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Abstract - This paper presents a solution for optimal power 

flow by considering the random nature of load variations in 

a regulated electricity network. The algorithms are based on 

an evolutionary approach. Namely, Improved Learner 

Performance-based Behaviour algorithm (ILPB), Whale 

Optimization Algorithm (WOA), Grey Wolf Optimization 

(GWO), and Harris Hawks Algorithm (HHO) are attempted 

to identify the best solution under random load variations. 

The concept of a pseudo-random number generator is used 

to represent the variations in load. The IEEE-30 and IEEE-
118 bus standard systems are considered in addition to the 

practical 62-bus Indian utility system to evaluate the 

performance of the algorithms. The systems are assessed 

with different objectives such as total fuel cost, total active 

power losses, total voltage deviation, and voltage stability 

index to achieve the optimal solution for the power flow 

problem. The purpose of all algorithms is to obtain the 

optimal solution by minimizing the fitness functions. Based 

on the optimal value of the solution and convergence 

characteristics of the test systems, the effectiveness and 

robustness of the algorithms are compared under random 

load conditions and definite raise and fall-off load 

conditions. 

 Keywords: Grey Wolf Optimization; Harris Hawks 

Optimization; Improved Learner Performance-based 

Behaviour algorithm; Optimal power flow; Whale 
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I. INTRODUCTION 
The optimal Power Flow (OPF) problem is 

mathematically formulated in the 1960s by Carpentier[1], 

and significant dedicated attempts have been concerned with 

finding a decisive solution to the problem. In the near future, 

the majority of the power system networks are associated 

with renewable energy sources and electric vehicles. The 

arrival of renewable energy sources, electrical vehicles, 

hybrid AC-DC grid systems, energy storage systems, 

different generating stations, uncertainty in load conditions, 

and numerous interconnections has made the power system 

more complex, robust, complicated, non-linear, non-convex, 

unregulated, and unpredictable structure [2]. The study of 

power systems addresses the security, operation, and 

planning problems. The mainly concentrated problem of 

power systems is optimal power flow [3]. A solution to the 

OPF problem gives a solution to economic dispatch, unit 

commitment, and reactive power dispatch. OPF problem is 

drafted with both balanced and imbalanced constraints. The 

power flow equations form the balanced constraints. The 

bounds of dependent and independent variables form the 

imbalanced constraints [4]. The dependent variables (control 

variables) are the generator’s active power at the reference 

bus, voltages at the PQ bus, the generator’s reactive power at 

all PV buses, and apparent power flow in transmission lines. 

The independent variables (decision variables) are the 

generator’s active power at all PV buses except the reference 

bus, voltages at all PV buses, compensator’s reactive power, 

and online tap settings transformers. Obtaining a solution to 

the OPF problem is very difficult for engineers using 

conventional methods such as Newton-Raphson and 

Lagrangian method, Linear and quadratic programming, 

Interior point, and Gradient methods [5-7]. The traditional 

techniques are not much efficient in getting the solution for 

systems with non-differential, non-convex, discrete, 

continuous, complex objective functions and constraints. 

To overthrow the complication of conventional 

methods, artificial intelligent searching methods are used to 

solve the OPF problem. Artificial intelligent searching 

algorithms are categorized as inspired evolutionary 

algorithms, physics-inspired algorithms, human-inspired 

algorithms, and nature-inspired algorithms. Evolutionary 

inspired algorithms to solve OPF problems are Genetic 

Algorithm (GA), Evolutionary Programming (EP), 

Differential Evolution Algorithm (DE), Differential Search 

Algorithm (DSA), Backtracking Search Algorithm (BSA,  

Improved Evolutionary Algorithm (IEA) and so on. Physics 

inspired algorithms for solving OPF problems are Colliding 

Bodies Optimization Algorithm (CBOA), Improved 

Colliding Bodies Optimization Algorithm (ICBOA), 

Opposition Based Gravitational Algorithm (OBGA), 

Gravitational Search Algorithm (GSA), Black-Hole based 

Optimization Algorithm (BHOA), Simulated Annealing 

(SA)and so on.,. Human inspired algorithms to solve OPF 

problems are Biogeography Based Optimization (BBO), 
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Imperialist Competitive Algorithm (ICA), The League 

Championship Algorithm (TLCA), Teaching Learning Based 

Optimization (TLBO), Tabu Search (TS), and so on., Nature-

inspired algorithms for OPF problem are Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), 

Artificial Bee Colony (ABC), Moth Flame Algorithm 

(MFA), Moth Swarm Algorithm (MSA), Glow Worm 

Swarm Optimization (GWSO), Krill Herd Algorithm (KHA), 

Shuffled Frog Leaping Algorithm (SFLA)and so on., [8]. 

In this paper, the existing Learner Performance 

Behavior-based algorithm (LPB) [9] is improved by 

implementing simulated binary crossover instead of 

arithmetic crossover and named as Improved Learner 

Performance Behavior algorithm (ILPB). The proposed ILPB 

is used to solve the optimal power flow problem in the power 

systems. The ILPB algorithm resembles the process of 

learners getting admissions into different departments in 

different institutions for graduation from different high 

school education. The performance behavior of the learners 

is unusual during college study when compared with school 

study. The performances of the learners are made more 

effective for college study with the help of adding some 

factors to the school study procedure. Multiple groups of the 

population are formed with learners based on the CGPA 

score. By forming populations based on CGPA, it causes a 

good balance between exploration and exploitation. The first 

and foremost step in ILPB is the creation of an initial 

population randomly. Next, a percentage of the population is 

separated from the initial random population based on the 

divide probability (dp) value. Next is to form two groups 

from the separated population based on the fitness value. The 

subpopulation with the highest fitness is named as good 

population group (GP), and the sub-population with the 

lowest fitness is named as Bad population group (BP). High 

priority is given to the individuals that are present in a good 

population group to enter the optimization process. At last, 

new individuals are generated by applying crossover (SBX) 

and mutation operators. The performances of the individuals 

are improved by SBX and mutation operators. 

In this paper, evolutionary inspired algorithm ILPB -

Improved Learner Performance-based Behaviour algorithm 

(ILPB) and nature-inspired algorithms WOA, GWO, and 

HHO are used to determine the solution for OPF problem 

with balance and imbalanced constraints. The solution to the 

OPF problem is to think about reducing total fuel cost, 

decreasing active power loss, improving voltage profile, and 

enhancing voltage stability limit. The solution for the OPF 

problem with random load conditions and definite raise and 

the fall-off in load conditions are addressed in this paper by 

considering various EAs viz., ILPB, WOA, GWO, and HHO.  

