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Abstract — This paper deals with the application of two 

newly established Redlich-Kister Finite Difference 

(RKFD) discretization schemes for approximating and 

solving two-point boundary value problems (TPBVPs). To 

get the Redlich-Kister Finite Difference Solution of the 
proposed problem, firstly, two newly second-order half-

sweep RKFD discretization schemes are established and 

used to discretize overall derivative terms of the TPBVPs 

regarding getting the second-order half-sweep RKFD 

approximation equation. Then this RKFD approximation 

equation leads to the construct of the linear system. Due to 

the increase in the convergence rate iteratively in solving 

this linear system, the combination of the Kaudd 

Successive Over Relaxation (KSOR) method with a half-

sweep approach is formulated and then known as Half-

sweep Kaudd Successive Over Relaxation (HSKSOR) 
method. With the purpose of evaluating the efficiency of 

the HSKSOR method, other methods such as Full-sweep 

Kaudd Successive Over Relaxation (FSKSOR) and Full-

sweep Gauss-Seidel (FSGS) are also presented as a 

control method. The results of the examples of TPBVPs are 

tested to prove that the HSKSOR iteration is more efficient 

compared with FSGS and FSKSOR iterations in terms of 

iterations, execution time, and maximum norm. 

 

Keywords — Boundary value problems, Redlich-Kister 

Finite Difference scheme, KSOR iteration, Half-sweep 
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I. INTRODUCTION 

Many mathematical models of boundary value 

problems (BVPs) have been developed in the past few 

years [1]-[3], especially on TPBVPs. The TPBVPs is one 

of the mathematical models that have a wide range to its 

applications either in science, engineering, and physics 

fields [4]-[6]. Due to its application, this problem has been 

solved numerically by using numerous numerical 

techniques [7]-[9]. Following these numerical techniques, 

the family of spline functions has played an important role 

in approximating and solving TPBVPs [9]-[ 10]. For 
instance, the cubic B-spline function is applied to construct 

the cubic B-spline approximation equation for solving 

TPBVPs [11]. Inspired by the application of a family of 

spline functions, this paper attempts to investigate the 

capability of two newly established Redlich-Kister Finite 

Difference (RKFD) discretization schemes for 

approximating and solving TBVPs via the Redlich-Kister 

polynomial function.   

In the literature on Redlich-Kister polynomial, 

commonly, the mathematical models based on Redlich-
Kister polynomial can be found for describing the 

phenomena in physics and chemistry fields [12]-[14]. 

However, in numerical analysis, only one study has 

highlighted the development of the piecewise third-order 

Redlich-Kister polynomial model in which this model 

gives its high accurate solution as compared to the linear 

polynomial model [15]. Since there are still big gaps in the 

literature, therefore many opportunities can be explored to 

deal with the application of the Redlich-Kister polynomial 

function as one of the alternative numerical methods to 

solve any mathematical problem. Apart from using the 
finite difference schemes in the discretization process, the 

rapid development of the combination between the 

standard finite difference schemes with other approaches 

to form different types of finite-difference discretization 

schemes, see in  [16]-[19]. By taking advantage of the 

Redlich-Kister polynomial function, this paper initiates in 

establishing two newly second-order half-sweep RKFD 

discretization schemes for approximating the TPBVPs and 

then to construct the corresponding half-sweep RKFD 

approximation equation. 

