
International Journal of Engineering Trends and Technology Volume 69 Issue 9, 56-65, September, 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I9P208 ©2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Adaptive Scheduling Technique Based Operating

System for Wireless Sensor Networks and Internet of

Things

Anita Patil1,* and Rajashree.V.Biradar2

1Department of CSE, Ballari Institute of Technology and Management, Bellary-583104, Karnataka, India
2Department of CSE, Ballari Institute of Technology and Management, Bellary-583104, Karnataka, India

1anitha.bijapur@gmail.com, 2rajashreebiradar@yahoo.com

Abstract - Wireless Sensor Network (WSN) has significance

in various fields, including home and industry automation,

medical instrumentation, military surveillance, etc. Though

the battery-dependent and resource-constrained tiny sensor

nodes challenge the design of the operating system (OS) very

critically, there are many OS that exists for WSN and IoT.

However, the available operating systems have their own

advantages and disadvantages for various WSN

applications. Among those, TinyOS is the widely used, highly

documented, and most suitable OS for low power devices.

Conversely, having only First Come First Serve (FCFS)

scheduler is the major limitation of TinyOS that hinders the
application developers from using this. The necessity of

other schedulers is justified in the motivation part of the

paper. Thus, to overcome this problem, the new adaptive

scheduling algorithm proposed in this paper provides a

choice for FCFS, Priority, and Round Robin schedulers.

Moreover, the priority scheduler itself can represent the

schedulers SJF, EDF, and any application requirement-

based prioritizing scheduler. Accordingly, the application

developer can adapt any scheduler for the application. This

changing order of tasks’ execution also benefits the overall

system performance by giving reduced average waiting for
time (AWT) and average turnaround time (ATT), resulting

from inefficient utilization of resources and better

throughput.

Keywords - IOT operating systems, TinyOS Scheduling

techniques, Wireless Sensor Network, WSN Applications,

WSN operating systems.

I. INTRODUCTION
Wireless Sensor Network (WSN), being a very special

type of network, has many applications in different fields of

technology and also is the basis for advanced technologies

like IoT. The main specialties of this network are

communicating wirelessly and sensing the surrounding
environment with the help of tiny sensor nodes. These 2

features are tremendously advantageous as WSN applications

also cover the fields where the physical presence of the

human being is either impossible or not feasible. Here is an

example of industrial automation where in some sort of

industry, the working environment temperature may be too

high, and there may be life-threatening hazardous operating

processes, etc., because of which the physical presence of

human beings at that place is not feasible. Another example

is medical instrumentation, where the tiny instruments of

medical diagnosis may need to pass through human body

organs. Like this, there are numerous applications where

sensor nodes are working on behalf of the human being.

Moreover, wired communication is not at all practical in the

densely deployed numerous sensor nodes in the application
area [1]. But this wireless communication and the tiny-sized

nature of the sensor nodes themselves challenge the design of

the Operating System (OS) very critically. Despite that, there

are many OS exist for WSN as of today. Some of them are

application-specific, some are hardware-specific, etc. For

e.g., RTOS (real-time operating system) is meant for real-

time applications, raspbian is for the only raspberry pi

platform, RIOT (Real-time OS for IoT) is a real-time OS for

IoT, and so on. Thus, none of them is general purpose. Such

many issues make the operating system of WSN itself a

research issue.

Basically, there are many research issues in WSN,

including operating systems of WSN, uninterrupted support

for diversified numerous applications of WSN [2, 3], energy

efficiency, routing in WSN, and so on. The novel work

presented in this paper is for the OSs of WSN and IoT. By

the way, WSN being the backbone support of IoT

technology, share the same set of OSs with IoT [4, 5, 9]. The

comparative analysis of some popular OSs: TinyOS, Contiki,

RIOT, freeRTOS, MANTIS, and SOS concludes that

TinyOS is the open-source, most robust, innovative,

traditional, highly documented, and widely used OS.