This paper is structured as Section-I with Introduction 

and importance of OPF, Section-II with the formulation of 

OPF problem along with the fitness functions and respective 

constraints, Section-III describes different EAs, Section-IV 

reports the results of EAs, and Section-V concludes the 

findings of research and future scope. 

II. PROBLEM FORMULATION 

The OPF problem can be arithmetically described as 

min 𝐹(𝑥, 𝑢) exposed to  

𝑔𝑗(𝑥, 𝑢) =  0                      𝑗 = 1,2,3, … … … … … 𝑚    (1) 

ℎ𝑗(𝑥, 𝑢) ≤  0                      𝑗 = 1,2,3, … … … … … 𝑝     (2) 

F is the fitness function that is to be optimized, x is a 

vector of dependent variables (state variables), u is a vector 

of independent variables (control variables), gj is balanced 

constraints, hj is imbalanced constraints, m is the number of 

balanced constraints, p is the number of imbalanced 

constraints. 

The vector of state variables, x in the power system, 

can be represented as 

𝑥 = [𝑃𝐺1 , 𝑉𝐿1 … , 𝑉𝐿𝑁 , 𝑄𝐺1 , … 𝑄𝐺𝑁 , 𝑆𝑇𝐿1 … , 𝑆𝑇𝐿𝑁  ]      (3) 

PG1  is the real power of slack bus (reference bus), VL 

is the voltage of load bus (PQ bus), QG is reactive power of 

generator bus (PV bus), STL is apparent power flow in the 

transmission line, LN is number of load buses, GN is number 

of generator buses, TLN is number of transmission lines 

The vector of control variables, u in the power system, 

can be represented as 

𝑢 = [ 𝑃𝐺2 , . , 𝑃𝐺𝑁 , 𝑉𝐺1, . , 𝑉𝐺𝑁 , 𝑄𝐶1, . , 𝑄𝐶𝑁, 𝑇1 , . , 𝑇𝑇𝑁  ]   (4) 

PG is the output power of all generators except the 

reference bus, VG is the voltage of all generator buses, QC is 

the injected reactive power of shunt compensator, T is tap 

settings of the transformer, CN is the number of shunt 

compensators, TN is the number of transformers.  

A. Objective Functions 

1). Total Fuel Cost: The first fitness function is to reduce 

the total fuel cost, which is communicated as 

𝑇𝐹𝐶 = ∑ 𝐹𝑖(𝑃𝐺𝑖)𝐺𝑁
𝑖=1 =  ∑ (𝑎𝑖𝑃𝐺𝑖

2 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖)𝐺𝑁
𝑖=1     (5) 

Fi is fuel cost of ith generator, ai, bi, ci is the cost 

coefficients of ith generator 

2). Total Active Power Losses: The second fitness function 

is to decrease the total active power loss expressed as: 

𝑇𝐴𝑃𝐿 = ∑ 𝐺𝑖𝑗(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝛿𝑖𝑗)𝑇𝐿𝑁
𝑖=1         (6) 

Gij is the conductance of the transmission line,δij is the 

phase difference between voltages. 

3). Voltage Profile Improvement: The third fitness 

function is to improve voltage profile by minimizing the total 

voltage deviations of load buses from the specified voltage, 

which is expressed as:  

𝑇𝑉𝐷 = ∑ |(𝑉𝑖 − 1)|𝐿𝑁
𝑖=1            (7) 

4). Voltage Stability Enhancement: 

The fourth fitness function is to enhance the stability 

of the power system by minimizing the voltage stability 

index (L) value, thereby keep the system far away from 
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voltage collapse. The fitness function is indicated as: 

𝑉𝑆𝐼 = min(𝐿𝑚𝑎𝑥) = min(max(𝐿𝑛)) ; 𝑛 = 1,2, . , 𝐿(8) 

B. Constraints 

1). Equality constraints: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐿𝑜𝑠𝑠𝑒𝑠 = 0        (9) 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗)𝐵𝑁
𝑗=1 = 0    (10) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗)𝐵𝑁
𝑗=1 = 0   (11) 

PGi is generated active power at ith bus, QGi is 

generated reactive power at ith bus, PDi is active load demand 

at ith bus, QDi is reactive load demand at ith bus, Gij is 

conductance between ith bus and jth bus, Bij is susceptance 

between ith bus and jth bus, δij is the phase difference between 

voltages of ith bus and jth bus, Vi is the voltage at ith bus, Vj is 

the voltage at jth bus. 

2). Inequality constraints: 

Generator active power, 𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥                (13) 

Generator bus voltages, 𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥      (14) 

Generator reactive power, 𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥      (15) 

Transformer tap settings, 𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥               (16) 

Shunt VAR compensator, 𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥       (17) 

Apparent power in transmission lines, 𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑖𝑛        (18) 

The voltage at load bus, 𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥                    

(19) 
 

III. EVOLUTIONARY ALGORITHMS 

A. Improved Learner Performance-based Behaviour 

algorithm (ILPB): 

In the proposed ILPB algorithm, a population P has 

randomly generated that consists of graduate learners who 

want to apply for graduate studies in different departments of 

an institution. Every department has been specified with a 

minimum CGPA score for eligible learners to be admitted 

into a particular department. The operators divide probability 

‘dp’ is considered as the range specified by the department, 

through which the population is partitioned into R, and S. S 

is the population of learners that are eligible for admission in 

a particular department. The study behavior of graduate 

learners is different from the study behavior of school 

learners. Graduate learners are partitioned into high learners 

and low learners. High learners are having high CGPA than 

the specified range, whereas the low learners are those 

having a low specified range of CGPA. Now, the fitness of 

each individual present in S is calculated, and the individuals 

are sorted in decreasing order of their fitness value. Divide 

the population into the high population (HP) consisting of 

individuals with high fitness and low population (LP) 