Based on these discretization schemes being employing 

in the TPBVPs, the approximation equation leads to 
generate a large-scale and sparse linear system. According 

to the properties of the linear system, the iterative methods 

become the best alternative solver to get efficient solutions 

[20]-[22]. Due to the simplicity in finding the numerical 

solution iteratively, up to now, many iterative methods 

have been developed and applied to seek the solution of 

this generated linear system [23]-[31]. However, several 

iterative methods still involve their higher computational 

complexity. This is because these iterative methods can be 

classified under the full-sweep iteration family, which 

requires more computational time to satisfy the 
convergence criteria. To increase the convergence rate of 

the full-sweep iteration family by improving the 

computational complexity, the half-sweep iteration 

concept needs to be imposed and applied to the generated 

linear system. The early work on the implementation of 

this half-sweep iteration concept was originated by [32] to 

https://ijettjournal.org/archive/ijett-v69i2p211
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improve the computational complexity to solve the linear 

system. Since then, a lot of excellent works have been 

continued by several researchers to demonstrate its 

effectiveness and capability to speed up the convergence 

rate, see in [33]-[37]. With the capability of the half-sweep 
approach to improving the computational complexity 

drives to extend the use of this concept, this paper seeks 

the efficiency of the HSKSOR method for solving the 

linear system of RKFD approximation equations. This 

proposed iterative method is the combination of the 

standard KSOR iterative method together with the half-

sweep approach. 

Before constructing the two newly established RKFD 

approximation equation mentioned in the previous 

paragraph, let consider the general equation of TPBVPs 

defined as 
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with the Dirichlet conditions 

  ,0 JU    .LU   

II. REDLICH-KISTER FINITE DIFFERENCE 

APPROXIMATION EQUATION 

In the first section, this paper considering the Redlich-
Kister (RK) polynomial function to construct two newly 

second-order half-sweep RKFD discretization schemes for 

approximating the TPBVPs (1). Before performing the 

discretization process over the proposed problem (1) 

started, let’s consider the RK approximation function of 

order m as follows 

   



n

k

xkTkaxnU

0

 (2) 

where nkka ,...,2,1,0,  are the unknown parameters to be 

determined and   mkxkT ,...,2,1,0,  represent the Redlich-

Kister (RK) function of order k. 

 

 

Fig. 1  The uniform distribution node points on domain 

 ,0  

For the purpose of understanding the process of 
approximating the TPBVPs (1), let’s illustrate the 

distribution of uniformly grid networks as figured in Fig. 1. 

According to Fig. 1, the first three RK functions are 

considered, as seen in Fig. 2. 

 

 

Fig. 2  The path for 2,1 TT and 3T  

Basically, the implementation of the first three RK 

functions in Fig. 2 can also be applied over the full- and 

half-sweep concepts. As figured in Fig. 3, the node points 

are illustrated for both cases on interval  .,0  Based on Fig. 

3, and it can be observed that the different values of the 

subinterval length need to be used for both cases. For 

instance, the full-sweep iteration considers the current 

point to the next point as 1h, whereas the length of two 

solid node points for the half-sweep approach is 2h. It 

means that when computing the approximate solution, both 

cases will compute all node points of type ● until 
achieving the convergence criterion. Whereby the direct 

method is used to compute the remaining node points [32]. 

 
(a) 

 
(b) 

Fig. 3  The uniform distribution points for (a) full-sweep 

and (b) half-sweep approach 

To begin the discretization process via the RK function 

(2) with a half-sweep iteration concept and considering the 

RK approximation function of order 2, the following 

approximation function is considered  

       ,221100 xTaxTaxTaxU   (3) 

where the first three RK functions are defined as 
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Since this paper proposed the half-sweep cases as 

shown in Fig. 3(b), let’s define all node 

points, niihxix ,...,4,2,0,0  where 

1,2,
0




 ppn
n

h


donates the uniform step size based 

on the finite grid network in Fig. 3. Let’s consider a group 

of three solid node points, ixix ,2 and 2ix then get 

  kUkxU   and   2,,2,  iiikkTkxT which 

represented the functions of  xU and  xT  respectively. 

