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Abstract - Digital image tampering and counterfeiting can be done precisely with advanced photo editing tools available 

with various malicious intentions. It becomes necessary to verify the integrity of the image as images are becoming the 

information source in various computer-aided applications. Copy move counterfeits are created by copying a slice from 

one region of the image to another region. The current techniques for detecting copy-move counterfeits fail in the presence 

of partial occlusion or partial distortion created to falsify detection. This work proposes a deep learning signature to solve 

this problem. Deep learning signature is created using a probabilistic distribution function of occlusions. The coarse 

forgery regions are detected with scale-invariant feature transform-based keypoint matching. Deep learning signature 

matches the coarse forgery regions to detect the partially occluded copy move counterfeits. 

Keywords – Copy-move forgery, Coarse forgery regions, Deep learning signature, Partially occluded counterfeit.   

1. Introduction 
A digital image has become a most important 

information source in various fields like disease diagnosis, 

media, criminal forensics etc. Due to higher visual impact 

than text and creating a language-independent truthfulness 

about the event, images are preferred for communication. 

With the rapid use of images in various domains, there is 

also an increase in image counterfeiting for various 

malicious purposes like falsifying medical diagnoses, 

defaming people, disrupting social harmony, diverting 

criminal forensics etc. Image counterfeiting can be done to 

convey false impressions and create disastrous 

consequences [1-3]. With the availability of sophisticated 

tools, it becomes easy to create high-quality tampering that 

appears natural and authentic. Copy-move and splicing are 

the two most popular image tampering mechanisms. In 

case of copy-move forgery, a copy of an object is 

replicated to some other region in the image. In the case of 

splicing, an object in the image is pruned and replaced 

with another object.     

 

The current methods proposed for detecting copy-

move and slicing image forgery [4-25] work in three 

modes: frequency, spatial and hybrid. Spatial domain-

based techniques use the information of statistical features 

of pixel and their locations to detect counterfeit regions. 

Frequency domain techniques use frequency analysis and 

wavelet transform feature analysis to detect counterfeit 

regions. The spatial and frequency domain techniques are 

used in different combinations of hybrid techniques. An 

important challenge in the current copy-move forgery 

detection technique is that it can be deceived easily by 

partial occlusion in the forgery regions. These partial 

occlusions make accurate localization of copy-move a  

 

challenge.  This work considers this problem and proposes 

a deep learning signature-based copy move forgery 

detection. Deep learning signature is constructed for the 

objects as the probability distribution of objects in the 

presence of occlusions in the frequency domain. .  The 

copy-move regions in the image are detected by combining 

the results of deformable coarse forgery region selection 

and deep learning signature tracking. Following are the 

contributions of this work. 
 

(i) A novel deep learning signature with the 

probability of distribution of occlusion in frequency 

domain applying Quaternion Discrete Cosine Transform 

(QDCT) for detecting partially occluded copy move 

regions  
 

(ii) Integration of deep learning signature-based 

detection with deformable model-based coarse forgery 

region selection for better speedup of copy forgery 

detection. 
 

The Paper is organized as follows. The survey of 

existing techniques for image forgery detection is 

presented in Section II. The proposed deep learning model 

for fake detection in the presence of occlusions is 

presented in Section III. The results of the proposed work 

and its comparison to recent works are presented in 

Section IV.  Finally, the concluding remarks and future 

work scope are given in Section V.   
 

2. Survey 
A hybrid technique combining discrete cosine 

transform (DCT) with local binary pattern (LBP) was 

proposed by Islam et al. [5]. DCT features are extracted 

from non-overlapping image blocks. LBP is applied to 

https://www.internationaljournalssrg.org/
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DCT magnitude, and mean values are extracted as 

features. This hybrid feature is then matched over blocks 

to detect copied blocks. Combining DCT with LBP 

increased the fake detection accuracy to 95%, but the 

method is not transformation invariant.  A hybrid 

technique specific to face copy move forgery was 

proposed by Cristin et al. [6].  This hybrid technique 

combined Gabor filer, wavelet and texture operator to 

extract features from the face and match it using an SVM 

classifier. But the method is very sensitive to illumination 

artifacts introduced into face copies. Guo et al. [7] used 

histograms for fake image detection. The approach is 

based on statistical differences between real and fake 

images in hue and saturation channels. But the method can 

be deceived easily by manipulating the hue and saturation 

values in the image. Li et al. [8] proposed a tampering 

region localization algorithm based on statistical features. 