consisting of individuals with low fitness. The highest fitness 

value of individuals present in HP and LP is evaluated. The 

fitness of individuals present in the R population is also 

calculated. If the fitness of the individual present in R is 

lesser than or equal to the highest fitness value of the 

individual present in LP, then move the individual from R to 

LP. If the fitness of the individual present in R is lesser than 

or equal to the highest fitness value of the individual present 

in HP, then move the individual from R to HP. Otherwise, if 

the fitness of the individual present in R is superior to the 

highest fitness value of the individual present in HP, then 

move the individual to perfect population PP. The learners 

having higher CGPA score is preferred more than the 

learners having lower CGPA for admitting to a particular 

department. The number of learners specified by the 

departments is chosen from the PP and HP. If the number of 

learners is less than the specified number of learners for the 

departments, then the institute will decide to allot the learners 

from the low population. In order to perform SBX crossover 

and arithmetic mutation, choose an individual from PP if it is 

not empty otherwise, select from HP if it is not empty. If 

both PP and HP are empty, then select the individual from 

LP. After accepting the graduate learners, i.e., individuals by 

the department, the performance behavior of graduate 

learners needs to be improved. The performance of the 

graduate learners is improved by seeking help from others, 

self-study, or working groups. In this algorithm, simulated 

binary crossover and mutation are implemented for 

improving the performance behavior of the individual. The 

role of the crossover operator is to make the individual 

exchange the study behavior with others. Thus, the 

individual contains study behavior that is different from the 

original study behavior of the learners. The study behavior of 

the individuals is updated randomly or at a specific rate by 

using a mutation operator. The simulated binary crossover 

[10] is expressed as eq.20 and eq.21 

𝑁𝐿𝑖
(1,   𝑡+1) = 0.5[(1 + 𝛽𝑞𝑖)𝐿𝑖

(1,   𝑡) + (1 − 𝛽𝑞𝑖 )𝐿𝑖
(2,   𝑡)] 

𝑁𝐿𝑖
(2,   𝑡+1) = 0.5[(1 − 𝛽𝑞𝑖)𝐿𝑖

(1,   𝑡) + (1 + 𝛽𝑞𝑖 )𝐿𝑖
(2,   𝑡)]  (20) 

𝛽𝑞𝑖 = {
(2𝑢𝑖)

1

ɳ𝑐+1                               ;  𝑢𝑖 ≤ 0.5

[
1

2(1−𝑢𝑖)
]

1

ɳ𝑐+1                          ; 𝑢𝑖 > 0.5
       (21) 

where𝐿𝑖
(1,   𝑡)

&𝐿𝑖
(2,   𝑡)

 are the solutions of learner-1 & learner-

2, 𝑁𝐿𝑖
(1,   𝑡+1)

&𝑁𝐿𝑖
(2,   𝑡+1)

 are the solutions of new learner-1 & 

new learner-2, 𝑢𝑖  are random numbers between 0 and 1, ɳ𝑐 is 

distribution index. 

The pseudo-code for ILPB is given below: 

Initial population (P) is created randomly 

Specify the parameters of ILPB 

While stopping condition is not satisfied 

Split P into R and S based on the dp value 

Calculate fitness of individuals S 

Sort in descending 

Divide population S based on fitness as HP & LP 

Calculate highest fitness (HF) of  HP and LP 

Calculate the fitness (F) of individuals in R 

If FP < HFLP, Move it from R to LP 

Else if FP< HFHP, Move it from R to HP 

Else, Move to Perfect population (PP) 
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While  K < N 

If PP is not empty, Select it from PP 

Else if HP is not empty, Select it from HP 

Else, Select it from LP 

Increment K 

End while 

Perform simulated binary crossover 

Perform mutation 

Check for stopping criteria 

If stopping criteria is not satisfied,  

go to splitting the population 

Else, stop the process by obtaining a solution 

End while 

Obtain optimal solution 

 

B. Whale Optimization Algorithm (WOA): 

The whale optimization algorithm (WOA) is another 

kind of artificial intelligent algorithm based on the hunting 

nature of whales. The algorithm involves two phases, 

namely, exploitation and exploration for the searching of 

prey [11]. The location of each whale is renovated by bubble 

net attacking strategy in exploitation, whereas in exploration, 

each whale renews its position by selecting a random search 

agent. Bubble net attacking is a strategy of shrinking, 

encircling the prey in a spiral-shaped movement established 

on the identified best solution[12]. 

 

C. Grey Wolf Optimization (GWO): 

The Grey Wolf Optimization (GWO) algorithm is 

developed by Mirjalili et al. in 2014 [13], which is based on 

the hunting structure of grey wolves in nature. GWO simply 

follows the directorship ranking for a searching solution. 

Alpha (α), beta (β), delta (δ), and omega (Ω) are the 

arrangements in the directorship ranking that are considered 

as the best solutions [14]. The steps involved in the GWO 

algorithm are as follows [15]: GWO starts with the 

initialization of search agents (grey wolves) with random 

values. After initialization, the top most solutions are 

structured based on the leadership hierarchy as α, β, δ in 

encircling. The fitness values are computed for the leader 

wolves (α, β, δ). After computing the fitness value, check the 

stopping condition. If stopping criteria is satisfied, the 

optimal global solutions are displayed and stop the process. 

Otherwise, the algorithm follows to hunting, attacking, and 

exploration stages. In the hunting stage, renew the position of 

current search agents (α, β, δ).In the attacking stage, 

determine the fitness value of the current search agents. If the 

fitness value is not convinced, rearrange the search agents 

based on directorship ranking in the exploration stage. After 

exploration, once again, fitness values for new search agents 

are computed and check for the stop criteria[16]. 

 

 

D. Harris Hawks Optimization (HHO): 

Harris hawk's optimization (HHO) algorithm is 

developed by Heidari et al. [17]. It addresses optimal 

solutions for various optimization problems based on the 

hunting nature of Harris hawks. The hunting process 

involves detecting, surrounding, advancing, and invading the 

prey[18]. Exploration and exploitation are the two main 

phases in HHO. There is an intermediate phase, which 

defines the transformation between exploration and 

exploitation. The first phase includes foreseeing, searching, 

and discovering the prey. The second phase contains the 

initial energy (E0) and the escaping energy of the prey (E). 

The transformation between exploration and exploitation 

hinges on the escaping energy of the prey (E). Depend on the 

magnitude of |E|, start the exploration phase if |E| ≥ 1; 

otherwise exploiting phase if |E| < 1. In the exploitation 

phase, based on the value of |E|, once again, the hawks 

decide to apply a soft if |E| ≥ 0.5) or hard besiege if |E| < 

0.5to capture the prey from a certain space[19]. 