Based on this group of three-node points imposed to 

equation (3), get the three approximation equations 

generally as follows 

,2,222,112,002  iTaiTaiTaiU  (4) 

,,22,11,00 iTaiTaiTaiU   (5) 

.2,222,112,002  iTaiTaiTaiU  (6) 

After that, by considering all three equations in 

equation (4) up to (6) and then solved via matrix approach 

to determine the value of 2,1,0, kka in equation (3), it 

can be shown that the general formulation of the second-

order RKFD approximation function can be stated as   

  2)(2)(12)(0  iUxNiUxNiUxNxU
  

(7) 

where 2,1,0),( kxkN  represent the second-order RKFD 

shape functions, which are defined as 
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Then considering equation (8), the first and second 

derivative of these RKFD shape functions with respect to  

can be shown respectively as  
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and 
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Then, referring to the RKFD approximation function in 

equation (7) and applied the first derivative with respect to 

,ix  the second-order half-sweep RKFD discretization 

scheme for the first derivative of a function  xU
 
can be 

stated as  

2)(2)(12)(0 



iUixNiUixNiUixN
ix

U  (11) 

Similarly, to get equation (11) by applying the second 

derivative concept into equation (7) with respect to ,ix the 

second-order half-sweep RKFD discretization scheme for 

the second derivative of a function  xU  as follows 

2)(2)(12)(02

2





iUixNiUixNiUixN
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As a result, in this paper, both schemes in equations (11) 

and (12) are referred to as two newly established Redlich-

Kister Finite Difference (RKFD) discretization schemes 

being used to discretize the problem (1).  To start doing the 

discretization process over the proposed problems, let both 

discretization schemes be imposed over the problem (1) 

and then the established of half-sweep RKFD 

approximation equation as follows  

iriUiiUiiUi  22   (13) 

where three unknown parameters are given by 
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and 

     ,,, ixririxGiGixZiZ  .2,...,6,4,2  ni  

Now considering all solid node points as depicted in Fig. 

3(b) by imposing into equation (13), the construction of 

the large-scale and sparse linear system in matrix form as 

follows 

rUW   (14) 
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III. DERIVATION OF HSKSOR METHOD 

According to the second section, it can be identified that 

the generated linear system (14) had large-scale and sparse 

properties. As explained in the first section regarding the 

properties of the linear system (14), this paper proposed a 
combination between the standard KSOR method and the 

half-sweep approach, namely HSKSOR as a linear solver. 

To construct the HSKSOR method, let’s consider the finite 

grid network and half-sweep concept in Fig. 1 and Fig. 3, 

respectively. Then, by recalling the coefficient matrix 

W in equation (14) and rewrite into the three matrices as 

follows  

BDTW   (15) 

where D   is diagonal, T  is lower, and B is an upper 

matrix of the generated linear system (14). Therefore, the 

large-scaled and spare linear system (14) can be rewritten 
as 

  rUBDT   (16) 

Referring to the equation (16), the KSOR method in 

matrix form as [38]-[ 39] 

            rTDqUBDTDqU 11111    (17) 

where  1qU  indicate the current value of U  at the 

 1q iteration. Again, the KSOR method (17) can also be 

rewritten in the point iteration approach as follows  
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for ,2,...,6,4,2  ni whereas the optimum value of  is 

different value subject to the size value of .n  The range 

value of is  given [40] by  .0,2R  Thus, 

Algorithm 1 describes the summary for the simulation of 

HSKSOR method in this study. 

 

Algorithm 1: HSKSOR iterative method 

i. Set initial value .0U  

ii. Calculate the coefficient matrix W  and vector, .r  

iii. To ,2,...,4,2,0  ni  calculate the current 

 value  



Mohd Norfadli Suardi & Jumat Sulaiman  / IJETT, 69(2), 77-82, 2021 
 

80 

 
 

 
 

   






















 q
i

Ui
q

i
Uiir

q
iU

q
iU

2
1

211
11






 

iv. Check the convergence  test; if yes, go to  step 

(v). Otherwise, go back to step (iii). 

v. Perform the direct method to compute the 

 approximate solution of the remaining node 

 points 

vi. Display numerical solution. 