Multiple detectors are used, and each detector's results are 

fused to get a tampering possibility map. All possible 

tampering regions are localized in the tampering 

possibility map. Higher false positives and the inability to 

localize in the presence of occlusion are the issues in this 

approach. Deep learning LSTM classifier, along with re-

sampling features, was used to detect splicing forgeries by 

Bappy et al. [9]. LSTM used both spatial maps and 

frequency domain correlations. Though the method can 

provide pixel-wise predictions, it fails in the presence of 

occlusions. Chen et al. used Fractional Zernike moments 

features to detect copy-move forging [10]. The image is 

split into circular windows, and Zernike features are 

extracted from it. Windows are matched to identify similar 

patches. Zernike moments have a huge variance when 

occlusion is present, due to which certain copy regions are 

missed. Also, this method does not work for rotational 

transformations. Y.Li et al. [11] proposed a feature point-

matching algorithm to detect copy-move forgery. 

Keypoints extracted from regions are matched iteratively 

to localize the tampered regions. The approach fails for 

even a small distortion in the copied regions. Mayer et al. 

[12] used the inconsistencies in lateral chromatic 

aberration (LCA) in the image to detect copy-move 

forgery. The image is split into grids. LCA estimates at the 

local and global levels are analyzed statistically to detect 

the forging. The approach works only for certain 

backgrounds and does not work for dynamic backgrounds. 

Offset guided searching is followed to detect copy-move 

forgery by Bi et al. [13]. Features extracted from different 

regions are matched to find any offset relation between 

features to detect copy-move regions. The offset method 

can be deceived easily with minor transformations.   A key 

point-based copy move forgery detection was proposed by 

Wang et al. [14]. The image is first segmented using a 

superpixel segmentation algorithm. Keypoints are 

extracted and matched to detect copied regions. Though 

the method is resilient against transformation, it fails to 

match in the presence of occlusions. Similarly, Teerakanok 

et al. [15] used SURF and GLCM features to detect 

forgery. In the presence of occlusion, GLCM feature 

matching fails. Regions in the image are matched using the 

Gaussian operator to detect matches by Emam et al. [16]. 

Histogram features are extracted around the covariant key 

points in the image and matched to detect forged regions. 

But occlusions distort the localization of key points. Singh 

et al. [17] proposed a multi-modal approach for fake image 

detection. Correlation between the concepts expressed in 

the image to the metadata text is made to verify 

consistency; when consistency fails, the image is detected 

as copy. But this method fails in image copying. Zhang et 

al. [18] used deep learning and error-level analysis to 

detect fake images. Image compression ratios are 

measured in different image regions, and inconsistencies 

are detected as fake images.  Ghoneim et al. [19] proposed 

a fake detection method for medical images. The method 

applies a noise map at different resolutions and looks for 

inconsistencies in the edge. But the method works only for 

edge inconsistencies during copying. Quaternion polar 

complex exponential transform (QPCET) for copy-move 

forgery detection by Thajeel et al. [20]. Invariant features 

are extracted from the image and matched using the KD-

tree matching algorithm to detect copied regions. But 

detecting invariant features becomes difficult in the 

presence of occlusion. A convolutional kernel network 

(CKN) was used to detect copy-move forgeries by Liu et 

al. [21]. Image is segmented into regions, and regions are 

matched using the Convolutional kernel network. Though 

the method performs better than hand-crafted features, it 

cannot identify similarities in partially occluded images. 

Also, the method is not transformation invariant. Chou et 

al. [22] proposed Gabor filter-based copy-move forgery. 

The image is split into blocks, and block matching is done 

using Gabor filter features. The method can work only if 

objects fit in the block and are very sensitive to even a 

small distortion in shape.  Mahmood et al. [23] used 

Wavelet features for the copy move forgery detection. 

Wavelet transform features were extracted from non-

overlapping blocks of the image. Dimension reduction is 

done on the features. Features are then matched to detect 

copied blocks. But the method is not transformation 

invariant.   Hosny et al. [24] detected copy-move forgery 

using exponential transform coefficients. The objects are 

segmented, and features are extracted from objects. These 

features are matched using Euclidean distance matching to 

detect copies. But the method shows a large Euclidean 

distance for occluded copies. Segnet Deep learning model 

trained with Haar wavelet features was used for copy move 

forgery detection by Khayeat et al. [25]. The objects in the 

images are segmented, and Haar wavelet features of level 

one decomposition are extracted from the objects. Objects 

match by passing the Haar wavelet features to the Segnet 

deep learning model. The method is not transformation 

invariant and fails in the presence of occlusions.  
 