 

IV. RESULTS & DISCUSSIONS: 

The effectiveness of EAs is tested with random as well 

as definite raising and fall-off load conditions on the standard 

IEEE-30 bus system, IEEE-118 bus system, and practical 62-

bus Indian utility system. The performances of the EAs are 

investigated by random varying load conditions using 

Pseudo-Random Number Generator (PRNG) and definite 

raise and fall-off load conditions. The simulation results are 

carried out with AMDA Ryzen 5 processor having 64-bit 

Windows 7 OS with 8 GB RAM. The simulation is 

performed in MATLAB 2013b along with MATPOWER 

7.0b. The number of population or search agents is seized to 

50, and the maximum number of iterations is 200.  

For better results of ILPB, the crossover probability, 

crossover index, mutation index have been changed 

individually and simulated for 25 individual trail runs. The 

crossover probability has been changed from 0.75 to 0.95 

with an increase of 0.02. The crossover index has been 

replaced with an interval of 0.5 from 1 to 5. The mutation 

index has been increased from 10 to 20 with an interim of 2. 

Finally, ILPB has performed effectively by considering 

crossover probability as 0.88, crossover index at 3, and 

mutation index at 18.  

 Considering the random nature of load variations, the 

concept of pseudo-random number generator (PRNG) [20] 

has been implemented in the test systems by using the 

following expression: 

𝑅𝑛+1 = (𝑥𝑅𝑛 + 𝑦) 𝑚𝑜𝑑 𝑀, 𝑛 ≥ 0    (22) 

where, 𝑅0𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒(0 ≤ 𝑅0 < 𝑀) , 

𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 (0 ≤ 𝑥 < 𝑀)       ,  

𝑦  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (0 ≤ 𝑦 < 𝑀)  , 

𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑀 > 0 , 

𝑅𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑠𝑒𝑢𝑑𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 
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A. Standard Test System-1: IEEE-30 Bus System 

The standard test system-1 is composed of 6 generator 

buses and 24 load bus having 41 branches with 4 online tap 

changing transformers and 9 reactive power compensators. It 

is connectedwith21 active loads among 24 load buses, 25 

decision variables with a total connected load of (283.4+j 

126.2) MVA. The voltage magnitude at the generator bus is 

bounded to [0.95, 1.1] p.u. The limit of tap settings of online 

tap changing transformers is [0.9, 1.1] p.u. The limit of shunt 

capacitors is [0,5] MVAR. 

The comparison of the best value of each objective 

function for standard test system-1with different EAs is 

given in Table-I. The best value for all objective functions is 

obtained by using ILPB. ILPB is converged for the raise 25% 

load and fall-off load of 50%. The first objective function 

(TFC) is not converged for load greater than 15% raise with 

WOA and HHO. Above 25% load raise and below 50% fall-

off load, all EAs are not giving convergence solution for 

OPF problem. 

The best values of the first objective function (TFC) 

with variable load condition for standard test system-1using 

different EAs is shown in Fig.1. For -50% load change, the 

best value 345.2318 $/hr is obtained by using ILPB, and the 

worst value 345.2523 $/hr is obtained by using HHO. For 

+15% load change, the best value 968.1498 $/hr is obtained 

from ILPB, and the worst value 968.3786 $/hr is obtained 

from GWO. For +20% and +25%, the objective function is 

not converged by using WOA and HHO. 

The best values of the second objective function 

(TAPL) with variable load condition for standard test 

system-1 using different EAs is shown in Fig.2. For -50% 

load change, the best value 1.1288 MW is obtained by using 

ILPB, and the worst value 1.1449 MW is obtained by using 

WOA. For +25% load change, the best value, 6.9791 MW, is 

obtained from ILPB, and the worst value, 7.0149 MW, is 

obtained from HHO. 

The best values of the third objective function (TVD) 

with variable load condition for standard test system-1 using 

different EAs is shown in Fig.3. For -50% load change, the 

best value 0.4773 p.u is obtained by using ILPB, and the 

worst value 0.4865 is obtained by using HHO. For +25% 

load change, the best value 0.5368 p.u is obtained from 

ILPB, and the worst value of 0.5492 p.u is obtained from 

HHO. 

The best values of the fourth objective function (VSI) 

with variable load condition for standard test system-1 using 

different EAs is shown in Fig.4. For -50% load change, the 

best value 0.0604 p.u is obtained by using ILPB, WOA & 

HHO, and the worst value 0.0605 is obtained by using GWO. 

For +25% load change, the best value 0.1590p.u is obtained 

from ILPB, and the worst value 0.1593p.u is obtained from 

WOA & HHO. 