Moreover, this is the most suitable OS for low power
devices, which is the main concern for energy efficiency [6,

7, 8, 13]. Being energy efficient means a lot as the densely

deployed and resource-constrained tiny nodes have to

survive for longer in application fields to achieve their

https://ijettjournal.org/archive/ijett-v69i9p208
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1corresponding.author@mailserver.com

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

57

purpose [19]. Because the unattended and battery-dependent

life span of the nodes decides the effectiveness of the

application. For example, the battery life of the mica2 mote

while running the blink application in different OS, namely

TinyOS, MANTIS OS, and SOS, are respectively 22.49
days, 7.84 days, and 7.73 days (approximately) [10].

Ultimately, TinyOS is the OS for resource-constrained,

low-power tiny devices being used in various applications of

both WSN and IoT [11, 12, 13]. Though with this major

concern towards energy efficiency [12] and less memory

footprint (less than 400 bytes), TinyOS has the disadvantage

in scheduling, as it has only a First Come First Serve (FCFS)

scheduler [14, 15, 16, 17]. In FCFS, the tasks get processed

based on their arrival order that can be appropriate for some

kind of applications or at some situation only. Although this

is one of the best scheduling algorithms, it can’t fulfill the

requirements of all types of tasks and applications. Thus,
having only the FCFS scheduling technique affects other

parameters also as not supporting real-time applications,

reduced performance of some tasks, inefficient usage of

resources, etc. Instead, if the operating system is flexible in

scheduling by having multiple schedulers like priority

scheduler, round-robin scheduler, the shortest job first

scheduler, etc., then it is more beneficial for the tasks,

applications, as well as resource utilization. In this direction,

we have surveyed [18] the recent literature for other possible

scheduling algorithms for TinyOS. Then, came to the

conclusion of designing and integrating the new adaptive
scheduling algorithm that allows the application developer to

adapt a suitable scheduler from the list of FCFS scheduler,

Priority scheduler, and Round Robin scheduler.

In this regard, the first section of this paper introduces

WSN applications’ requirements and TinyOS along with

FCFS scheduling, and then the second section articulates the

compulsion of other types of schedulers, thereby conveying

the scope of this novel work. The new adaptive scheduling

algorithm implementation is explored in the 3rd section,

followed by the results and discussion in the 4th section.

II. MOTIVATION

In this technological era, where every field of life is
evolved by technologies like WSN, IoT, robotics, artificial

intelligence, and machine learning, etc. Consequently, the

daily life needs are getting fulfilled through one or the other

hardware appliance, which in turn run by software

technology. An operating system is a basis for such

appliances along with application-specific software.

Specifically, OS of WSN and IoT are very challenging as

they have to reside in limited memory, then control and

coordinate the constrained resources of the tiny sensor node

[5, 19]. Moreover, WSN and IoT cover a wide range of

distinct fields with the applications like seismic detection,
military surveillance, wildlife study, underwater study,

medical instrumentation, industrial automation, etc. The

varying requirements of such diversified applications

resulted in the number of OSs with specific features, like

real-time application supporting OS, platform-specific OS,

energy-efficient OS, etc. This causes the application

developer to study all these OS in detail while selecting a
suitable one for new application development. This makes

the application developer invest the time and put more

effort, along with the intended application designing. Thus,

here is the necessity of surveying the existing OS, then

improvise the best OS among them as a generalized OS that

can be a default selection to cover a wider range of

applications.

Based on the requirements of diversified WSN

applications [2, 3], the sensor node can have multiple tasks

like light sensing, sound sensing, vibration sensing,

temperature sensing, data processing, communicating to the

base station, etc. For example, in wildlife study, if the
application is for capturing the images of wild animals,

monitoring the surrounding environment, and recording the

video of any event occurrence like wandering of an animal,

fighting of animals, or the activities of an animal when it is

alone, then different sensors like light sensing, sound

sensing, temperature sensing, etc., need to function like the

tasks. At the same time, other tasks include processing the

gathered data from different sensors, aggregating the data,

and communicating to the base station. Thus, when there are

multiple tasks involved in an application, then definitely the

order of their processing will have an impact on the
application result.