3. Deep Learning Signature-Based Fake 

Detection 
The proposed solution is based on the assumption that 

fake colorized images have lower saturated colors and 

provides a preference for some color over others. It is 

difficult to observe this change through visual inspection. 

Analysis in the RGB domain is not effective in spotting 

these differences.  
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3.1. Coarse Region Selection  

A deformable model [28] is used for region selection. 

In this model, curves and surfaces placed on the image are 

deformed by internal and external forces to fit the objects 

of interest. Among the different types of deformable 

models, Topological active net (TAN) [31] deforms mesh 

with the goal of energy minimization and fitting to the 

objects. Deformation is done by removing the links of 

mesh not fitting the object. Thresholding on the energy of 

the link is done to remove the link. The energy of the link 

is calculated as  

 

Elink = (∑ DGevfc(p).
I(p)

Imax
pɛA  ) / |A|                 (1) 

 

Where p is the pixel in the image of area A. I and Imax 
are the original image and the maximum intensity value. 

The mean energy of links is taken as the threshold for 

shunting down the links. Identification of holes starts from 

misplaced internal nodes. Setting the mean energy of the 

link as the threshold, the holes are created by cutting the 

links starting from misplaced internal nodes.  

The energy ratio (r(n)) for an internal node is calculated in 

terms of external energy( Eext) and internal energy(Eint) 

as  

r(n) =
Eext(n)

Eext(n)+ Eint(n)
                                        (2) 

 

The features of the scene are best represented in the 

external energy term.  

 

Eext(v(m, n)) =  ωf[I(v(m, n))] +
ρ

|N(m,n)|
∑

1

||v(m,n)−v(p)||
f[I(v(p))]

pɛN(m,n)
     (3) 

 

Where ω,ρ are the weights, I(v(m, n)) is the value of 

the intensity of the pixel at position v(m, n). N(m, n) is the 

neighborhood of node at (m, n). Function f is defined as 

 

f[I(v(m, n))] = {

ᵧ
I(v(m,n))
→      

Imax −
I(v(m,n))+
→       + ɛ(Gmax −

−G(v(m,n)))+ФGD(v(m,n)) (4) 

 

Where ᵧ, ɛ, Ф are the weighting terms, Imax, Gmax are 

the maximum intensity values of an image I and the 

gradient image G. I(v(m, n)), G(v(m, n))  are the intensity 

values of the original image and gradient image at position 

v(m, n). 
I(v(m,n))
→        is the mean intensity in the n*n square 

mask. 

 

Internal energy Eint  control contraction and bending 

and is defined as  

 

Eint(v(m, n)) = α(|vm(m, n)|
2+|vn(m, n)|

2) +
 β( |vmm(m, n)|

2 + |vmn(m, n)|
2) + |vnn(m, n)|

2)   (5) 

 

The subscripts in the above equation are partial 

derivatives. The smoothness of the net is controlled using 

the α, β parameter 

  

SIFT Keypoint 

extraction from region

SIFT guide coarse 

region selection

Coarse Region Selection

TAN segmentationimage

Aggregation Signature 

generation

Aggregation Signature 

grouping
Bound box copied regions

Copy move

regions

Deep learning signature 

matching

 
Fig. 1 Proposed architecture
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Fig. 2  Deep learning feature extraction 

 

Eext(v(m, n))

=  ωf[I(v(m, n))]

+
ρ

|N(m, n)|
∑

1

||v(m, n) − v(p)||
f[I(v(p))]

pɛN(m,n)

 

                                                                                          (6) 

 

Where ω,ρ are the weights, I(v(m, n)) is the value of 

the intensity of the pixel at position v(m, n). N(m, n) is the 

neighborhood of node at (m, n). Function f is defined as 

 

f[I(v(m, n))] = {

ᵧ
I(v(m,n))
→      

Imax −
I(v(m,n))+
→       + ɛ(Gmax −

−G(v(m,n)))+ФGD(v(m,n))                            (7) 

 

Where ᵧ, ɛ, Ф are the weighting terms, Imax, Gmax are 

the maximum intensity values of the image I and the 

gradient image G. I(v(m, n)), G(v(m, n))  are the intensity 

values of the original image and gradient image at position 

v(m, n). 
I(v(m,n))
→        is the mean intensity in the n*n square 

mask. 

 

Internal energy Eint  control contraction and bending 

and is defined as  

 

Eint(v(m, n)) = α(|vm(m, n)|
2+|vn(m, n)|

2) +
 β( |vmm(m, n)|

2 + |vmn(m, n)|
2) + |vnn(m, n)|

2)    (8) 

 

The subscripts in the above equation are partial 

derivatives. The smoothness of the net is controlled using 

the α, β parameter.  

