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I. INTRODUCTION 

The digital landscape is unique and constantly 

changing, creating room for cyber-attacks. Amidst 

the rise of these security threats and vulnerabilities, it 

has become crucial to identify it and take the 

appropriate action. With the advancements in the 
digital landscape, we need better security tools to 

combat different kinds of threats. By 2019, there was 

a 13% rise in pre-installed malware and adware on 

Android devices, and what’s even more shocking, the 

Macs, which are known for its durable security 

barriers, had more threats detected than Windows. 

These attacks play with one's data, money and 

privacy. This urges the large scale companies and 

customers to effectively know where they are at 

alerting, blocking and detecting threats. 

Advance Persistent Threat(APT) is a targeted 
attack in which an intruder gains access to a network 

to monitor network activity and steal data rather than 

to cause damage to the network or organization. APT 

reports contain detailed malware behaviour analysis 

of their onset and traversal through our system when 

under attack. Despite the extant repositories of these 

malware [2], it becomes difficult for security 

researchers to skim through these huge databases to 

find useful content. Reading through the massive 

documents, make it impossible to analyse and 

quickly act upon the adversary. There is a need to be 

able to automate this process without having to read 
through the entire report. 

The advent of these malware threat reports 

engenders the security analysts to make use of natural 

language processing (NLP) algorithms, to identify, 

cluster, analyse the pattern of malware[3]. Keeping 

this in mind, we propose some malware text isolation 

techniques to detect such sentences, and further 

develop a relationship between them. 

Upon delineating sentences depicting malware [4] 

behaviour capabilities from the large volume of threat 

reports will help security analysts to quickly decide 

evasion strategies from the threat landscape, 

clustering malware [5] which have similar behaviour, 
learn about the security vulnerabilities of the 

enterprise and strengthen the system from similar 

future attacks. 

Managing the extraction of such sentences from 

large corpora, we can generalize and cluster similar 

Malwares together, further helping new researches to 

analyse and reduce the vulnerabilities in the networks. 

Albeit the applications are endless, not much work 

has been done in conjunction with applying Natural 

Language Processing and Malware [6] Analysis as in 

the following references. 

 
For example, the following sentence does not 

depict malware behaviour: 

 

Once decoded, FireEye identified the payload as a 

poison ivy variant. 

 

Whereas, the next sentence is describing the 

course of action upon attack by an intruder: 

 

The backdoor contained versioning info which 

attempted to masquerade as a Google Chrome File. 
 

Our main contributions are: 

1) We introduce transformers approaches like 

ULMFiT, BERT, XLNETs for the malware 

characteristics classification task. 

2) We discuss different sampling approaches to the 

class imbalance. 

3) We make an opening attempt in investigating 

the effectiveness of transfer learning for the problems 

in the domain of security. 

II. RELATED WORK 

In 2018, SemEval organized a shared task called 
SecureNLP on semantic analysis for cybersecurity 

texts 1. Task 1 was a binary classification task of 

sentences extracted from APT reports which had 

malware behaviour or not. In this section, we briefly 

describe the approaches by the competition for the 

task. 

Using Glove embeddings proposed by Pennington 

[7], Villani [8], outperformed the rest of the 

competition in Subtask 1 only. With Long Short 
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Term Memory network (LSTM), they generated 

token representation from the characters. Following 

that, a binary classifier was trained with Bi-

directional Long Short-Term Memory network 

(BiLSTM). 

Flytxt NTNU [9] assembled an ensemble of 
Conditional Random Field(CRF) and Naive Bayes 

classifier for SubTask 1. The CRF model used 

lexical-based and context-based features. If the CRF 

predicts any “BIO” token labels(SubTask2) for the 

sentence, the sentence is considered relevant in 

SubTask 1. 

DM-NLP [10] used the predicted output labels 

from SubTask 2 to get the predictions for SubTask 1. 

They model this task as a sequence labelling task and 

used a hybrid approach with BiLSTM-CNNCRF as 

mentioned in [11]. HCCL [12] performed a very 

similar approach to team DM-NLP using the same 
BiLSTM-CNN-CRF architecture. They used 

relatively simpler Part-Of-Speech(POS) features, 

instead of the more complicated linguistic features 

like the former team. They aim to build an end-to-end 

system without any feature engineering or data 

preprocessing. Digital Operatives [13] utilized a 

passive-aggressive classifier Reference [14], which 

has comparable cost and performance with the linear 

Support Vector Machine classifier, for SubTask 1. 

The features they applied include POS, dependency 

links, and bigrams. TeamDL [15] built a 
convolutional neural network with original 

gloveembeddings. UMBC [16] used a Multilayer 

Perceptron model for the submission of SubTask 1. 

Inspired from the tasks, Ravikiran [17] has proposed 

a multimodal dataset with QR-codes and Malware 

Text classification. 

In this paper, we particularly focus on language 

modelling approach for the malware behaviour 

classification. The following section describes our 

approaches. 