As already said, the event-driven TinyOS has one and

only FCFS scheduler that processes the tasks in the order of

their occurrences as a natural practice, but the parallel and

continuous tasks may need a change in their processing

order in some situations. For instance, in wildlife study

applications, if the temperature exceeds the defined

threshold limit, then temperature sensing, processing this

sensed data, and communicating this processed data to the

base station must be given the highest priorities compared to

all other tasks. Thereby predicting the forest fire, the fire

accident can be prevented. For such an application priority
scheduler is beneficial. In some applications where

scheduling is done using SJF scheduler, there the average

waiting time (AWT) and the average turnaround time (ATT)

of all tasks will be lesser satisfying all tasks as well as the

application. Moreover, such scheduling improves the overall

system performance by utilizing all the resources efficiently

[19]. While in some applications giving equal opportunity to

each task in each round may be the requirement. Such type

of scheduling is the responsibility of the round-robin

scheduler (RR). At the same time, the RR scheduler gives

the least possible response time to each one of the tasks
giving an illusion of interactive task processing. Actually,

this is also the better option for TinyOS as it is not having

real-time application support. Like this, there are different

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

58

options for scheduling a single processor among multiple

tasks, and those have to get streamlined in this new adaptive

scheduling algorithm. This is the main motivation behind

this novel work.

On the other hand, authors in [20] say that there are
abundant applications of WSN and IoT, for which

specialized OSs are needed, but a slow reaction of OS

researchers is an alarm for the urgency of more research in

this area. However, in reality, OS developers/researchers are

rare due to the fact that it is a highly specialized field with a

very slow curve and tolerance for change. This is one more

motivating point for this research. In this direction, authors

in [8] did a detailed survey in 2016. As per the survey,

TinyOS alone is in 60% usage, and the remaining all OS

together is in 40% usage [8]. The same is depicted below

Figure1.

Fig. 1Usage of different OSs (adapted from[8])

In this situation where TinyOS itself is covering more than

50% of the WSN and IoT applications, then here is the

necessity of research in TinyOS to nullify its disadvantages.

The detailed study of TinyOSreveals the advantages and

disadvantages that motivated us to proceed further in the

field of processor scheduling among multiple tasks of the

application. Further, the detailed survey on “Scheduling

Techniques for TinyOS” [18] in 2016 concludes that there is

the possibility of designing and implementing a new

algorithm that can retain the existing FCFS scheduler and

also provide other important schedulers.

In fact, the TinyOS developers themselves provided the

document in the “docs” folder of TinyOS documentation to

encourage researchers to design and integrate new schedulers

in TinyOS. The document is available as TinyOS

Enhancement Proposal-106 (TEP-106).

Thus, there are many motivating factors behind this

empirical work of the new adaptive scheduling algorithm that

retains the existing FCFS scheduler and also provides 2 more

schedulers in choice.

III. IMPLEMENTATION
The main work has the flow as shown in the flowchart of

Figure-2. Here, the job queue is nothing but the flash

memory of the sensor node. For example, Telosb node has

48kb flash memory and 10kb RAM. For better utilization of

the main resources in the node, which is input-output devices

and processor (herein TinyOS, processor or CPU is nothing

but MSP430 microcontroller), the good combination of I/O

(Input/Output) bound tasks and processor bound tasks are to

be placed on RAM. If these tasks don’t need any fashion of

execution, then the pre-existing FCFS scheduler itself can

schedule the processor based on their arrival order; else, the

appropriate one from the new adaptive scheduling algorithm
schedules the processor. This new adaptive scheduling

algorithm provides the choice for FCFS, Priority, and Round

Robin (RR) schedulers.