 

The energy ratio (r(n)) is calculated for all nodes, and 

the highest value for r(n) is selected as a threshold. A hole 

is opened if the r(n) of the node is greater than the 

threshold. Neighbours are analysed from the node, and links 

are deleted from the mesh based on the threshold.  

 

However, TAN results in a large number of segments 

and computing deep learning aggregation signature for each 

segment and matching is a computationally intensive 

operation. TAN model results are filtered in this work based 

on Scale-invariant feature transform (SIFT) features [36].  

SIFT is used to get all candidate key points and 

corresponding descriptors. For any segment X, Y  got from 

TAN, if the neighborhood between key points in segment X 

to keypoint to another segment Y is calculated using the 

nearest neighbor distance ratio (NNDR)[30]. If the NNDR 

is less than a threshold, T, X and Y regions have certain 

similarities and must be inspected for copy-move forgery. 

This process is repeated for all the segments to select the 

coarse regions. The pseudo code of the algorithm for coarse 

region selection is given below 
 

Algorithm : selectCoarseRegion 

Input  : Image , T 

Output  : regions  
 Regions  Segment with TAN [31] (Image) 

For i=1: no of regions  

   Region.keypoints = SIFT(region,20); 

End  

Coarse_set=[] 

 For i=1: no of regions  

     For j=1:no of regions  

              P_match0 

                     

NumMatch_keypoint(Region(i).keypoints, 

Region(j).keypoints,T)  

              If Num>P_match>20  

                       Coarse_set.add(Regions(i)); 

                       Coarse_set.add(Regions(j));            

              End          

     End  

End  

return  Coarse_set; 

 

 
3.2. Deep Learning Signature Matching  

A deep learning signature is generated for each coarse 

region returned by the region selection algorithm given in 

section 3.1. A deep learning aggregation signature is 

created, accommodating the occlusions.   The aggregation 

signature of the image patch is formed from a set of 

probable noise-occluded image patches using the frequency 

domain deep learning model. On the image patch of the 

coarse region, occlusion patches of various probabilistic 

distributions are added. QDCT is applied to the Noised 

coarse region to get the low and high-frequency 

components. QDCT for an image f(x, y) is calculated as 

 

f(x, y) = An
q
f(x, y) + ∑ [Ds,1

q
f(x, y) + Ds,2

qn
s=1 f(x, y) +

Ds,3
q
f(x, y)]                                                    (9) 

 

Where An
q
f(x, y) is the low-frequency band and  

Ds,1
q
f(x, y) is the high-frequency band of the image. After 
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QDCT is applied to the image, a low-frequency part and n 

groups of high-frequency parts are obtained. Low-

frequency subbands are fused by averaging to reduce the 

dimension of the coefficients. The maximum value fusion 

rule is followed for high-frequency sub-bands.  The low-

frequency bands are fused by comparing the average of 

coefficients between two inputs. High-frequency bands are 

fused by taking the maximum coefficient value between 

two inputs. 

 

The QDCT coefficients are given as input to a 

frequency domain convolutional neural network (Figure 3). 

The coefficients pass through a sequence of ReLU and max 

pooling layer and a final average pooling layer to provide 

an output of 1× 512-dimension feature vector. The CNN 

configuration used for feature extraction is given in Table 1. 

An aggregation signature is constructed from the feature 

vectors belonging to the same image patch as below. 

A unit random vector of dimension d (d<512) is generated 

{r0, r1, … rd}. The elements are selected from Gaussian 

distribution with 0 mean and variance as 1. The d vector is 

put together into a matrix D of dimension 512 × d. This is 

generated on time when collecting the video as input for 

tracking.  

 

An inner product between the feature vectors v and the 

matrix D is done to get vector u = DTv 
 

For every vector u, the following transformation 

function tf is applied to produce the transformed feature 

vector u̅ .  

tf(u) =  {
1 r. u ≥ 0
0, r. u < 0

 

u̅ = {tfr1(u), tfr2(u),… . tfrd(u)}.                         (10) 

 

The feature vectors belonging to the same image patch 

are now represented as a bit stream of length d called the 

aggregation signature of the target image patch.  

 

Converting the features of the same patch to a binary 

bit stream of aggregation signature has two benefits: 

compressed form and reduced time complexity for 

matching the aggregation signature. 