III. OUR METHODOLOGY 

In this section, we aim to discuss in detail our 
approach to solve subtask 1. After analysing the 

previously designed models, our team worked on 

some new approaches towards the challenge. The 

following section discusses the details of the steps 

used for the construction of these experiments. 

 

A. Preprocessing 

We preprocessed the models by removing 
punctuations, numbers, and did the following 

modifications: 

• .exe like copy.exe files to [EXE]. 

• Buffer memory and Stack memory addresses like 

0x20000001 are replaced by [ADDRESS]. 

•Malware names like 

TrojanDropper.Win32.Agent.life replaced by 

[MALWARE]. 

• .bat, .doc, .txt file names replaced by [FILE]. 

• File paths to [PATH].  

• IP Addresses to [IP]. 

We further removed texts which were not in 

English and had only numbers. 

 

B. SubTask1: Malware Threat Classification 

This section gives an in-depth detail of the 

transformer models used for the classification task for 

SubTask1. The models aimed to extract the 

cybersecurity-related terms from a sentence and then 

classify them into one of the two classes: malware 

related or non-malware related. Figure 1 shows the 

model architecture. 

 
Fig. 1 Model Architecture 

 

1)  ULMFit:[18] is short for Universal Language 

Model Fine-Tuning for Text Classification. The 

authors’ brought out the disadvantages of using 

traditional word embedding approaches [19] directly 

with deep neural networks. The random initialization 

of Out of Vocabulary (OOV) Words which disrupts 

the pre-trained layers and causes catastrophic 

forgetting. To overcome that the paper discusses 

different approaches of gradual freezing and 

discriminate fine-tuning. The ULMFiT’s backbone is 
divided into the following stages:  

1) Language Model pre-training 

2) Language Model fine-tuning 

3) Classifier Model fine-tuning 

It is a universal model as it works with varying 
document sizes, requires no custom feature 

engineering nor preprocessing, and uses a single 

architecture. AWD-LSTM language model is used in 

the architecture which comprises a conventional 

LSTM with no added attention. We tried 

experimenting with the data for the language model, 

adding domain-specific data. But this addition didn’t 
account for any improvement. 

ULMFiT’s conventional parameters of fast.ai were 
used to train the language models. Finally, we find 

the best hyperparameters by learning rate finder and 

train the classifier over the task data. 

The problem with ULMFiT is the words in a 

sentence are sequentially processed and still does not 

capture the true meaning of the context. 

2)  BERT:Bidirectional Encoder Representations 

from Transformers (BERT) [20] was the first 

language model which is deeply bidirectional, 
unsupervised language representation, pre-trained 
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using only a plain text corpus. This model takes 

theentire context and processes it simultaneously, 

capturing the true context of a word. 

Transformer has two mechanisms - an encoder and 

a decoder. Encoder reads the text input and the 

Decoder gives a prediction for the intended task. 
BERT makes use of the Transformer’s Encoder 

Architecture, which has an attention mechanism that 

learns contextual relations between words in a 

sentence. 

It performs two tasks for language modelling: 

1) Masked Language Modelling Bert randomly 
[MASKS] a word and predicts it using its context 

from left and right simultaneously. This masked 

language model (MLM) learns to model relationships 

between words and sentences. 

2) Next Sentence Prediction Model This model 

takes two sentences as its input S1 and S2, and 
verifies whether S2 follows S1, capturing the 

relationship between sentences. 

For this challenge, we have used the pre-trained 
Hugging Face implementation of the BERT-base 

model and fine-tuned it for our task dataset. 

 

3)  XLNets:XLNET [21] has a very similar 

architecture, as of BERT. It uses a different approach 

of masking and uses Transformer XL model instead 

of a Transformer model. Instead of masked language 

modelling, XLNET uses permutation language 

modelling (PLM). It blends the concept of 
autoregressive models and bidirectional context 

modelling. PLM is the idea of capturing a 

bidirectional context by training an autoregressive 

model on all possible permutation of words in a 

sentence. Instead of fixed left-right or right-left 

modelling, XLNET maximizes expected log-

likelihood over all possible permutations of the 

sequence. In expectation, each position learns to 

utilize contextual information from all positions 

thereby capturing bidirectional context. No [MASK] 

is needed and input data need not be corrupted. 

III. EVALUATION 

This section gives a detailed overview of the 

dataset introduced in the SubTask1, Semeval Task 8: 

SecureNLP Challenge. Since the data was highly 

imbalanced we tried various undersampling and 

oversampling approaches. This section concludes 

with details of hyperparameters used, metric chosen 

for evaluation and the results obtained. 
 

Table I Dataset 
 Documents Sentence 

Train 65 9,424 
Dev 5 1,213 

SubTask1 test 5 618 

Total 75 11,250 

A. Dataset 

The total statistics of the dataset are shown in 

Table I. The training data for this shared task 

contains 9,424 sentences, the validation data contains 

1,213 sentences, and test data has 618 test sentences. 