The new adaptive scheduling algorithm implemented in

this novel work is named AdaptiveSchedulerC.nc. As the

name itself indicates, this scheduler allows an application

developer to adapt any of the schedulers as per requirement.

Adaptive scheduling algorithm provides choice among 1, 2,

and 3 for FCFS, Priority, and Round Robin schedulers,

respectively. The application developer has to enter the

choice taken in the header file named SchedulerSelection.h.
If the priority scheduler is the choice taken, then the

priorities for tasks also must be entered in the

SchedulerSelection. Header file itself.

This newly designed and developed adaptive scheduling

algorithm implementation is carried out as follows.

 Here in this work, tinyos-2.1.2 is installed in Ubuntu

18.04. It can be installed in the Windows system also.

TinyOS has a footprint of fewer than 400 bytes, which

is the core or base code of OS that has to fit in node

memory along with the compiled code of the

application and other required software.

 Telosb has MSP430 microcontroller. Hence, the
emulator used here is MSPSim [21, 22].

 In the emulator, Telosb is the platform [14, 24] used,

which is one of the suitable sensor boards for TinyOS.

Like any sensor node, the size of Telosb is also tiny i.e

 2.55*1.24*0.24 inches, within which 10kb RAM, 48kb

flash memory, 2*AA batteries, 8MHz MSP430

microcontroller, 3 sensors, and 3 LEDs, etc., objects are

soldered, which all together weighs 23 grams(excluding

batteries weight)[23,25].

 The language nesC [26] is used to code an Adaptive

scheduling algorithm.

 The interfaces Scheduler, TaskBasic, and McuSleep of

the “tos” folder are redefined to implement the new

Adaptive scheduling algorithm.

60%
10%

5%

8%

17%

WSN OSs
TinyOS

Others

Contiki

unknown

custom

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

59

Figure 2. Workflow

Take multiple processes or
tasks to run and place on

job queue.

Once the scheduler is decided,
run the processes then note

down the results and analyse.

Fetch the good combination
of I/O bound processes and

CPU bound processes to
place on RAM.

Let FIFO scheduler schedule the
CPU among all the processes

Let the relevant schedulers be
ready as per the processes

scheduling requirements and
accordingly select one among

them.

Start

Stop

If the processes don’t
have any priorities or

don’t need any
processing fashion
among themselves

No

Yes

New

Adaptive

scheduling

algorithm

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

60

The below figure, Fig 3, shows the partial hierarchy of TinyOS-2.1.2 with the newly added schedulers.

Fig. 3 Partial hierarchy of TinyOS-2.1.2

Basically, in TinyOS-2.1.2, at the different hierarchy, there

are many folders like tos (core OS), app (example

applications), docs (documentation), system, interfaces, lib,

platforms, etc. [27]. In the docs folder, there are around 40

TEPs (TinyOS Enhancement Proposals) [28], TEP-106 says
about scheduler in TinyOS. The folder “tos” contains the core

of the operating system, which is dispersed in different sub-

folders like system, interfaces, tools, platforms, etc. As shown

in Fig-3, the new Adaptive scheduling algorithm is

implemented in /tos/system/AdaptiveschedulerP.nc, with the

help of the interfaces namely Scheduler, TaskBasic, and

McuSleep of tos folder.

IV. RESULTS AND DISCUSSION

The results of FCFS, Priority, and RR Schedulers are

shown respectively in Figure-4 to Figure-6 below.

Each snapshot shows:

• Application code editor: - To see the tasks posting

order.

• Control UI:- The user interface to control the node, like

stop and run the execution.

• Mote GUI:-GUI with blinking LEDs, sensors, MSP430

microcontroller, etc.

• Serial mon for MSPsim:-To sees the order of execution

with some printf statements, as there are only 3 LEDs and

the number of tasks may exceed 3. Moreover, taking the

results from these printf statements is easier than monitoring

the blinking LEDs.

