreign exchange bubbles with 

respect to the values of exponent α. Furthermore, the 

value obtained for ω ≈ 4.9 correspond to a scaling ratio λ 

≈ 3.6 

 

Application and Implication of Log-Periodic theory 
 The Bombay Stock Exchange is one of the 

oldest in Asia and is also the biggest stock exchange in 

the world in terms of listed companies with 4,800 listed 
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companies as of August 2007. It is therefore a prime 

indicator of India‟s growth and economic prosperity. 

Recently, India has experienced phenomenal economic 

growth coupled with a high influx of foreign 

institutional investment (FII) as well as foreign direct 

investment (FDI). These investors have invested large 
sums of money in the Indian market and have a 

considerable influence on the market. If these players 

were to behave irrationally or respond to other 

exogenous factors (like the US subprime crisis in early 

2008) in ways that would be detrimental to the Indian 

market, the dangers of the Indian market crashing are 

indeed high. Therefore it is of importance to check the 

stability of the Indian market at the present moment, and 

log-periodicity seems to be a rational testing 

methodology, both for practical as well as academic 

purposes 

 
 The following is a comprehensive analysis of 

the Bombay Stock Exchange for any log –periodic 

trends that might be present in it. It is based partly on 

my understanding of the various papers that I have had 

the fortune to study and some assumptions made by me. 

 

Specifications 

 Econophysics is a field wherein the researchers 

are mostly physicists. Due to their insufficient 

knowledge of economics, they are prone to err while 

interpreting the results that they obtain. The assumptions 
that they make while hypothesizing models may also not 

be in line with economic theory. Furthermore physicists 

are always in search of universal laws which may not 

always be the case in the social sciences. A law that 

applies to one system may not be relevant in another. 

Keeping these points in mind I have tried my best to 

maintain the spirit of both these disciplines.  

I have chosen to fit the acquired data with the given 

Landau function; however my assumptions of the 

constants are not without economic justification. In 

some other cases however, the assumed values are 

nothing more than accidents that produced results that 
are hard to ignore. I have presented these results because 

they open up scope for further research and analysis. 

The following are the various cases (Some cases that did 

not show any semblance to any kind of fit that might 

seem a logical fit to the data used have not been 

presented) 

 

For Monthly Data 

 

CASE1 

a) On the Y axis we have the monthly average 
sensex value 

b) On the X axis t runs from 1 to 208(tc). This is 

not as required by the equation, however this 

type of fit has also been followed in all other 

publications on this topic, and thus has been 

tested for here as well 

c) A = 1st value of the monthly average sensex 

value, B = slope of trend line plotted for the 

monthly average sensex value 

 

General model 

 f(x) = 

990.72+(x^alpha)*(41.75+C*cos(omega*log(x)-

 phi)) 

where f(x) is the monthly average sensex value and 

x = t (time) 

 

 

CASE2 

a) On the Y axis we have the natural logarithm of 

the monthly average sensex value 

b) On the X axis t runs from 1 to 208(tc). This is 
not as required by the equation; however this 

type of fit has also been followed in all other 

publications on this topic, and thus has been 

tested for here as well. 

c) A = 1st value of the natural logarithm of the 

monthly average sensex value, B = slope of 

trend line plotted for the natural logarithm of 

the monthly average sensex value 

General model 

f(x) = 6.898431952 + (x^alpha) * (0.007 + C * 

cos (omega * log (x) -phi)) 
where f(x) is the monthly average sensex value 

and x = t (time) 

 

CASE3 

a) On the y axis we have the monthly average 

sensex value 

b) On the x axis t runs from 208(tc) to 1. This is as 

required by the equation 

c) A = 1st value of the monthly average sensex 

value, B = slope of trend line plotted for the 

monthly average sensex value 

 

General model 

f(x) = 

990.72+(x^alpha)*(41.75+C*cos(omega*log(x)

-phi)) 

where f(x) is the monthly average sensex value 

and x = t (time) 

 

CASE4 

a) On the y axis we have the monthly average 

sensex value 

b) On the x axis t runs from 208(tc) to 1. This is as 
required by the equation 

c) A = 1st value of the revered monthly average 

sensex value, B = slope of trend line plotted for 

the reverse monthly average sensex value. This 
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assumption has no economics significance, but 

was chosen simply because it gives a better fit 

to the curve 

General model 

f(x) = 17676.54 +(x^alpha)*(-

45.23+C*cos(omega*log(x)-phi)) 
where f(x) is the monthly average sensex value 

and x = t (time) 

 

CASE 5   

 On the y axis we have the natural logarithm of 

the monthly average sensex value. On the x axis t runs 

from 208(tc) to 1. This is as required by the equation: A 

= 1st value of the natural logarithm of the monthly 

average sensex value, B = slope of trend line plotted for 

the natural logarithm of the monthly average sensex 

value.  General model f(x) = 6.898431952  

+(x^alpha)*(0.007+C*cos(omega*log(x)-phi)) where 
f(x) is the monthly average sensex value and x = t 

(time). 

