
International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 5 - May 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 33

Devising Malware Characteristics using

Transformers

Simra Shahid
#1

, Tanmay Singh
#2

, Yash Sharma
#3

, Kapil Sharma
*4

#Final Year student, Department of Information Technology, Delhi Technological University, Delhi, India
*Head of Department,Department of Information Technology, Delhi Technological University, Delhi, India

Abstract—In this paper, we present our approach of

finding relevant malware behaviour texts from

Malware Threat Reports as described by Lim [1].

Our main contribution is the opening attempt of

Transfer Learning approaches, and how they
generalize for the classification tasks like malware

behaviour analysis.

Keywords —Transformer Models, BERT, XLNETS,

ULMFIT, Malware Characteristics, APT reports,

binary classification, sampling, Transfer Learning.

I. INTRODUCTION

The digital landscape is unique and constantly

changing, creating room for cyber-attacks. Amidst

the rise of these security threats and vulnerabilities, it

has become crucial to identify it and take the

appropriate action. With the advancements in the
digital landscape, we need better security tools to

combat different kinds of threats. By 2019, there was

a 13% rise in pre-installed malware and adware on

Android devices, and what’s even more shocking, the

Macs, which are known for its durable security

barriers, had more threats detected than Windows.

These attacks play with one's data, money and

privacy. This urges the large scale companies and

customers to effectively know where they are at

alerting, blocking and detecting threats.

Advance Persistent Threat(APT) is a targeted
attack in which an intruder gains access to a network

to monitor network activity and steal data rather than

to cause damage to the network or organization. APT

reports contain detailed malware behaviour analysis

of their onset and traversal through our system when

under attack. Despite the extant repositories of these

malware [2], it becomes difficult for security

researchers to skim through these huge databases to

find useful content. Reading through the massive

documents, make it impossible to analyse and

quickly act upon the adversary. There is a need to be

able to automate this process without having to read
through the entire report.

The advent of these malware threat reports

engenders the security analysts to make use of natural

language processing (NLP) algorithms, to identify,

cluster, analyse the pattern of malware[3]. Keeping

this in mind, we propose some malware text isolation

techniques to detect such sentences, and further

develop a relationship between them.

Upon delineating sentences depicting malware [4]

behaviour capabilities from the large volume of threat

reports will help security analysts to quickly decide

evasion strategies from the threat landscape,

clustering malware [5] which have similar behaviour,
learn about the security vulnerabilities of the

enterprise and strengthen the system from similar

future attacks.

Managing the extraction of such sentences from

large corpora, we can generalize and cluster similar

Malwares together, further helping new researches to

analyse and reduce the vulnerabilities in the networks.

Albeit the applications are endless, not much work

has been done in conjunction with applying Natural

Language Processing and Malware [6] Analysis as in

the following references.

For example, the following sentence does not

depict malware behaviour:

Once decoded, FireEye identified the payload as a

poison ivy variant.

Whereas, the next sentence is describing the

course of action upon attack by an intruder:

The backdoor contained versioning info which

attempted to masquerade as a Google Chrome File.

Our main contributions are:

1) We introduce transformers approaches like

ULMFiT, BERT, XLNETs for the malware

characteristics classification task.

2) We discuss different sampling approaches to the

class imbalance.

3) We make an opening attempt in investigating

the effectiveness of transfer learning for the problems

in the domain of security.

II. RELATED WORK

In 2018, SemEval organized a shared task called
SecureNLP on semantic analysis for cybersecurity

texts 1. Task 1 was a binary classification task of

sentences extracted from APT reports which had

malware behaviour or not. In this section, we briefly

describe the approaches by the competition for the

task.

Using Glove embeddings proposed by Pennington

[7], Villani [8], outperformed the rest of the

competition in Subtask 1 only. With Long Short

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 5 - May 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 34

Term Memory network (LSTM), they generated

token representation from the characters. Following

that, a binary classifier was trained with Bi-

directional Long Short-Term Memory network

(BiLSTM).

Flytxt NTNU [9] assembled an ensemble of
Conditional Random Field(CRF) and Naive Bayes

classifier for SubTask 1. The CRF model used

lexical-based and context-based features. If the CRF

predicts any “BIO” token labels(SubTask2) for the

sentence, the sentence is considered relevant in

SubTask 1.

DM-NLP [10] used the predicted output labels

from SubTask 2 to get the predictions for SubTask 1.

They model this task as a sequence labelling task and

used a hybrid approach with BiLSTM-CNNCRF as

mentioned in [11]. HCCL [12] performed a very

similar approach to team DM-NLP using the same
BiLSTM-CNN-CRF architecture. They used

relatively simpler Part-Of-Speech(POS) features,

instead of the more complicated linguistic features

like the former team. They aim to build an end-to-end

system without any feature engineering or data

preprocessing. Digital Operatives [13] utilized a

passive-aggressive classifier Reference [14], which

has comparable cost and performance with the linear

Support Vector Machine classifier, for SubTask 1.