All these 3 schedulers are tested for the same application.

To read the results of tasks’ execution order, the colors-
Red1, Green1, Blue1, and Pink1 are displayed inside the

tasks test0, test1, test2, and test3, respectively. In task2, the

searching function is written to observe the task processing

that also executes correctly. As shown in the code editor of

the below screenshots, for all three schedulers, the

application is the same that posts the tasks with the order

test3, test2, test0, test1.

As shown in the below screenshot of Fig-4, the FCFS

scheduler schedules the processor to the tasks in the same

order of their posting, i.e., First Come First Serve, resulting

in the display statements for PINK1, BLUE1, RED1,
GREEN1 at MSPSim’s serial monitor.

TestPriorityA
rbiter

TestRoundRo

binArbiter
TestFCFSArb

iter

interfaces

MCUSleep TaskBasic

 Anti

 Theft
BlinkTask Blink

tos apps

system

Scheduler

tests

arbiter

Priorityresour

cequeue

FCFSresource

queue

Priorityarbi

ter
FCFSarbiter TinySchedule

r
SchedulerBasic Adaptive

Scheduler

TinyOS-2.1.2

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

61

Fig. 4 FCFS scheduler

Fig. 5 Priority scheduler(priority is assigned based on processing time)

As shown in the above screenshot of Fig-5, the priority

scheduler schedules the processor to the tasks as per

priorities assigned to them in SchedulerSelection.h. The
largest number indicates the highest priority. With this

notion, priorities assigned are 4test3, 3test0, 2test1

and 1test2 resulting in display statements forPINK1,

RED1, GREEN1, BLUE1 at serial monitor of MSPsim.

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

62

Fig. 6 Round Robin (RR) scheduler

The above snapshot of figure-6 shows RR scheduler

results. In RR scheduling, at every round, every task will

get a chance to get processed by the processor. It schedules

the processor to the tasks in the order of their IDs generated

during their definition coding in the application program. In

the given program, the tasks are defined in the order test0,

test1, test2, test3, and hence, the IDs generated are 0,1,2,3,
respectively. Accordingly, the displays are for RED1,

GREEN1, BLUE1, PINK1.

Like this, an adaptive scheduling algorithm permits the

application developer to adapt the necessary scheduler for

the application. This change in task order not only satisfies

the tasks but also improves the overall performance of the

system with the best utilization of all the resources.

Resource utilization or scheduling algorithm

performance can be measured in terms of Average Waiting

Time (AWT) and Average Turnaround Time (ATT) of

tasks. The lesser the AWT and ATT are, the better the

performance [29]. The below-shown tables and graphs of

all 3 figures illustrate a theoretical example that runs 4 tasks

with the depicted arrival times and processing times. The
performance analysis of FCFS scheduling, Priority

scheduling, and RR scheduling are respectively explored by

figures 7, 8, and 9. Tables display the arrival time,

processing time, waiting time, and turnaround time for each

one of the tasks along with AWT and ATT. The same is

depicted in their respective graphs.

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

63

Fig. 7 Performance analyses in FCFS scheduling

 Fig. 8 Performance analysis in Priority scheduling

 (priority is assigned based on processing time)

 Fig. 9 Performance analyses in RR scheduling

In the RR scheduling graph, the tasks’ names are taken as

T1, T2, T3, and T4 instead of Task1, Task2, Task3, and

Task4, so that they can fit in the chart area. In priority
scheduling, the priorities assigned to the tasks Task1, Task2,

Task3, and Task4 are respectively 2, 4, 1, and 3. In this

example, priority is based on the processing time of the

tasks. The task with the least processing time gets the highest

priority, and here in this example, the smallest number

represents the highest priority. Though, instead of Task3 of

priority 1, task Task1 gets executed first.