Table I: Comparison of the best value of each objective 

function for standard test system-1with load variation 

using different EAs 

Load 

 Variation 
EAs TFC TAPL TVD VSI 

-50 % 

ILPB 345.2318 1.1288 0.4773 0.0604 

WOA 345.2383 1.1449 0.4859 0.0604 

GWO 345.2469 1.1346 0.4797 0.0605 

HHO 345.2523 1.1415 0.4865 0.0604 

-40 % 

ILPB 420.6105 1.6126 0.4705 0.0729 

WOA 420.6182 1.6306 0.4737 0.0732 

GWO 420.6363 1.6205 0.4770 0.0730 

HHO 420.6359 1.6272 0.5060 0.0731 

-30 % 

ILPB 507.3688 2.2920 0.4656 0.0857 

WOA 507.3922 2.3138 0.4752 0.0857 

GWO 507.3884 2.3115 0.5090 0.0857 

HHO 507.4042 2.3168 0.4832 0.0857 

-20 % 

ILPB 601.7954 2.7285 0.4926 0.0983 

WOA 601.8329 2.7492 0.4970 0.0990 

GWO 601.8272 2.7445 0.5124 0.0985 

HHO 601.8902 2.7739 0.4968 0.0988 

-10 % 

ILPB 700.0150 3.0988 0.4946 0.1114 

WOA 700.0578 3.1294 0.5359 0.1116 

GWO 700.0885 3.1081 0.5102 0.1114 

HHO 700.0979 3.1236 0.6230 0.1116 

Normal  

load  

condition 

ILPB 802.1448 3.6487 0.5279 0.1248 

WOA 802.2270 3.6687 0.5383 0.1249 

GWO 802.2899 3.6648 0.5362 0.1249 

HHO 802.2337 3.6681 0.5442 0.1248 

+05 % 

ILPB 855.4127 4.0111 0.5271 0.1313 

WOA 855.4986 4.0324 0.5403 0.1315 

GWO 855.5293 4.0317 0.5466 0.1313 

HHO 855.6311 4.0419 0.5636 0.1315 

+10 % 

ILPB 910.6807 4.4714 0.5368 0.1384 

WOA 910.7851 4.4896 0.5534 0.1385 

GWO 910.7514 4.5288 0.5548 0.1385 

HHO 910.8064 4.5017 0.5381 0.1384 

+15 % 

ILPB 968.1498 5.0280 0.5443 0.1449 

WOA 968.2131 5.0447 0.5771 0.1452 

GWO 968.3786 5.0955 0.5456 0.1450 

HHO 968.2800 5.0484 0.5923 0.1451 

+20 % 

ILPB 1029.5633 5.9471 0.5347 0.1522 

WOA NC 5.9822 0.5721 0.1524 

GWO 1029.7956 6.0083 0.5400 0.1529 

HHO NC 5.9683 0.5393 0.1523 

+25 % 

ILPB 1096.0174 6.9791 0.5368 0.1590 

WOA NC 7.0119 0.5488 0.1593 

GWO 1096.2891 7.0005 0.5369 0.1591 

HHO NC 7.0149 0.5492 0.1593 
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Fig.1: TFC with variable load for standard test system-1 

 

Fig.2: TAPL with variable load for standard test system-

1 

 
Fig.3: TVD with variable load for standard test system-1 

 
Fig.4: VSI with variable load for standard test system-1 

The convergence characteristics of the objective 

function, total fuel cost (TFC) with two random loads are 

laid out in Fig.5. From Fig.5, for random load-1, ILPB and 

GWO are converged, whereas WOA and HHO are not 

converged. For random load-2, all the EAs are converged. 

The convergence characteristics of the objective function, 

total active power losses (TAPL) with two random loads, are 

set out in Fig.6. All the EAs are converged. The convergence 

characteristics of the objective function, total voltage 

deviation (TVD) with two random loads, are displayed in 

Fig.7. For two random loads, all the EAs are converged. The 

convergence characteristics of objective function, voltage 

stability index (VSI) with two random loads are posted in 

Fig.8. For two random loads, all the EAs are converged. 

 

 
Fig.5: Convergence curve for TFC with random loads for 

standard test system-1. 

 
Fig.6: Convergence curve for TAPL with random loads 

for standard test system-1. 

 

 
Fig.7: Convergence curve for TVD with random loads for 

standard test system-1. 

 
Fig.8: Convergence curve for VSI with random loads for 

standard test system-1. 

The best optimum values for each objective function 

obtained by using different EAs under random loads 1 & 2 

are given in Table II & Table II. The best optimum value is 

given by ILPB when compared with other EAs under random 
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load conditions. For objective function TFC, with random 

load-1, WOA and HHO have not given the converged 

optimal value. 

 

Table II: Comparison of the best value of each objective 

function for standard test system-1with two random load-

1 using different EAs 

EAs TFC TAPL TVD VSI 

ILPB 1003.8981 5.5626 0.5346 0.1490 

WOA NC 5.5914 0.5672 0.1493 

GWO 1004.0834 5.5984 0.5429 0.1492 

HHO NC 5.5915 0.5776 0.1496 

Table III: Comparison of the best value of each objective 

function for standard test system-1with two random load-

2 using different EAs 

EAs TFC TAPL TVD VSI 

ILPB 488.7379 2.1217 0.4644 0.0830 

WOA 488.7609 2.1460 0.4732 0.0831 

GWO 488.7834 2.1392 0.5045 0.0830 

HHO 488.8204 2.1430 0.4973 0.0831 

 

B. Standard Test System-2: IEEE-118 Bus System 

The standard test system-2 contains 54 generators and 

99 active load bus having 186 branches with 9 online tap 

changing transformers and 12 reactive power compensators. 

It observed that 129 decision variables with a total connected 

load of (4242+j 1438) MVA. The limit of voltage magnitude 

of generator bus is [0.96, 1.1] p.u. The limit of tap settings of 

online tap changing transformers is [0.9, 1.1] p.u. The limit 

of shunt capacitors is [0, 40] MVAR. 

The comparison of the best value of each objective 

function for standard test system-2 with different EAs is 

given in Table-IV. The best value for all objective functions 

is obtained by using ILPB. ILPB is converged for the load 

raise of 100% and fall-off load of 99%. The first objective 

function (TFC) is not converged for fall-off load at 99% with 

GWO, and the fourth objective function (VSI) is not 

converged for raise of load at 100% with WOA, GWO, and 

HHO. Only ILPB is giving convergence solution for all 

objective functions at +100% raise load condition. The 

solutions for the OPF problem are obtained from EAs when 

the load is doubled (except ILPB) and at no-load condition is 

not converged. 

The best values of the first objective function (TFC) 

with variable load condition for standard test system-2 using 

different EAs is shown in Fig.9. For -80% load change, the 

best value 18733.6251 $/hr is obtained by using ILPB, and 

the worst value 18828.1230 $/hr is obtained by using WOA. 

For +100% load change, the best value 308701.4151 $/hr is 

obtained from ILPB, and the worst value 308791.3128 $/hr is 

obtained from WOA. 

The best values of the second objective function 

(TAPL) with variable load condition for standard test 

system-2 using different EAs is shown in Fig.10. For -99% 

load change, the best value 0.7701 MW is obtained by using 

ILPB, and the worst value 0.9612 MW is obtained by using 

GWO. For +100% load change, the best value 177.5186 MW 

is obtained from ILPB, and the worst value 180.1621 MW is 

obtained from WOA. 

The best values of the third objective function (TVD) 

with variable load condition for standard test system-2 using 

different EAs is shown in Fig.11. For -99% load change, the 

best value 0.5530p.u is obtained by using ILPB, and the 

worst value 0.7010 is obtained by using HHO. For +100% 

load change, the best value 1.2103p.u is obtained from ILPB, 

and the worst value of 1.3485p.u is obtained from HHO. 

The best values of forth objective function (VSI) with 

variable load condition for standard test system-2 using 

different EAs is shown in Fig.12. For -99%, -80%, -60%, -

40%, -20%, 0%, +20% load change, the values0.0006 p.u, 

.00118 p.u, 0.0238 p.u, 0.0360 p.u, 0.0485 p.u, 0.0617 p.u, 

0.0749 p.u is obtained by all EAs. For +40% load variation, 

the best value 0.0878 p.u is obtained from ILPB and worst 

value 0.0881 is obtained by using WOA and GWO. For 

+80% load change, the best value 0.1155 p.u is obtained 

from ILPB, WOA & HHO and the worst value 0.1186p.u is 

obtained from GWO. The objective function is not 

converged for increase load of 100% with WOA, GWO & 

HHO. 