 

CASE 6   

 On the y axis we have the natural logarithm of 

the monthly average sensex value. On the x axis t runs 

from 208(tc) to 1. This is as required by the equation A = 

1st value of the revered natural logarithm of the monthly 

average sensex value, B = slope of trend line plotted for 

the natural logarithm of the reverse monthly average 

sensex value. This assumption has no economics 
significance, but was chosen simply because it gives a 

better fit to the curve. General model f(x) = 9.6945   

+(x^alpha)*(-0.007+C*cos(omega*log(x)-phi)) where 

f(x) is the monthly average sensex value and x = t (time) 

 

For Daily Data  

 

CASE1 

a) On the y axis we have the daily average sensex 

value 

b) On the x axis t runs from 1 to 1338(tc). This is 

not as required by the equation, however this 
type of fit has also been followed in all other 

publications on this topic 

c) A = 1st value of the daily average sensex value, 

B = slope of  trend line plotted for the daily 

average sensex value 

General model 

f(x) = 3388.94 

+(x^alpha)*(11.12+C*cos(omega*log(x)-phi))  

where f(x) is the daily average sensex value 

and x = t (time) 

 

CASE2 

a) On the y axis we have the natural logarithm of 

the daily average sensex value 

b) On the x axis t runs from 1 to 1338(tc). This is 

not as required by the equation, however this 

type of fit has also been followed in all other 

publications on this topic 

c) A = 1
st
 value of the natural logarithm of the 

daily average sensex value, B = slope of trend 
line plotted for the natural logarithm of the 

daily average sensex value 

 

General model 

 

f(x) = 8.128270992  

+(x^alpha)*(0.001+C*cos(omega*log(x)-phi))  

where f(x) is the daily average sensex value 

and x = t (time) 

 

CASE 3 

a) On the y axis we have the daily average sensex 
value 

b) On the x axis t runs from 1338(tc) to 1. This is 

as required by the equation 

c) A = 1st value of the daily average sensex value, 

B = slope of trend line plotted for the daily 

average sensex value.  

 

General model 
f(x) = 3388.94 
+(x^alpha)*(11.12+C*cos(omega*log(x)-phi))  

where f(x) is the daily average sensex value 

and x = t (time) 

 

CASE 4 

a) On the y axis we have the daily average sensex 

value 
b) On the x axis t runs from 1338(tc) to 1. This is 

as required by the equation 

c) A = 1st value of reversed daily average sensex 

value, B = slope of trend line plotted for the 

reversed daily average sensex value.  

 

General model 

f(x) = 17936+(x^alpha)*(-11.16 

+C*cos(omega*log(x)-phi))  

where f(x) is the daily average sensex value 

and x = t (time) 
 

CASE 5 
a) On the y axis we have the natural logarithm of 

the daily average sensex value 

b) On the x axis t runs from 1338(tc) to 1. This is 

as required by the equation 

c) A = 1st value of the natural logarithm of the 

daily average sensex value, B = slope of trend 

line plotted for the natural logarithm of the 

daily average sensex value.  
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General model 

f(x) = 8.128270992  

+(x^alpha)*(0.001+C*cos(omega*log(x)-phi))  

where f(x) is the daily average sensex value 

and x = t (time) 

 

CASE 6   

 On the y axis we have the natural logarithm of 

the daily average sensex value.  On the x axis t runs 

from 1338(tc) to 1. This is as per required by the 

equation.  A = 1st value of the natural logarithm reversed 

daily average sensex value, B = slope of the trend line 

plotted for the natural logarithm of the reversed daily 

data. 

 

 General model 

  F(x) = 9.7945+(x^alpha)*(-

 0.001+C*cos(omega*log(x)-phi)) where f(x) is 
the  daily average sensex value and x = t (time) 

 

II. ANALYSIS OF LOG-PERIODIC TRENDS IN 

THE BOMBAY STOCK EXCHANGE 

 

Methodology 

Step 1: Average of monthly and daily, market high and 

low were taken as a measure of market volatility (Using 

Microsoft Excel)-Step 2: Natural logarithm of theses 

average values were taken (Using Microsoft Excel) -

Step 3: The crash date was estimated for both the daily 
as well as monthly data sets. Step 4: Curve fitting of the 

data to the 1st order Landau expansion was carried out 

using MATLAB by setting the values of A and B (not in 

all cases) from which the values of α, ω, Φ and C were 

estimated. Step 5: The hypothesis of log-periodicity was 

accepted or rejected based on the estimated value of α. If 

α was estimated to lie between 0 and 1, the hypothesis of 

log-periodicity was accepted, else it was rejected. 