The features they applied include POS, dependency

links, and bigrams. TeamDL [15] built a
convolutional neural network with original

gloveembeddings. UMBC [16] used a Multilayer

Perceptron model for the submission of SubTask 1.

Inspired from the tasks, Ravikiran [17] has proposed

a multimodal dataset with QR-codes and Malware

Text classification.

In this paper, we particularly focus on language

modelling approach for the malware behaviour

classification. The following section describes our

approaches.

III. OUR METHODOLOGY

In this section, we aim to discuss in detail our
approach to solve subtask 1. After analysing the

previously designed models, our team worked on

some new approaches towards the challenge. The

following section discusses the details of the steps

used for the construction of these experiments.

A. Preprocessing

We preprocessed the models by removing
punctuations, numbers, and did the following

modifications:

• .exe like copy.exe files to [EXE].

• Buffer memory and Stack memory addresses like

0x20000001 are replaced by [ADDRESS].

•Malware names like

TrojanDropper.Win32.Agent.life replaced by

[MALWARE].

• .bat, .doc, .txt file names replaced by [FILE].

• File paths to [PATH].

• IP Addresses to [IP].

We further removed texts which were not in

English and had only numbers.

B. SubTask1: Malware Threat Classification

This section gives an in-depth detail of the

transformer models used for the classification task for

SubTask1. The models aimed to extract the

cybersecurity-related terms from a sentence and then

classify them into one of the two classes: malware

related or non-malware related. Figure 1 shows the

model architecture.

Fig. 1 Model Architecture

1) ULMFit:[18] is short for Universal Language

Model Fine-Tuning for Text Classification. The

authors’ brought out the disadvantages of using

traditional word embedding approaches [19] directly

with deep neural networks. The random initialization

of Out of Vocabulary (OOV) Words which disrupts

the pre-trained layers and causes catastrophic

forgetting. To overcome that the paper discusses

different approaches of gradual freezing and

discriminate fine-tuning. The ULMFiT’s backbone is
divided into the following stages:

1) Language Model pre-training

2) Language Model fine-tuning

3) Classifier Model fine-tuning

It is a universal model as it works with varying
document sizes, requires no custom feature

engineering nor preprocessing, and uses a single

architecture. AWD-LSTM language model is used in

the architecture which comprises a conventional

LSTM with no added attention. We tried

experimenting with the data for the language model,

adding domain-specific data. But this addition didn’t
account for any improvement.

ULMFiT’s conventional parameters of fast.ai were
used to train the language models. Finally, we find

the best hyperparameters by learning rate finder and

train the classifier over the task data.

The problem with ULMFiT is the words in a

sentence are sequentially processed and still does not

capture the true meaning of the context.

2) BERT:Bidirectional Encoder Representations

from Transformers (BERT) [20] was the first

language model which is deeply bidirectional,
unsupervised language representation, pre-trained

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 5 - May 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 35

using only a plain text corpus. This model takes

theentire context and processes it simultaneously,

capturing the true context of a word.

Transformer has two mechanisms - an encoder and

a decoder. Encoder reads the text input and the

Decoder gives a prediction for the intended task.
BERT makes use of the Transformer’s Encoder

Architecture, which has an attention mechanism that

learns contextual relations between words in a

sentence.

It performs two tasks for language modelling:

1) Masked Language Modelling Bert randomly
[MASKS] a word and predicts it using its context

from left and right simultaneously. This masked

language model (MLM) learns to model relationships

between words and sentences.

2) Next Sentence Prediction Model This model

takes two sentences as its input S1 and S2, and
verifies whether S2 follows S1, capturing the

relationship between sentences.

For this challenge, we have used the pre-trained
Hugging Face implementation of the BERT-base

model and fine-tuned it for our task dataset.

3) XLNets:XLNET [21] has a very similar

architecture, as of BERT. It uses a different approach

of masking and uses Transformer XL model instead

of a Transformer model. Instead of masked language

modelling, XLNET uses permutation language

modelling (PLM). It blends the concept of
autoregressive models and bidirectional context

modelling. PLM is the idea of capturing a

bidirectional context by training an autoregressive

model on all possible permutation of words in a

sentence. Instead of fixed left-right or right-left

modelling, XLNET maximizes expected log-

likelihood over all possible permutations of the

sequence. In expectation, each position learns to

utilize contextual information from all positions

thereby capturing bidirectional context. No [MASK]

is needed and input data need not be corrupted.