 

Table IV: Comparison of the best value of each objective 

function for standard test system-2 with load variation 

using different EAs 

Load 

 Variation 
EAs TFC TAPL TVD VSI 

-99 % 

ILPB 869.8129 0.7701 0.5530 0.0006 

WOA 876.0480 0.7931 0.5808 0.0006 

GWO NC 0.9612 0.5870 0.0006 

HHO 876.3674 0.7971 0.7010 0.0006 

-80 % 

ILPB 18733.6251 5.4486 0.4568 0.0118 

WOA 18828.1230 5.7733 0.5232 0.0118 

GWO 18733.9233 5.5055 0.4985 0.0118 

HHO 18738.6633 5.7863 0.5407 0.0118 

-60 % 

ILPB 41003.7475 17.4745 0.5855 0.0238 

WOA 41003.7537 17.5734 0.7843 0.0238 

GWO 41005.3680 17.8540 0.6789 0.0238 

HHO 41003.8726 17.7501 0.6558 0.0238 

-40 % 

ILPB 66950.5178 38.6525 0.7058 0.0360 

WOA 66954.8437 38.7506 0.8933 0.0360 

GWO 66953.8388 38.6625 0.7804 0.0360 

HHO 66954.4312 38.6528 1.0994 0.0360 

-20 % 
ILPB 96689.9188 68.4047 0.9524 0.0485 

WOA 96692.4737 68.6140 1.0244 0.0485 
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GWO 96690.7137 68.5163 0.9656 0.0485 

HHO 96699.8482 68.6106 1.2586 0.0485 

Normal 

 load 

 condition 

ILPB 129611.5389 76.5261 0.9702 0.0617 

WOA 129625.8773 76.7294 1.1864 0.0617 

GWO 129619.7429 76.6517 0.9863 0.0617 

HHO 129631.5253 76.7381 1.3193 0.0619 

+20 % 

ILPB 163663.9268 77.3984 0.9019 0.0749 

WOA 163677.2465 77.7411 1.0427 0.0749 

GWO 163677.2790 77.6256 0.9019 0.0749 

HHO 163679.5190 77.8091 1.0670 0.0749 

+40 % 

ILPB 198428.6687 85.0616 1.0814 0.0878 

WOA 198449.3826 85.5621 1.0822 0.0881 

GWO 198440.7312 85.4477 1.2394 0.0881 

HHO 198454.0929 85.5854 1.1262 0.0879 

+60 % 

ILPB 233955.4680 103.0500 1.1193 0.1015 

WOA 233979.7052 103.5865 1.1772 0.1015 

GWO 233987.6681 103.3460 1.1903 0.1016 

HHO 233966.4871 103.7777 1.2302 0.1016 

+80 % 

ILPB 270473.9980 135.3619 1.2053 0.1155 

WOA 270537.9866 136.3003 1.2230 0.1155 

GWO 270484.1765 135.6727 1.2372 0.1186 

HHO 270477.9296 136.4068 1.3148 0.1155 

+100 % 

ILPB 308701.4151 177.5186 1.2103 0.1281 

WOA 308791.3128 180.1621 1.2603 NC 

GWO 308725.8751 178.7836 1.2181 NC 

HHO 308701.5428 179.4587 1.3485 NC 

 
Fig.9: TFC with variable load for standard test 

system-2 using different EAs. 

 
Fig.10: TAPL with variable load for standard test 

system-2 using different EAs. 

 
Fig.11: TVD with variable load for standard test 

system-2 using different EAs. 

 
Fig.12: VSI with variable load for standard test 

system-2 using different EAs. 

The characteristic convergence curves for objective 

functions with two random load conditions for standard test 

system-2 are shown in Fig.13-Fig.16. For the two random 

load conditions, the optimum values obtained are all 

converged values. 
 

 

Fig.13: Convergence curve for TFC with random 

loads for standard test system-2. 

 
Fig.14: Convergence curve for TAPL with random 

loads for standard test system-2. 
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Fig.15: Convergence curve for TVD with random 

loads for standard test system-2. 

 
Fig.16: Convergence curve for VSI with random 

loads for standard test system-2. 

 

A comparison of the best optimum value for standard 

test system-2 by using different EAs under random load 

conditions is given in Table V & VI. The best optimum value 

is given by ILPB when compared with other EAs under 

different load demands. 

 

Table V: Comparison of the best value of each objective 

functions for standard test system-2 with random load-1 

using different EAs 

EAs TFC TAPL TVD VSI 

ILPB 183471.4715 80.4343 1.0817 0.0815 

WOA 183483.1070 80.4771 1.2541 0.0825 

GWO 183476.8013 80.5149 1.0948 0.0817 

HHO 183498.0743 80.6418 1.0882 0.0822 

 

Table VI: Comparison of the best value of each objective 

functions for standard test system-2 with random load-2 

using different EAs 

EAs TFC TAPL TVD VSI 

ILPB 95186.6492 66.7519 1.0063 0.0476 

WOA 95196.7275 67.0099 1.3684 0.0479 

GWO 95189.4459 66.7921 1.0930 0.0477 

HHO 95198.1292 67.1320 1.1896 0.0481 

 

C. Practical Test System: 62-bus Indian utility system 

The practical test system consists of 19 generator 

buses and 44 active load buses, having 89 branches with 11 

online tap changing transformers. The OPF model consists of 

49 decision variables with a total connected load of (2908+j 

1270) MVA. The limit of voltage magnitude of generator bus 

is [0.9, 1.1] p.u. The limit of tap settings of online tap 

changing transformers is [0.9, 1.1] p.u. The practical test 

system doesn’t have any shunt capacitors. 

The comparison of the best value of each objective 

function for a practical test system with different EAs is 

given in Table-VII. It is observed that the best value for all 

objective functions is obtained by using ILPB. ILPB is 

converged for the increasing load of 20% and a decreasing 

load of 20%. The second objective function (TAPL) is not 

converged for increasing and decreasing load other than 

static load condition with GWO. Above 20% and below -

20% of static load, all EAs are not giving convergence 

solutions for the OPF problem. 

The best values of the first objective function (TFC) 

with variable load condition for practical test system using 

different EAs is shown in Fig.17. For -20% load change, the 

best value 9529.4666 $/hr is obtained by using ILPB, and the 

worst value 9530.9329 $/hr is obtained by using WOA. For 

+20% load change, the best value 17738.5791 $/hr is 

obtained from ILPB, and the worst value 17747.8833 $/hr is 

obtained from HHO. 