IV. NUMERICAL EXPERIMENTS AND 

DISCUSSION 

From the formulation in the third section, the HSKSOR 

iterative method was tested for solving three selected 

examples of the proposed problem (1). To study the 
efficiency for the computational performance of the 

HSKSOR iterative method, other iterative methods, which 

are FSGS and FSKSOR, are also considered for the sake of 

comparative analysis. After that, the numerical results of 

the three iterative methods considered have been analyzed 

based on three criteria which are the iterations (Iter), 

execution time (Time) in second and maximum norm 

(MaxNorm). During the iteration process, the different 

number of grid sizes are considered, 

4096,2048,1024,512,256n   and the tolerance used 

is 1010 for all grid sizes. The following are three 

examples of TPBVPs and their analytical solution. 

Example 1 [41] Consider TPBVPs to be defined as 

  ,
11

2

2 







 xe
x

U

x
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The analytical solution of equation (19) is 

    .11 





  xexxU   

Example 2 [42] Consider TPBVPs be stated as 
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2

2
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xU

x
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 (20) 

The analytical solution of equation (20) is 

   
 

 
  .1sin

1sin

1cos1
cos 


 xxxU   

Example 3 [8] Consider TPBVPs be stated as 

 ,1cosh4
2

2





U

x

U
 (21) 

The analytical solution of equation (21) is 

     .1cosh12cos  xxU  

The results from the simulation of FSGS, FSKSOR, and 

HSKSOR iterative methods based on Algorithm 1 were 

tabulated in Tables 1 to Table 3 then Table 4 shows that 

the reduction percentage of FSKSOR and HSKSOR for all 
numerical examples are considered. 

 

 

 

 

 

 

 

 