The reason is, at 0thmsec, only Task1 arrived and start

getting processed. Since it is the non-preemptive priority

scheduling, Task1 gets completely executed without

preempting in between, even when high-priority tasks arrive.
By the end of Task1 execution, the remaining all 3 tasks

arrive. Then scheduling continues based on their priorities,

i.e., Task3, Task4, and Task2. Thus priority assignment can

be done based on any criteria such as Early Deadline First
(EDF), foreground tasks first, interactive tasks first, etc.

The comparative analysis of the performance of all 3

scheduling algorithms is explored in below Table-1 and the

graph of Fig-10. The resultant AWT shows that the priority

scheduler is the best with nearly half of the AWT of FCFS,

whereas the AWT of RR is more than both FCFS and

priority scheduling, but important here is that the order of

tasks processing is as per the requirement of RR scheduler.

Correspondingly ATT also has the same influence, which is,

ATT of priority scheduler is least, and that of RR is more

than both priority and FCFS schedulers.

Tasks

Arriva

l

timeles

s

Processing

time

msec

Waiting

Time

msec

Turnarou

nd Time
msec

Task 1 0 2 0 2

Task 2 1 4 1 5

Task 3 2 1 4 5

Task 4 3 3 4 7

AWT=

2.25

msec

ATT=

4.75

msec

Tasks

Arriva

l time

msec

Processing

time

msec

Waiting

Time

msec

Turnarou

nd Time
msec

Task 1 0 2 0 2

Task 2 1 4 5 9

Task 3 2 1 0 1

Task 4 3 3 0 3

AWT=

1.25

msec

ATT=

3.75

msec

Tasks

Arriva

l time

msec

Processing

time

msec

Waiting

Time

msec

Turnaroun

d Time
msec

Task 1 0 2 3 5

Task 2 1 4 5 9

Task 3 2 1 0 1

Task 4 3 3 3 6

AWT=

2.75

msec

ATT=

5.25

msec

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

64

Table.1 Performance analysis of FCFS, Priority, and RR scheduling algorithms.

Fig. 10 Performance analysis of FCFS, Priority, and RR scheduling algorithms.

V. CONCLUSION
For decades many researchers working on energy

efficiency in WSN declare that tinyOS is the best OS for

resource-constrained and low-power tiny devices being used

in WSN and IoT applications. Even knowing this fact,

application developers hesitate to use this OS as it has only

an FCFS scheduler that can’t support the diversified

applications whose needs may be either SJF or RR or any

other scheduling. Nonetheless, now the Adaptive scheduling

algorithm proposed in this paper provides choice for FCFS,

Priority, and RR schedulers, thereby inspiring the application

developer to use TinyOS to get the benefit of energy
efficiency nature. At the same time, the priority scheduler

itself can represent the schedulers SJF and EDF by assigning

priorities to the tasks based on different lengths and different

deadlines, respectively. As well, an application developer can

assign the priorities based on the criteria such as interactive

tasks first, foreground jobs first, likewise to fulfill the

application requirement. This change in the order of tasks’

execution also benefits the overall system performance by

giving reduced AWT and reduced ATT resulting inefficient

utilization of limited resources and better throughput of the

overall system.