 

Assumptions Made: The monthly data set was taken 

from January 1991 because log periodic behavior is 

expected to have a better fit when data is taken for 
longer time spans. The crash date for the monthly data 

set was assumed to be, March 2008 (tc)because the 

average Sensex value dropped from 17676.54 to 

16228.28, a drop of 8.19%, the maximum in the given 

time period. Although this does not satisfy the afore 

mentioned definition of a market crash wherein it was 

defined a fall in the Sensex for over 10%, this working 

assumption can be made because we are testing for the 

presence of log-periodic trends in the market rather than 

estimate the time of the crash.  The daily data was taken 

from January 2nd 2003 because it is from the year 2003 
that the market shows a long run bullish trend. This does 

not contradict our starting choice of January 1991 as the 

starting date for the monthly data because of the time 

scale invariance that the market is said to exhibit 

according to theory. The crash date for the daily data set 

was assumed to be, January 21st  2008 (tc) because the 

average Sensex value dropped from 17935.54 to 

16200.50, a drop of 9.67%, the maximum in the given 

time period. This gives 208 data points. Although this 

does not satisfy the afore mentioned definition of a 
market crash wherein it was defined a fall in the Sensex 

for over 10%, this working assumption can be made 

because we are testing for the presence of log-periodic 

trends in the market rather than estimate the time of the 

crash. The curve fitting toolbox in the software 

MATLAB R2007A is robust enough to perform the 

necessary curve fitting operations. The formulae used 

for curve fitting were: I (t) = A + B τα + Cτα Cos (ώ ln(τ) 

- Φ1) and Ln I (t) = A + B τα + C τα Cos (ώ ln(τ) - Φ1) . 

The values of A and B were estimated where A was 

assumed to be the first value of the average Sensex 

value and B the slope of the trendline that was fitted for 
the data (using Microsoft Excel). The estimate of C is 

assumed to represent the extent of log-periodic behavior 

present in the fit. The value of Φ is assumed to represent 

the whether the market is undergoing an initial upturn or 

downturn in view of the time scale considered. 

 

The following analysis has been done for monthly 

data for various cases as mentioned.  

 

CASE1  Specification: On the Y axis we have the 

monthly average sensex value. On the X axis t runs from 
1 to 208(tc). This is not as required by the equation, 

however this type of fit has also been followed in all 

other publications on this topic, and thus has been tested 

for here as well. A = 1st value of the monthly average 

sensex value, B = slope of trend line plotted for the 

monthly average sensex value 

General model   f(x) = 

990.72+(x^alpha)*(41.75+C*cos(omega*log(x)-phi))  

where f(x) is the monthly average sensex value and x = t 

(time) 

 

 
 

Results obtained:  Coefficients (with 95% confidence 

bounds): C = 41.71 ; alpha = 2.266; omega = 0.09055; 

phi = -2.701 Interpretation:   alpha>1 thus the data 

does not exhibit log – periodicity 
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CASE2  Specification: On the Y axis we have the 

natural logarithm of the monthly average sensex value 

.On the X axis t runs from 1 to 208(tc). This is not as 

required by the equation; however this type of fit has 

also been followed in all other publications on this topic, 

and thus has been tested for here as well. A = 1st value 
of the natural logarithm of the monthly average sensex 

value, B = slope of trend line plotted for the natural 

logarithm of the monthly average sensex value. General 

model   f(x) = 6.898431952 

+(x^alpha)*(0.007+C*cos(omega*log(x)-phi))  where 

f(x) is the monthly average sensex value and x = t (time)  

 

 
 

Results obtained: Coefficients (with 95% confidence 

bounds):  C = 14.19; alpha = 0.2711 ; omega =    

0.004001  ; phi = 1.559   

Interpretation: Alpha is between 0 and 1, thus there is 

log periodicity. The Value of C is high, at 14.19 which 

show the importance of the log-periodic character in the 

data . According to this fit, the market is highly unstable 

and is on the verge of a crash/has crashed according to 
the assumption of the crash date 

Comments:  The graph that has been plotted here is in 

doubt because the model predicts the presence of log-

periodicity; however the graph shows no such trends.  

The estimated value of omega is very close to zero, 

thereby causing the cosine part of the Landau function to 

lose its periodicity. The cosine part of the function 

behaves in a manner very similar to the „Bτα „part of the 

equation. 