Figure 2 shows the huge class imbalance between 

malware related/non-malware related sentences. 

 
Fig. 2.  Dataset Frequency 

B. Metrics 

The evaluation metric chosen by the Challenge to 

evaluate the performance of the malware 
classification task was f1 score. We have computed 

the Precision and Recall as well. Precision is the 

fraction of relevant instances among the total 

retrieved instances. Recall is the fraction of relevant 

instances retrieved over the total amount of relevant 

instances. Precision is computed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall is computed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score is computed using precision and recall as 
follows: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The systems were learned from the training 

validation data and tested on the evaluation data. 

 
Fig. 3.  Sampling Ratio 

C. Sampling 

Now that we know how to set up the evaluation 

scheme and what metrics to choose for classification 

problems with imbalanced data, we apply some 
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techniques to account for class imbalance. The most 

straightforward technique is to balance the data by 

resampling: 

1) Down-sampling (Under sampling) the majority 

class 

2) Up-sampling (Over sampling) the minority class 
 

Without resampling the data, one can also make 

the classifier aware of the imbalanced data by 

incorporating the weights of the classes into the cost 

function. Intuitively, we want to give higher weight 

to minority class and lower weight to the majority 

class. We have tried class weight techniques for 

BERT. While training the Language Model for 

ULMFiT, We observed that fine-tuning the language 

model on a larger dataset didn’t provide much 

improvement. For more data, we scraped threat 

reports from MalwareTextDB1.0. We finetuned the 

language model over 6200 (scraped data) + 11,250 

(original data). For scraping, we used the tokenized 
data and assigned a sentence class 0 when all the BIO 

token-indexes were O, else we assigned it to class 1. 

In Table III we show the hyperparameters which 

yielded good performance models. In Figure 2, we 

show the different sampling ratios used against the 

F1 Score predicted for both oversampling and 

undersampling models using BERT-cased. 

 

Table II Experimental Results on SubTask 1 

Model Remarks Epochs Precision Recall F1 score 

BERT Oversampling 1:10 6 0.37 0.85 0.51 

BERT Oversampling 1:2 10 0.31 0.85 0.46 

BERT Oversampling 1:2 6 0.32 0.96 0.48 

BERT Oversampling 1:2 3 0.33 0.93 0.48 

BERT No sampling 5 0.49 0.55 0.52 

BERT Undersampling 1:1 5 0.62 0.28 0.38 

XLNET Undersampling 1:2 5 0.29 0.89 0.44 

XLNET No sampling 10 0.36 0.64 0.46 

XLNET No sampling 4 0.26 0.88 0.41 

ULMFIT No sampling, LM 
with same dataset 

20 0.74 0.25 0.38 

ULMFIT No sampling, LM 
with same dataset 

30 0.42 0.48 0.45 

ULMFIT No sampling, LM 
with same dataset 

50 0.30 0.48 0.37 

ULMFIT LM with larger 

dataset 
5-10 0.90 0.16 0.27 

 

D. Results 

Table II shows the comparison of F1 scores on test 
data for SubTask1. The BERT-cased model showed 

the best performance amongst the different 

transformers. Figure 3, presents the performance of 

the BERT-cased model on the training data for 

different oversampling and under sampling ratios. 

We observed that oversampling performance was 

better than under sampling. However, the results 

without any sampling were the best one. Therefore, 

the model that we used on the test data was trained on 

the full training dataset maintaining the given ratio of 

malware:non-malware tweets. Table III shows the 

hyperparameters of the best running models. 
 

 
Table III Hyperparameters of Best Performing Models 

Model Hyperparameters 

BERT 
ULMFit 

epochs=5, batch size=32, learning rate=3e-5 
epochs= 30, batch size=32, learning rate = 

2e-6 

 

 

 

 

V. CONCLUSIONS 

In this paper, we present a transformer approach 

targeting SemEval 2018 shared task on Semantic 

Extraction from CybersecUrityREports using Natural 

Language Processing (SecureNLP). We were able to 
produce a model that generates feasible results for 

estimating the relevance of sentences in the context 

of security information. Our algorithm’s efficacious 

performance will be fruitful for the security analysts 

who were our intended end-users. With the help of 

our research, we can accentuate the sentences in the 

APT reports. Our end users can quickly skim through 

large reports and improve their enterprises’ evasion 

and prevention strategies in times of adversaries. 

We believe our research can take a new direction if 

we improve more on the quality of the dataset. We 

worked on the available datasets but in the future, we 
plan on working on a better dataset. We plan to make 

use of the large model of BERT which has more 

number of attention layers in it and thus is expected 

to perform better than the base model used in our 

approach. We also plan to explore other SubTasks, 

which revolve on entity extraction and linking with 
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the use of these transformers and make an end-to-end 

system. 
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