III. EVALUATION

This section gives a detailed overview of the

dataset introduced in the SubTask1, Semeval Task 8:

SecureNLP Challenge. Since the data was highly

imbalanced we tried various undersampling and

oversampling approaches. This section concludes

with details of hyperparameters used, metric chosen

for evaluation and the results obtained.

Table I Dataset
 Documents Sentence

Train 65 9,424
Dev 5 1,213

SubTask1 test 5 618

Total 75 11,250

A. Dataset

The total statistics of the dataset are shown in

Table I. The training data for this shared task

contains 9,424 sentences, the validation data contains

1,213 sentences, and test data has 618 test sentences.

Figure 2 shows the huge class imbalance between

malware related/non-malware related sentences.

Fig. 2. Dataset Frequency

B. Metrics

The evaluation metric chosen by the Challenge to

evaluate the performance of the malware
classification task was f1 score. We have computed

the Precision and Recall as well. Precision is the

fraction of relevant instances among the total

retrieved instances. Recall is the fraction of relevant

instances retrieved over the total amount of relevant

instances. Precision is computed as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall is computed as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 score is computed using precision and recall as
follows:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The systems were learned from the training

validation data and tested on the evaluation data.

Fig. 3. Sampling Ratio

C. Sampling

Now that we know how to set up the evaluation

scheme and what metrics to choose for classification

problems with imbalanced data, we apply some

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 5 - May 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 36

techniques to account for class imbalance. The most

straightforward technique is to balance the data by

resampling:

1) Down-sampling (Under sampling) the majority

class

2) Up-sampling (Over sampling) the minority class

Without resampling the data, one can also make

the classifier aware of the imbalanced data by

incorporating the weights of the classes into the cost

function. Intuitively, we want to give higher weight

to minority class and lower weight to the majority

class. We have tried class weight techniques for

BERT. While training the Language Model for

ULMFiT, We observed that fine-tuning the language

model on a larger dataset didn’t provide much

improvement. For more data, we scraped threat

reports from MalwareTextDB1.0. We finetuned the

language model over 6200 (scraped data) + 11,250

(original data). For scraping, we used the tokenized
data and assigned a sentence class 0 when all the BIO

token-indexes were O, else we assigned it to class 1.

In Table III we show the hyperparameters which

yielded good performance models. In Figure 2, we

show the different sampling ratios used against the

F1 Score predicted for both oversampling and

undersampling models using BERT-cased.

Table II Experimental Results on SubTask 1

Model Remarks Epochs Precision Recall F1 score

BERT Oversampling 1:10 6 0.37 0.85 0.51

BERT Oversampling 1:2 10 0.31 0.85 0.46

BERT Oversampling 1:2 6 0.32 0.96 0.48

BERT Oversampling 1:2 3 0.33 0.93 0.48

BERT No sampling 5 0.49 0.55 0.52

BERT Undersampling 1:1 5 0.62 0.28 0.38

XLNET Undersampling 1:2 5 0.29 0.89 0.44

XLNET No sampling 10 0.36 0.64 0.46

XLNET No sampling 4 0.26 0.88 0.41

ULMFIT No sampling, LM
with same dataset

20 0.74 0.25 0.38

ULMFIT No sampling, LM
with same dataset

30 0.42 0.48 0.45

ULMFIT No sampling, LM
with same dataset

50 0.30 0.48 0.37

ULMFIT LM with larger

dataset
5-10 0.90 0.16 0.27

D. Results

Table II shows the comparison of F1 scores on test
data for SubTask1. The BERT-cased model showed

the best performance amongst the different

transformers. Figure 3, presents the performance of

the BERT-cased model on the training data for

different oversampling and under sampling ratios.

We observed that oversampling performance was

better than under sampling. However, the results

without any sampling were the best one. Therefore,

the model that we used on the test data was trained on

the full training dataset maintaining the given ratio of

malware:non-malware tweets. Table III shows the

hyperparameters of the best running models.

Table III Hyperparameters of Best Performing Models

Model Hyperparameters

BERT
ULMFit

epochs=5, batch size=32, learning rate=3e-5
epochs= 30, batch size=32, learning rate =

2e-6

V. CONCLUSIONS

In this paper, we present a transformer approach

targeting SemEval 2018 shared task on Semantic

Extraction from CybersecUrityREports using Natural

Language Processing (SecureNLP). We were able to
produce a model that generates feasible results for

estimating the relevance of sentences in the context

of security information. Our algorithm’s efficacious

performance will be fruitful for the security analysts

who were our intended end-users. With the help of

our research, we can accentuate the sentences in the

APT reports. Our end users can quickly skim through

large reports and improve their enterprises’ evasion

and prevention strategies in times of adversaries.