TABLE 1 THE RESULTS FOR EXAMPLE 1 

BASED ON COMPARISON CRITERIA 

CONSIDERED 
 

n Method Iter Time(second) Error 

256 FSGS 82043 7.92 4.0343e-07 

 FSKSOR 769 0.75 2.4866e-07 

 HKSOR 389 0.16 9.8784e-07 

512 FSGS 292276 16.23 2.5291e-06 

 FSKSOR 1526 1.67 6.7370e-08 

 HKSOR 769 0.37 2.4521e-07 

1024 FSGS 1025489 76.67 1.0346e-05 

 FSKSOR 2853 3.19 2.5732e-08 

 HKSOR 1526 0.86 6.7345e-08 

2048 FSGS 3527433 409.03 4.1443e-05 

 FSKSOR 5792 6.63 1.7614e-08 

 HKSOR 2849 1.64 2.6076e-08 

4096 FSGS 11811519 2359.09 1.6579e-04 

 FSKSOR 10221 10.41 9.8302e-08 

 HKSOR 5791 3.36 1.7686e-08 
 

TABLE 2 THE RESULTS FOR EXAMPLE 2 BASED 

ON COMPARISON CRITERIA CONSIDERED 
 

n Method Iter Time(second) Error 

256 FSGS 89973 19.88 5.4091e-07 

 FSKSOR 782 0.37 1.9062e-07 

 HKSOR 398 0.18 7.9533e-07 

512 FSGS 318924 60.80 2.9059e-06 

 FSKSOR 1537 0.89 5.2948e-08 

 HKSOR 782 0.47 1.9062e-07 

1024 FSGS 1111808 256.86 1.1810e-05 

 FSKSOR 3057 1.82 1.5546e-08 

 HKSOR 1537 0.87 4.3126e-08 

2048 FSGS 3791677 1260.25 4.7285e-05 

 FSKSOR 5734 3.43 2.5772e-08 

 HKSOR 3057 1.92 1.5546e-08 

4096 FSGS 13659733 7301.95 1.7907e-04 

 FSKSOR 10655 5.78 1.0642e-07 

 HKSOR 5734 3.36 2.5772e-08 
 

TABLE 3 THE RESULTS FOR EXAMPLE 3 BASED 

ON COMPARISON CRITERIA CONSIDERED 

 
n Method Iter Time(second) Error 

256 FSGS 66139 13.96 2.4092e-06 

 FSKSOR 720 0.82 1.9355e-06 

 HKSOR 382 0.19 7.7476e-06 

512 FSGS 238353 44.83 2.3742e-06 

 FSKSOR 1353 1.38 4.7876e-07 

 HKSOR 720 0.37 1.9355e-06

1024 FSGS 848604 184.48 7.6812e-06 

 FSKSOR 2609 2.78 1.0851e-07 

 HKSOR 1353 0.85 4.7876e-07 

2048 FSGS 2975185 927.17 3.0271e-05 

 FSKSOR 4908 5.11 1.9449e-08 

 HKSOR 2799 1.61 1.2885e-07 

4096 FSGS 10223821 2150.65 1.2097e-04 

 FSKSOR 9162 9.23 6.7222e-08 

 HKSOR 4908 3.16 1.9449e-08 
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TABLE 4 REDUCTION PERCENTAGE FOR THE 

KSOR AND HSKSOR IN TERM OF THE 

ITERATION AND TIME 
 

  KSOR (%) HKSOR(%) 

Exam
ple 1 

I
ter 

99.06-99.84 99.53-99.95 

T
ime 

89.71-99.56 95.83-99.86 

Exam
ple 2 

I
ter 

99.13-99.92 99.56-99.96 

T
ime 

98.13-99.92 99.09-99.95 

Exam
ple 3 

I
ter 

98.91-99.91 99.42-99.95 

T
ime 

94.13-99.57 98.64-99.85

 

From all numerical results by imposing FSGS, FSKSOR, 

and HSKSOR iterative methods as shown in Table 1 up to 

4, it clearly shows that the combination of KSOR iterative 

method with half-sweep approach gives less iteration and 

Time compared to the FSGS and FSKSOR methods. For 

instance, in terms of iteration for solving Example 1, it can 

be pointed out that the HSKSOR method has declined 

approximately 99.53-99.95% when compared to the FSGS 
method, whereas the FSKSOR iterative method has 

approximately 99.06-99.84%. Also, in terms of Time, the 

HSKSOR method is faster, about 95.83-99.86%, than the 

FSGS iteration, whereas the FSKSOR iteration has about 

89.71-99.56%. In the meantime, it can be observed that the 

pattern of reduction percentage for Example 2 and 

Example 3 is the same as Example 1, which is the 

HSKSOR iterative method shows the highest reduction 

percentage compared to the other two iterative methods. In 

conclusion, the HSKSOR method requires the least 

iteration and Time as compared to FSGS and FSKSOR 
methods. From the accuracy of iterative methods 

considered, the numerical solution of the FSKSOR and 

HSKSOR methods are in good agreement and close to 

their analytical solution compared to the FSGS iterative 

method 

V. CONCLUSIONS 

This paper has successfully derived the formulation of 

FSGS, FSKSOR, and HSKSOR iterative methods by 

applying the two newly established RKFD discretization 

schemes. According to the numerical results obtained by 

solving three examples of TPBVP, clearly numerical 

results have pointed out that the FSKSOR method gives 
less iteration and Time as compared to the FSGS method. 

However, the application of the half-sweep approach into 

the KSOR iterative method, HSKSOR, could give the least 

iteration and Time when compared with both considered 

iterative methods. Meanwhile, the accuracy of FSKSOR 

and HSKSOR iterative methods are comparative same, but 

also the accuracy of their solutions is more accurate than 

FSGS iteration at all grid sizes. Therefore, the conclusion 

is the HSKSOR method is a superior method compared to 

FSGS and FSKSOR methods. For further works, this paper 

should be continued to investigate the application of these 

two newly established RKFD discretization schemes for 

approximating and solving the multi-dimensional 

boundary value problem by using the two-step iteration 

family [43]- [44] and the families of half-sweep [39],[45] 

and quarter-sweep [46]-[ 48] approaches.  