Tasks Arrival

time

msec

Processing

time

msec

AWT

FCFS

msec

AWT

Priority

msec

AWT

RR

msec

ATT

FCFS

msec

ATT

Priority

msec

ATT

RR

msec

Task 1 0 2 0 0 3 2 2 5

Task 2 1 4 1 5 5 5 9 9

Task 3 2 1 4 0 0 5 1 1

Task 4 3 3 4 0 3 7 3 6

 AWT=

2.25 msec

AWT=

1.25

msec

AWT=

2.75

msec

ATT=

4.75

msec

ATT=

3.75

msec

ATT=

5.25

msec

2.25

4.75

1.25

3.75

2.75

5.25

0

1

2

3

4

5

6

AWT ATT

FCFS Priority RR

T
im

e
 i

n
 m

il
li

 s
e
c
o
n

d
s

Performance analasys metrices

Anita Patil & Rajashree.V.Biradar / IJETT, 69(9), 56-65, 2021

65

REFERENCES
[1] AkhilendraPratap Singh, Ashish Kr Luhach, Xiao-ZhiGao, Sandeep

Kumar and DiptenduSinha Roy. Evolution of wireless sensor network

design from technology-centric to user-centric: An architectural

perspective, International Journal of Distributed Sensor Networks,

16(8) (2020) DOI: 10.1177/1550147720949138

[2] Ahmad Ali 1,*, Yu Ming 1, SagnikChakraborty2 and SaimaIram2.

Review-A Comprehensive Survey on Real-Time Applications of

WSN, Future Internet, 9(77) (2017) ; doi:10.3390/fi9040077

www.mdpi.com/journal/futureinternet

[3] DionisisKandris, Christos Nakas, DimitriosVomvas and

GrigoriosKoulouras.Applications of Wireless Sensor Networks: An

Up-to-Date Survey- Review. Appl. Syst. Innov. 3(14)(2020)

doi:10.3390/asi3010014 www.mdpi.com/journal/asi

[4] Rebin B Khoshnaw¹, Dana FarhadDoghramachi, Mazin S. Al-

Hakeem.A Review on Internet of Things Operating Systems,

Platforms, and Applications. Conference Paper ·

DOI:10.23918/iec2017.06 February (2017)

[5] ZoranCekerevac, Zdenek Dvorak, Tamara Pecnik.Top seven IoT

operating systems in mid-2020. MEST Journal DOI

10.12709/mest.08.08.02.06 Published: July 8(2) (2020) 47-68

[6] AdiMallikarjuna Reddy V AVU Phani Kumar, D Janakiram, and G

Ashok Kumar.Operating Systems for Wireless Sensor Networks: A

Survey Technical Report. May 3, (2007) 1-30

[7] Nahla S. Abdel Azeem 1, Ibrahim Tarrad 2, Anar Abdel Hady 3,4, M.

I. Youssef 2, and Sherine M. Abd El-kader 3,*.Shared Sensor

Networks Fundamentals, Challenges, Opportunities, Virtualization

Techniques, Comparative Analysis, Novel Architecture, and

Taxonomy. Journal of Sensor and Actuator Networks. (2019),

doi:10.3390/jsan8020029

[8] Muhammad Amjad, Muhammad Sharif, Muhammad Khalil Afzal, and

Sung Won Kim.TinyOS-New Trends, ComparativeViews, and

Supported Sensing Applications: A Review. IEEE SENSORS

JOURNAL, 16(9) (2016).

[9] Hugo Landaluce, Laura Arjona, AsierPerallos, Francisco Falcone,

Ignacio Angulo and Florian Muralter.A Review of IoT Sensing

Applications and Challenges Using RFID and Wireless Sensor

Networks. Sensors 2020, 20, 2495; doi: 10.3390/s20092495 available

at www.mdpi.com/journal/sensors

[10] Michael Healy, Thomas Newe, ElfedLewis.Power Management in

Operating Systems for Wireless Sensor Nodes. SAS 2007 - IEEE

Sensors Applications Symposium San Diego, California USA, (2007)

6-8.

[11] DolvaraGunatilak -Based on tutorial by Mo Sha, RahavDor.TinyOS

Tutorial. CSE521S, Spring 2017, CPSL, Cyber-Physical System

Laboratory. (2017)

[12] Yousaf Bin Zikria 1, Sung Won Kim 1,*, Oliver Hahm 2, Muhammad

Khalil Afzal 3, and Mohammed Y. Aalsalem 4. Internet of Things

(IoT) Operating Systems Management: Opportunities, Challenges, and

Solution. Sensors, 19(2019) 1793; doi:10.3390/s19081793

www.mdpi.com/journal/sensors

[13] Dang Huynh-Van, Ngan Le-Thi-Chau, Khoa Ngo-Khanh, Quan LE-

TRUNG.Towards an Integration of AES Cryptography into Deluge

Dissemination Protocol for Securing IoTs Reconfiguration. 2019

IEEE-RIVF International Conference on Computing and

Communication Technologies (RIVF).