CASE3  Specification:  On the y axis we have the 

monthly average sensex value. On the x axis t runs from 
208(tc) to 1. This is as required by the equation  A = 1st 

value of the monthly average sensex value, B = slope of 

trend line plotted for the monthly average sensex value 

General model   f(x) = 

990.72+(x^alpha)*(41.75+C*cos(omega*log(x)-phi)) 

where f(x) is the monthly average sensex value and x = t 

(time) 

 

 
 

Results obtained:  Coefficients (with 95% confidence 

bounds): C = 18.05  (-6.236e+004, 6.239e+004) 

alpha = 0.8925  (-356.5, 358.3);  omega =     -0.2942  (-
503.1, 502.5); phi =       7.009  (-3816, 3830) 

 

Interpretation:  1. Alpha is between 0 and 1. Thus the 

data does show log-periodic nature. 2. The value of C is 

high at 18.05, which shows the importance of the log-

periodic character in the data. 3. According to this fit, 

the market is highly unstable and is on the verge of a 

crash/has crashed according to the assumption of the 

crash date. 

 

Comments: Even though the results show the presence 
of log-periodicity, the graph does not seem to exhibit a 

log-periodic trend. This is because of the choice of A 

and B, due to which the fit is trying to fall into an 

overall trend before going into the perturbations. This is 

evident from the fact that the estimated value of omega 

is close to zero. This proves that the best estimate for the 

its value is 0, making the value of cos(0) as 1. This 

would imply an almost linear fit similar to the Bτα part 

of the equation. Thus this choice of A and B is absurd 

and irrelevant 

 

CASE4  Specification:  On the y axis we have the 
monthly average sensex value.  On the x axis t runs from 

208(tc) to 1. This is as required by the equation  A = 1st 

value of the revered monthly average sensex value, B = 

slope of trend line plotted for the reverse monthly 

average sensex value. This assumption has no 

economics significance, but was chosen simply because 

it gives a better fit to the curve 

General model   f(x) = 17676.54 +(x^alpha)*(-

45.23+C*cos(omega*log(x)-phi)) where f(x) is the 

monthly average sensex value and x = t (time) 
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Results obtained:  Coefficients (with 95% confidence 

bounds): C = 40.3; alpha = 1.529;omega = 0.878   

phi = 4.672   

Interpretation: 1. The value of alpha is >1. Thus the 

data does not exhibit log-periodic behavior 

Comments: Compared to the previous fit, this fit is 

more accurate. Here the values of A and B have been 

chosen to reflect the choice of direction that the time 

dimension has taken i.e. backwards (tc to 1) as dictated 

by theory. 
CASE 5  Specification: On the y axis we have the 

natural logarithm of the monthly average sensex value 

a) On the x axis t runs from 208(tc) to 1. This is as 

required by the equation.  A = 1st value of the 

natural logarithm of the monthly average 

sensex value, B = slope of trend line plotted for 

the natural logarithm of the monthly average 

sensex value.  

General model   f(x) = 6.898431952  

+(x^alpha)*(0.007+C*cos(omega*log(x)-phi))  where 

f(x) is the monthly average sensex value and x = t (time) 

 

 
 

Results obtained:  Coefficients (with 95% confidence 

bounds): C = 23.88; alpha = -0.525;omega =      0.1259 

;phi = 1.479   

Interpretation: 1. The value is alpha<0. Thus the data 
does not exhibit log-periodic behaviour. 

 

Comments:  Even though the results show the presence 

of log-periodicity, the graph does not seem to exhibit a 

characteristic log-periodic trend. This is because of the 

choice of A and B due to which the fit is trying to fall 

into an overall trend before going into the perturbations. 

This is evident from the fact that the estimate value of 

omega is close to zero. This proves that the best estimate 

for the its value is 0, making the value of cos(0) as 1. 

This would imply an almost linear fit similar to the Bτα 

part of the equation. Thus this choice of A and B is 

absurd and irrelevant. 

 

CASE 6-  Specification: On the y axis we have the 

natural logarithm of the monthly average sensex 

value.On the x axis t runs from 208(tc) to 1. This is as 

required by the equation. A = 1st value of the revered 

natural logarithm of the monthly average sensex value, 

B = slope of trend line plotted for the natural logarithm 

of the reverse monthly average sensex value. This 

assumption has no economics significance, but was 

chosen simply because it gives a better fit to the curve 
 

General model f(x) = 9.6945   +(x^alpha)*(-

0.007+C*cos(omega*log(x)-phi)) where f(x) is the 

monthly average sensex value and x = t (time)  

 

 
 

Results obtained:  Coefficients (with 95% confidence 

bounds): C =      0.3171; alpha =      0.3362;omega =      

0.6574; phi =     -0.2144   

 

Interpretation:  1. Alpha is between 0 and 1. Thus the 

data does show log-periodic nature. 2. The value of C is 
low at 0.3171, which shows the growing importance of 

the log-periodic character in the data. 3. According to 

this fit, the market is slightly unstable and is on the 

verge of a crash/has crashed according to the assumption 

of the crash date. Comments: Compared to the previous 

fit, this fit is more accurate. Here the values of A and B 

have been chosen to reflect the choice of direction that 

the time dimension has taken i.e. backwards (tc to 1) as 

dictated by theory. 
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