ACKNOWLEDGMENT 

The authors would like to express sincere gratitude to 

Universiti Malaysia Sabah for funding this research under 

UMSGreat research grant for postgraduate students: 

GUG0494-1/2020. 

REFERENCES 

[1] Q. Fang, T. Tsuchiya, and T. Yamamomoto., Finite difference, 

finite element and finite volume methods applied to two-point 

boundary value problems, Journal of Computational and Applied 

Mathematics, 139(2002)  9-19. 

[2] M. El-Gamel. Comparison of the solution obtained by domain 

decomposition and wavelet-galerkin methods of boundary-value 

problems, Applied Mathematics and Computation, 186(1)(2007) 

652-664. 

[3] F. Geng, and M. Cui. A novel method for nonlinear two-point 

boundary value problems: Combination of ADM and RKM., 

Applied Mathematics and Computation, 217, 4676-4681, (2011). 

[4] J. Aarao, B. H. Bradshaw-Hajek, S. J. Miklavcic, and D. A. Ward. 

“The extended domain eigenfunction method for solving elliptic 

boundary value problems with annular domains.” Journal of 

Physics A: Mathematical and Theoretical, 43(2010) 185-202. 

[5] T. N. Robertson. The linear two-point boundary value problem on 

an infinite interval. Mathematics Of Computation, 25(115)(1971)  

475-481. 

[6] Y. M. Wang, and B. Y. Guo.,  Fourth-order compact finite 

difference method for fourth-order nonlinear elliptic boundary 

value problems. Journal of Computational and Applied 

Mathematics, 221(1)(2008) 76-97. 

[7] B. Jang.,  Two-point boundary value problems by extended a 

domain decomposition method. Computational and Applied 

Mathematics, 219(1)(2007) 253-262. 

[8] A. Mohsen, and M. E. Gamel., On the galerkin and collocation 

methods for two-point boundary value problems using sinc bases., 

Computer and Mathematics with Applications, 56(2008)  930-941. 

[9] Y. Lin, J. A. Enszer, and M. A. Stadtherr., Enclosing all solutions 

of two-point boundary value problems for ODEs. Computer and 

Chemical Engineering, 32(8)(2008) 1714-1725. 

[10] C. Nazan, and C. Hikmet., B-spline methods for solving a linear 

system of second-order boundary value problems. Computers and 

Mathematics with Application, 57(5)(2008) 757-762. 

[11] M. N. Suardi, N. Z. F. M. Radzuan, and J. Sulaiman.,  Cubic b-

spline solution for two-point boundary value problem with AOR 

iterative method. Journal of Physics: Conference Series, 890(2017) 

12015. 

[12] S. Babu, R. Trabelsi, T. Srinivasa Krishna, N. Ouerfelli, and A. 

Toumi. Reduced redlich–Kister functions and interaction studies of 

dehpa+ petrofin binary mixtures at 298.15 K. Physics and 

Chemistry of Liquids, 57(4)(2019)  536-546. 

[13] A. Gayathri, T. Venugopal, and K. Venkatramanan. Redlich-Kister 

coefficients on the analysis of Physico-chemical characteristics of 

functional polymers. Materials Today: Proceedings, 17(2019) 

2083-2087. 

[14] N. P. Komninos, and E. D. Rogdakis., Geometric investigation of 

the three-coefficient Redlich-Kister expansion global phase 

diagram for binary mixtures. Fluid Phase Equilibria, 112728, 

(2020). 

[15] M. K. Hasan, J. Sulaiman, S. Ahmad, M. Othman, and S. A. 

ABDUL KARIM. Approximation of iteration number for Gauss-

Seidel using Redlich-Kister polynomial. American Journal of 

Applied Sciences, 7(2010) 956-962. 

[16] M. M. Chawla, and C. P. Katti.,  Finite difference methods for 

two-point boundary value problems involving high order 

differential equations.,  BIT Numerical Mathematics, 19(1)(1979) 

27-33. 