We believe our research can take a new direction if

we improve more on the quality of the dataset. We

worked on the available datasets but in the future, we
plan on working on a better dataset. We plan to make

use of the large model of BERT which has more

number of attention layers in it and thus is expected

to perform better than the base model used in our

approach. We also plan to explore other SubTasks,

which revolve on entity extraction and linking with

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 5 - May 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 37

the use of these transformers and make an end-to-end

system.

REFERENCES

[1] Lim, SweeKiat, et al. “Malwaretextdb: A database for

annotated malware articles.” Proceedings of the 55th

Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers).2017.

[2] SHARMA, TANU. SOFTWARE BUG

LOCALIZATIONUSING TOPIC MODELS. Diss.2016.

[3] Tripathi, Ashish Kumar, Kapil Sharma, and ManjuBala.

“Parallel Hybrid BBO Search Method for Twitter Sentiment

Analysis of Large Scale Datasets Using MapReduce.”

International Journal of Information Security and Privacy

(IJISP) 13.3 (2019):106-122.

[4] T. Sharma, K. Sharma and T. Sharma, “Software bug

localizationusingPachinkoAllocationModel,”20163rdInterna

tional Conference on Computing for Sustainable Global

Development(INDIACom),NewDelhi,2016,pp.3603-3608.

[5] JAIN, DEEPAKSHI. CRYPTOCURRENCY PRICE

PREDICTION USING TRANSFORMER: A DEEP

LEARNING ARCHITECTURE. Diss.2019.

[6] Jatana, Nishtha, and Kapil Sharma. “Bayesian spam

classification: Time-efficient radix encoded fragmented

database approach.” 2014 International Conference on

Computing for Sustainable Global Development

(INDIACom). IEEE,2014.

[7] Pennington, Jeffrey, Richard Socher, and Christopher D.

Manning. “Glove: Global vectors for word representation.”

Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP).2014.

[8] Loyola, Pablo, et al. “Villani at SemEval-2018 Task 8:

Semantic Extraction from Cybersecurity Reports using

Representation Learning.” Proceedings of The 12th

International Workshop on Semantic Evaluation.2018.

[9] Sikdar,UtpalKumar,BiswanathBarik,andBjo¨rnGamba¨ck.

“Flytxt NTNU at SemEval-2018 Task 8: Identifying and

Classifying Malware Text Using Conditional Random Fields

and Na ı̈veBayes Classifiers.” Proceedings of The 12th

InternationalWorkshoponSemanticEvaluation.2018.

[10] Ma, Chunping, et al. “DM NLP at SemEval-2018 Task 8:

neuralsequencelabellingwithlinguisticfeatures.”Proceedings

of The 12th International Workshop on Semantic Evaluation.

2018.

[11] Ma, Xuezhe, and Eduard Hovy. “End-to-end sequence

labeling via bi-directional lstm-cnns-crf.” arXiv preprint

arXiv:1603.01354(2016).

[12] Fu, Mingming, Xuemin Zhao, and YonghongYan. “HCCL at

SemEval-2018 Task 8: An End-to-End System for Sequence

Labeling from Cybersecurity Reports.” Proceedings of

The12thInternationalWorkshoponSemanticEvaluation.2018.

[13] Brew, Chris. “Digital Operatives at SemEval-2018 Task 8:

Using dependency features for malware NLP.” Proceedings

of The 12th International Workshop on Semantic Evaluation.

2018.

[14] Crammer,Koby,etal.“Onlinepassive-aggressivealgorithms.”

Journal of Machine Learning Research 7.Mar (2006): 551-

585.

[15] Manikandan, R., Krishna Madgula, and SnehanshuSaha.

“TeamDLatSemEval-2018task8:Cybersecuritytextanalysis

using convolutional neural network and conditional random

fields.” Proceedings of The 12th International Workshop on

Semantic Evaluation.2018.

[16] Padia, Ankur, et al. “UMBC at SemEval-2018 Task 8:

Understanding text about malware.” Proceedings of

International Workshop on Semantic Evaluation (SemEval-

2018).2018.

[17] Ravikiran, Manikandan, and Krishna Madgula. “Fusing

Deep Quick Response Code Representations Improves

Malware Text Classification.” Proceedings of the ACM

Workshop on Crossmodal Learning and Application.2019.

[18] Howard, Jeremy, and Sebastian Ruder. “Universal language

model fine-tuning for text classification.” arXiv preprint

arXiv:1801.06146(2018).

[19] Mikolov, Tomas, et al. “Distributed representations of

words and phrases and their compositionality.” Advances in

neural information processing systems. 2013.

[20] Devlin, Jacob, et al. “Bert: Pre-training of deep

bidirectional transformers for language understanding.”

arXivpreprint arXiv:1810.04805(2018).

[21] Yang, Zhilin, et al. “Xlnet: Generalized autoregressive pre-

training for language understanding.” Advances in neural

information processing systems.2019.