The best values of the second objective function 

(TAPL) with variable load condition for practical test system 

using different EAs is shown in Fig.18. For a no-load 

change, the best value of 73.8746 MW is obtained by using 

ILPB, and the worst value of 75.6726 MW is obtained by 

using GWO. For +20% and -20% load change, only ILPB is 

giving convergence solution for second objective function 

(TAPL) of OPF problem. GWO is not giving a converged 

solution other than static load condition. WOA is giving a 

convergence solution only for +5% changes in load. The 

convergence solution with HHO is not obtained for above 

+10% and below         10% change in load. 

The best values of the third objective function (TVD) 

with variable load condition for practical test system using 

different EAs is shown in Fig.19. For -20% load change, the 

best value 0.5614p.u is obtained by using ILPB, and the 

worst value 0.6904 is obtained by using HHO. For +20% 

load change, the best value 0.9778p.u is obtained from ILPB, 

and the worst value 1.0181 p.u is obtained from WOA. 

The best values of the fourth objective function (VSI) 

with variable load condition for practical test system using 

different EAs is shown in Fig.20. For -20% load change, the 

best value 0.0789p.u is obtained by using ILPB, GWO& 

HHO, and the worst value 0.0801 is obtained by using WOA. 

For +20% load change, the best value 0.1216p.u is obtained 

from ILPB & GWO and WOA gives worst value 0.1245p.u. 
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Table VII: Comparison of the best value of each objective 

function for practical test system with load variation 

using different EAs 

Load  

Variation 
EAs TFC TAPL TVD VSI 

-20 % 

ILPB 9529.4666 59.8340 0.5614 0.0789 

WOA 9530.9329 NC 0.6884 0.0801 

GWO 9530.3643 NC 0.6242 0.0789 

HHO 9529.5254 NC 0.6904 0.0789 

-15 % 

ILPB 10414.7694 62.5738 0.6376 0.0838 

WOA 10416.7006 NC 0.7777 0.0856 

GWO 10417.3007 NC 0.6503 0.0838 

HHO 10423.1835 NC 0.7394 0.0847 

-10 % 

ILPB 11339.6623 65.8245 0.7188 0.0888 

WOA 11343.0021 NC 0.7635 0.0907 

GWO 11343.4542 NC 0.7787 0.0888 

HHO 11343.4767 68.3816 0.7848 0.0894 

-05 % 

ILPB 12302.9783 69.7499 0.9254 0.0937 

WOA 1206.3554 NC 0.9739 0.0962 

GWO 12307.7957 NC 0.9617 0.0937 

HHO 12308.1212 70.0412 0.9285 0.0937 

Normal 

 load  

condition 

ILPB 13305.4267 73.8746 0.8049 0.0986 

WOA 13309.6423 74.1200 0.8946 0.1004 

GWO 13309.4078 75.6726 0.8378 0.0986 

HHO 13309.3016 74.3201 0.8467 0.0994 

+05 % 

ILPB 14350.4550 79.2281 0.6874 0.1038 

WOA 14353.2951 79.8902 0.8592 0.1038 

GWO 14352.2559 NC 0.6896 0.1038 

HHO 14358.3237 80.4930 0.8599 0.1052 

+10 % 

ILPB 15435.1115 85.9632 0.7269 0.1096 

WOA 15442.0570 NC 0.9585 0.1119 

GWO 15442.3619 NC 0.7378 0.1096 

HHO 15442.4480 86.3737 1.0741 0.1096 

+15 % 

ILPB 16565.6209 92.8508 0.8507 0.1155 

WOA 16572.7578 NC 1.0206 0.1185 

GWO 16570.9340 NC 0.8776 0.1155 

HHO 16586.1248 93.4954 0.9859 0.1157 

+20 % 

ILPB 17738.5791 100.6230 0.9778 0.1216 

WOA 17745.5178 NC 1.0181 0.1245 

GWO 17746.4443 NC 0.9808 0.1216 

HHO 17747.8833 NC 1.0157 0.1223 

 

Fig.17: TFC with variable load for practical test system 

using EAs. 

 
Fig.18: TAPL with variable load for practical test system 

using EAs. 

 
Fig.19: TVD with variable load for practical test system 

using EAs. 

 
Fig.20: VSI with variable load for practical test system 

using EAs. 

 

The convergence characteristic curve for objective 

functions with two random load conditions of the practical 

test system is shown in Fig.21 – Fig.24. With random load-1 

conditions, for objective function TAPL, only ILPB has 

given the converged optimal value. With the random load-2 

condition, for the objective function, TAPL, ILPB, and HHO 

have given the converged optimal value. 

A comparison of the best optimum value by using 

different EAs under random load conditions for a practical 

test system is given in Table VIII & IX. The best optimum 

value is given by ILPB when compared with other EAs 

under random load demands. For objective function, TAPL, 

WOA, GWO, and HHO have not given the converged 

optimal value with random load-1. With random load-2, 

WOA and GWO have not given converged optimal value for 

objective function TAPL 
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Fig.21: Convergence curve for TFC with random loads 

for the practical test system. 

 
Fig.22: Convergence curve for TAPL with random loads 

for the practical test system. 

 
Fig.23: Convergence curve for TVD with random loads 

for the practical test system. 

 
Fig.24: Convergence curve for VSI with random loads for 

the practical test system. 

 