Mohd Norfadli Suardi & Jumat Sulaiman  / IJETT, 69(2), 77-82, 2021 
 

82 

[17] E. M. Elbarbary, and M. El-Kady., Chebyshev finite difference 

approximation for the boundary value problems. Applied 

Mathematics and Computation, 139,2-3(2003) 513-523. 

[18] P. K. Pandey.,  Rational finite difference approximation of high 

order accuracy for nonlinear two-point boundary value 

problems. Sains Malaysiana, 43(7)(2014) 1105-1108. 

[19] P. K. Pandey.,  Solving two-point boundary value problems for 

ordinary differential equations using exponential finite difference 

method.,  Boletim da Sociedade Paranaense de 

Matemática, 34(1)(2016) 45-52. 

[20] D. M. Young. Iterative solution of large linear systems. London: 

Academic Press, (1971). 

[21] W. Hackbusch. Iterative solution of large sparse systems of 

equations. Springer-Verlag, (1995). 

[22] Y. Saad. Iterative methods for sparse linear systems. International 

Thomas Publishing, (1996). 

[23] J. Sulaiman, M. K. Hasan, M. Othman, and S. A. A. Karim. 

MEGSOR iterative method for the triangle element solution of 2D 

Poisson equations. Procedia Computer Science, 1(1)(2010)  377-

385. 

[24] A. Saudi, and J. Sulaiman.,  Robot path planning using four point-

explicit groups via nine-point laplacian (4EG9L) iterative method”. 

Procedia Engineering, 41(2012) 182-188. 

[25] A. Sunarto, J. Sulaiman, and A. Saudi.,  Implicit finite difference 

solution for time-fractional diffusion equations using AOR method, 

In Journal of Physics: Conference Series, 495(1)(2014)  012032. 

[26] A. Saudi, and J. Sulaiman.,  Path planning simulation using 

potential harmonic fields through our-point-edgsor method via 9-

point laplacian. Jurnal Teknologi, 78(2016)  8-2. 

[27] N. Z. F. M. Radzuan, M. N. Suardi, and J. Sulaiman. , KSOR 

iterative method with quadrature scheme for solving the system of 

Fredholm integral equations of the second kind. Journal of 

Fundamental and Applied Sciences, 9(5S), (2017) 609-623. 

[28] R. Rahman, N. A. M. Ali, J. Sulaiman, and F. A. Muhiddin.,  

Caputo’s finite-difference solution of fractional two-point 

boundary value problems using SOR iteration. , In AIP Conference 

Proceedings, 1(2013) 020034, 2018. 

[29] M. N. Suardi, N. Z. F. M. Radzuan, and J. Sulaiman., KAOR 

iterative method with a cubic b-spline approximation for solving 

two-point boundary value problems. Proceedings of 25th National 

Symposium on Mathematical Sciences (SKSM25): Mathematical 

Science as The Core of Intellectual Excellence, 1974(1)(2018)  

020094. 

[30] K. Ghazali, J. Sulaiman, Y. Dasril, and D. Gabda.,  Application of 

Newton- 4EGSOR Iteration for solving large-scale unconstrained 

optimization problems with a tridiagonal hessian matrix. In 

Computational Science and Technology, (2019) 401-411. 

[31] F. A. Muhiddin, J. Sulaiman, and A. Sunarto. Implementation of 

the 4EGKSOR for solving one-dimensional time-fractional 

parabolic equations with grünwald implicit difference scheme., In 

Computational Science and Technology, (2020) 511-520. 

[32] A. R. Abdullah.,  The four-point explicit decoupled group (EDG) 

method: a fast Poisson solver.,  International Journal Computer 

Mathematics, 38,(1-2)(1991) 61-70. 

[33] M. K. M. Akhir, M. Othman, J. Sulaiman, Z. A. Majid, and M. 

Suleiman., Half-sweep modified successive over-relaxation for 

solving two-dimensional helmoltz equations. Australian Journal of 

Basic and Applied Science, 15(12), (2011) 3033-3039. 