[14] Cíntia B. Margi, Bruno T. de Oliveira, Gustavo T. de Sousa, Marcos

A. SimplicioJr, Paulo S. L. M. Barreto, Tereza C. M. B. Carvalho,

Mats Näslund, Richard Gold,Ericsson.Impact of Operating Systems on

Wireless Sensor Networks (Security) Applications and Testbeds.

IEEE, 978-1-4244-7116-4/10/$26.00 ©2010 IEEE 2010

[15] Piergiuseppe Di Marco, Ericsson Research, Lecture 2 Introduction to

Programming WSNs. Principles of Wireless Sensor Networks,

https://www.kth.se/social/course/EL2745/, September 1, 2015

[16] Martin Perner.TinyOS Part 1. 182.694 Microcontroller VU, SS 2017

[17] Martin Perner.TinyOS Part 2. 182.694 Microcontroller VU, SS 2017

[18] Anita Patil (1), Dr. Rajashree.V.Biradar (2).Scheduling Techniques for

TinyOS: A Review. International Conference on Computational

Systems and Information Systems for Sustainable Solutions, 978-1-

5090-1022-6/16/$31.00 ©2016 IEEE, (2016) 188-193.

[19] Elhadi M. Shakshuki, Stephen Isiuwe. Resource Management

Approach to an Efficient Wireless Sensor Network. 9th International

Conference on Emerging Ubiquitous Systems and Pervasive

NetworksEUSPN 2018 Procedia Computer Science 141 (2018) 190–

198.

[20] Salahuddin M. ElKazak, Cairo University, Masters in Computer

Engineering.GEN600 Final Technical Report: Research in the Internet

of Things Operating Systems (IoT OS's). Research in IoT OS's,

GEN600: Final Technical Report

[21] TinyOS homepage(accessed 2021) available at :

http://tinyos.stanford.edu/tinyos-wiki/index.php/MSPSim

[22] Anita Patil, Dr.Rajashree.V.Biradar.Programming the Sensor Nodes in

WSN. International Journal of Engineering and Advanced

Technology (IJEAT), ISSN: 2249–8958, Volume-8, Issue-2S,

December 2018

[23] Wikipedia information about Sensor nodes (accessed 2021), available

at https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes

[24] Ram Prasadh Narayanan1*, ThazathVeedu Sarath2, VelloraVeetil

Vineeth3.Survey on Motes Used in Wireless Sensor Networks:

Performance & Parametric Analysis. Wireless Sensor Network, 2016,

8, 51-60 Published Online April 2016 in

SciRes.http://www.scirp.org/journal/wsn. 2016

[25] Walter Tiberti, DajanaCassioli, Antinisca Di Marco, Luigi Pomante

and Marco Santic.A Model-Based Approach for Adaptable

Middleware Evolution in WSN Platforms. Journal of Sensor and

Actuator Networks. 2021, doi : 10.3390/jsan10010020

https://www.mdpi.com/journal/jsan

[26] Wikipedia information about NesC (accessed 2021), available at

https://en.wikipedia.org/wiki/NesC

[27] TinyOS supporting document (accessed 2021), available at

https://github.com

[28] TinyOS homepage (accessed 2021) for TEPs, available at:

http://tinyos.stanford.edu/tinyos-wiki/index.php/TEPs

[29] Naji A. Majedkan1,*, Abdulraheem J. Ahmed2, Lailan M. Haji3,

(2020).CPU Scheduling Techniques: A Review on Novel Approaches

Strategy and Performance Assessment. Journal of Applied Science and

Technology Trends 01(02) (2020) 48 –55, doi: 10.38094/jastt1215.