Table VIII: Comparison of the best value of each 

objective function for practical test system with random 

load-1 using different EAs 

EAs TFC TAPL TVD VSI 

ILPB 17406.2879 98.1169 0.8037 0.1198 

WOA 17409.6244 NC 1.0945 0.1199 

GWO 17411.8090 NC 0.8077 0.1199 

HHO 17413.9365 NC 1.2316 0.1221 

Table IX: Comparison of the best value of each objective 

functions for practical test system with random load-2 

using different EAs 

EAs TFC TAPL TVD VSI 

ILPB 11817.3992 67.7747 0.6825 0.0912 

WOA 11819.4308 NC 0.7785 0.0934 

GWO 11819.9053 NC 0.6857 0.0912 

HHO 11820.9436 68.9684 0.9403 0.0917 
 

V. CONCLUSIONS 

This paper successfully identifies the best optimal 

value and solution for each objective function of the optimal 

power flow problems using EAs viz., ILPB, WOA, GWO, 

and HHO with random load variation and definite raise and 

fall-off load conditions.WOA has poor convergence both in 

exploitation and exploration. WOA has less capability to 

avoid trapping from local minima in encircling. The 

imbalance between exploitation and exploration in GWO 

leads to an inaccurate global optimal value. Randomization 

technique of HHO has increased time computation time. The 

difficulties suffered by WOA, GWO, HHOare conquered by 

usingILPB to get a solution. The OPF problem is 

investigated for standard test systems 1 and 2 along with the 

Indian practical test system. The results have shown that the 

achievement of the inspired evolutionary approach, ILPB is 

better than the nature-inspired approaches WOA, GWO, 

HHO in terms of optimal value and convergence 

characteristics. ILPB has given converged optimal value for 

standard test system-1 with a raise of 25% load and a fall-off 

of 50% of the load. The standard test system-2 is converged 

for 100 % raise inrated load level and falls-off load up to 

99% of its rated load level. Even though the load is doubled 

and reduced near to no-load conditions, ILPB has given 

converged optimal value for standard test system-2. The 

convergence and robust performance of ILPB can be 

assessed with a practical test system where the other EAs, 

viz., WOA, GWO, HHO are failed to give converged optimal 

value for TAPL objective function. ILPB has performed 

better than others, with an increase of 20% load and a 

decrease of 20% load for the 62-bus Indian utility system. 

The performance of ILPB can be increased by proper 

selection of crossover constant and mutation constant. In this 

paper, with the crossover probability of 0.88, crossover index 

of 18, ILPB has superior convergence characteristics than 

other techniques. The convergence solution obtained by 

using ILPB dominates the other algorithms. From the 

convergence characteristics of ILPB for a practical test 

system, the robustness of the algorithm is understood. The 

optimal value obtained by using ILPB method yields the best 

results for all the objective functions of the OPF problem 

with random load conditions and definite raise and fall-off 

load conditions. The solution of OPF can perform an 

important role in the efficient planning, maintenance, 

enhancement, and operation of electrical power systems. 



Vijaya Bhaskar K et al. / IJETT, 69(8), 225-236, 2021 
 

236 

REFERENCES 
[1] Carpentier. M., Contribution à l’ ´ Etude du Dispatching ´ 

Economique. Bull. de la Soc. Fran. des ´ Elec., 8 (1962) 431–

447. 

[2] Zohrizadeh. F., Josz. C., Jin. M., Madani. R., Lavaei. J. and 

Sojoudi. S., A Survey on Conic Relaxations of Optimal Power 

Flow Problem. European Journal of Operational Research, 

(2020). 

[3] Lin. J., Li. V. O., Leung. K.C., and Lam. A. Y., Optimal power 

flow with power flow routers. IEEE Transactions on Power 

Systems, 32(1) (2017) 531–543. 

[4] Saha. A., Das. P.,&Chakraborty. A. K., Water evaporation 

algorithm: A new metaheuristic algorithm towards the solution of 

optimal power flow. Engineering Science and Technology, an 

International Journal, 20(6) (2017) 1540–1552. 

[5] A. Santos, G.R.M. Da Costa, Optimal-power-flow solution by 

Newton’s method applied to an augmented Lagrangian function, 

IEE Proceedings- IET, 142 (1995) 33–36. 

[6] E.P. De Carvalho, A. dos Santos, T.F. Ma, Reduced gradient 

method combined with augmented Lagrangian and barrier for the 

optimal power flow problem, Appl. Math. Comput, 200 (2008) 

529–536. 

[7] J.A. Momoh, M.E. El-Hawary, R. Adapa, A review of selected 

optimal power flow literature to 1993. Part II: Newton, linear 

programming and interior-point methods, IEEE Trans. Power 

Syst. 14 (1999) 105–111. 

[8] Ebeed. M., Kamel. S., &Jurado. F., Optimal Power Flow Using 

Recent Optimization Techniques. Classical and Recent Aspects 

of Power System Optimization, (2018) 157–183. 

[9] Rahman, C. M., & Rashid, T. A., A new evolutionary algorithm: 

Learner performance-based behavior algorithm. Egyptian 

Informatics Journal, (2020). doi:10.1016/j.eij.2020.08.003 

[10] Blanco. A., Delgado. M., &Pegalajar. M. C., A real-coded 

genetic algorithm for training recurrent neural networks. Neural 

Networks, 14(1) (2001) 93–105. 

[11] Mirjalili. S. &Lewis.A. The whale optimization algorithm. Adv. 

Eng. Softw,95 (2016) 51–67. 

[12] Jiang. T., Zhang. C., Zhu. H., Gu.J.,& Deng. G., Energy-Efficient 

Scheduling for a Job Shop Using an Improved Whale 

Optimization Algorithm. Mathematics, 6(11) (2018) 220. 

[13] Mirjalili. S., Mirjalili. S. M.,& Lewis. A., Grey Wolf Optimizer. 

Advances in Engineering Software, 69 (2014) 46–61. 

[14] Panda. M., & Das. B., Grey Wolf Optimizer and Its Applications: 

A Survey. Proceedings of the Third International Conference on 

Microelectronics, Computing and Communication Systems, 

(2019) 179–194. 

[15] Guha. D., Roy. P. K.,& Banerjee. S., Load frequency control of 

interconnected power system using grey wolf optimization. 

Swarm and Evolutionary Computation, 27 (2016) 97–115. 

[16] Saremi. S., Mirjalili. S. Z., &Mirjalili, S. M., Evolutionary 

population dynamics and grey wolf optimizer. Neural Computing 

and Applications, 26(5) (2014) 1257–1263. 

[17] Heidari. A. A., Mirjalili. S., Faris. H., Aljarah.I., Mafarja. M., & 

Chen. H., Harris hawks optimization: Algorithm and 

applications. Future Generation Computer Systems, (2019).  

[18] Bairathi.D.,&Gopalani.D., A Novel Swarm Intelligence Based 

Optimization Method: Harris’ Hawk Optimization. Intelligent 

Systems Design and Applications, (2019) 832–842. 

[19] Moayedi. H., Abdullahi. M. M., Nguyen. H.,& Rashid. A. S. A., 

Comparison of dragonfly algorithm and Harris hawks 

optimization evolutionary data mining techniques for the 

assessment of bearing capacity of footings over two-layer 

foundation soils. Engineering with Computers, (2019). 

[20]  Dodge. Y., A Natural Random Number Generator. International 

Statistical Review / Revue Internationale de Statistique, 64(3) 

(1996) 329. 

 