[34] M. U. Alibubin, A. Sunarto, M. K. M. Akhir, and J. Sulaiman.,  

Performance analysis of half-sweep sor iteration with rotated 

nonlocal arithmetic mean scheme for 2d nonlinear elliptic problem.,  

Global Journal of Pure and Applied Mathematics, 12(4)(2016) 

3415-3424. 

[35] J. V. L. Chew, and J. Sulaiman.,  Half-sweep newton-gauss-seidel 

for implicit finite difference solution of 1d nonlinear porous 

medium equations., Global Journal of Pure and Applied 

Mathematics, 12(3)(2016)  2745-2752. 

[36] M. N. Suardi, N. Z. F. M. Radzuan, and J. Sulaiman., Cubic B-

spline solution of two-point boundary value problem using 

HSKSOR iteration.,  Global Journal of Pure and Applied 

Mathematics, 13(11)(2017) 7921-7934. 

[37] L. Ali, J. Sulaiman, and S. Hashim.,  Numerical solution of fuzzy 

fredholm integral equations of a second kind using half-sweep 

gauss-seidel iteration.,  Journal of Engineering Science and 

Technology, 15(5)(2020) 3303-3313. 

[38] I. K. Youssef, and A. A. Taha.,  On modified successive 

overrelaxation method., Applied Mathematics and Computation, 

219(2013) 4601-4613. 

[39] N. Z. F. M. Radzuan, M. N. Suardi, and J. Sulaiman., Numerical 

solution for the system of second kind fredholm integral equation 

by using quadrature and HSKSOR iteration.,  Global Journal of 

Pure and Applied Mathematics,13(11)(2017) 7935-7946. 

[40] I. Youssef., On the successive overrelaxation method. Journal of 

Mathematics and Statistics, 8(2)(2012) 176-184. 

[41] H. N. Caglar, S. H. Caglar, and K. Elfaituri.,  B-spline 

interpolation compared with a finite difference, finite element and 

finite volume methods which applied to two-point boundary value 

problems.,  Applied Mathematics and Computation, 175(1)(2006) 

72-79. 

[42] M. A. Ramadan, I. F. Lashien, and W. K. Zahra., Polynomial and 

nonpolynomial spline approaches to the numerical solution of 

second-order boundary value problems.,  Applied Mathematics and 

Computation, vol. 184(2007) 476-484. 

[43] A. A. Dahalan, M. S. Muthuvalu, and J. Sulaiman., Numerical 

solutions of two-point fuzzy boundary value problem using half-

sweep alternating group explicit method., American Institute of 

Physics, 1557(1)(2013) 103-107. 

[44] A. A. Dahalan, J. Sulaiman, and M. S. Muthuvalu., Performance of 

HSAGE method with Seikkala derivative for 2-D fuzzy Poisson 

equation.,  Applied Mathematical Sciences,8(17-20)(2014)  885-

899. 

[45] M. K. Hasan, J. L. Sulaiman, S. A. Abdul Karim, and M. Othman.,  

Development of some numerical methods applying complexity 

reduction approach for solving a scientific problem.,  (2010). 

[46] N. I. M. Fauzi, and J. Sulaiman., Quarter-Sweep Modified SOR 

iterative algorithm and cubic spline basis for the solution of 

second-order two-point boundary value problems.,  Journal of 

Applied Sciences (Faisalabad),12, (17)(2012) 1817-1824. 

[47] Muhiddin, F. A., Sulaiman, J., & Sunarto, A.,  Numerical 

evaluation of quarter-sweep KSOR method to solve time-fractional 

parabolic equations., International Journal of Engineering Trends 

and Technology, (2020) 63-69. 

[48] J. V. Lung, and J. Sulaiman., On quarter-sweep finite difference 

scheme for one-dimensional porous medium equations., 

International Journal of Applied Mathematics, 33(3)(2020)  439. 

 