 

Once the aggregation signature is computed for all the 

coarse regions, the regions are grouped based on the 

similarity of aggregation signatures using the K-mean 

clustering algorithm with hamming distance for distance 

computation instead of typical Euclidean distance 

matching. Each cluster is a copied region.  A bounding box 

is drawn in different colors for each cluster.  The overall 

algorithm flow for deep learning signature matching is 

given in Figure 3. 

 

 

For each coarse region

Coarse regions

Image patches  Generate image patch with partial 

occlusions

For each image patch

Coeff QDCT(image patch)

Reduced_Coeff Fusion_Rule(Coeff)

Features CNN(Reduced_Coeff)

Binary Signature (Features)

Cluster K_Mean 

clustering(Aggregation 

signatures) with Hamming 

distance

Draw bounding box for each 

cluster in different colour

Fig. 3 Deep learning signature matching 
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Table 1. Results for CMH1-4 dataset 

Dataset: CMH 1-4. Total images: 108 

Method Recall Precision  FPR F1 Execution time(ms) 

                                                               No occlusion 

Proposed 98.21 98.77 1.98 98.63 264.31 

Huang et al. (2019) 96.50 97.66 2.31 97.08 261.29 

Al-Moadhen et al (2020) 97.30 98.12 2.20 98.10 292.15 

Ortega et al. (2021). 98.17 97.64 2.0 98.42 294.12 

                                                           Occlusion % = 20 

Proposed 97.21 97.27 2.13 96.64 264.21 

Huang et al. (2019) 94.50 94.62 3.32 94.18 261.50 

Al-Moadhen et al (2020) 94.30 95.22 3.22 95.12 292.51 

Ortega et al. (2021). 95.17 94.62 3.01 95.47 294.37 

                                                           Occlusion % = 40 

Proposed 96.21 93.77 2.32 94.71 264.31 

Huang et al. (2019) 86.50 89.63 3.43 89.18 261.29 

Al-Moadhen et al (2020) 89.30 90.14 3.74 89.30 292.15 

Ortega et al. (2021). 90.17 89.62 3.50 89.62 294.12 

                                                            Occlusion % = 60   

Proposed 93.21 92.77 2.42 94.63 263.31 

Huang et al. (2019) 82.50 81.66 4.41 84.08 262.29 

Al-Moadhen et al (2020) 84.30 82.12 4.56 85.10 294.15 

Ortega et al. (2021). 85.17 82.64 4.25 86.42 296.12 

 

4. Results and Discussion 
 The performance of the proposed solution is tested 

against CMH1-4 datasets [33]. CMH-1 dataset has 23 

copy-move images with scaling-based forgery. CMH-2 

dataset has 25 images that were copied and rotated. CMH-

3 dataset has 26 images that were copied and resized. 

CMH-4 dataset has 34 images that were copied and then 

rotated and resized alternatively. The dataset images are 

alternated by introducing occlusions in various sizes of 

20% to 60% of the original object.  Standard performance 

metrics of precision, recall, false positive ratio, F1-score, 

and execution time is measured as in [34] and used for 

performance comparison in this work. The performance is 

measured for different datasets by varying the occlusion 

percentage. The performance is compared against the 

superpixel segmentation method [34] by Huang et al. 

(2019), Deep learning of wavelet decomposed [25] by Al-

Moadhen et al. (2020) and deep learning-based detection 

[26] by Ortega et al. (2021). 

 The results for various occlusion percentage for the 

CMH-1 dataset is given in Table 1. The precision (Figure 

4) is, on average, 1% higher than existing solutions for no 

occlusion images, 2% higher for occlusion 20% and 5% 

higher for occlusion 40% and 9% higher for occlusion 

60%. Even at 60% occlusion, the precision is 92% in the 

proposed solution and drops about 5% from the no 

occlusion case. Still, other solutions experience more than 

a 10% drop in precision from the no occlusion case.  

 
Fig. 4 Precision vs occlusion % 

 

 The probability of occlusion distribution in the 

construction of deep learning signature has maintained 

higher accuracy in the proposed solution. The equivalent 

deep learning-based detection method proposed by Al-

moadhen et al. [25] and   Ortega et al. [26] has not 

considered the effect of occlusions in copy-move regions.  

 Almost the same behavior is observed for the Recall 

and F1-score. As the occlusion percentage increases, FPR 

increases (Figure 5), but it increases only by 0.44% for 

occlusion, increasing from 0 to 60% in the proposed 

solution. Still, it is  2.1% in the case of Huang et al. 

(2019), 1.34% in the case of Al-Moadhen et al. (2020) and  

2.25% in the case of Ortega et al. (2021).  
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Fig. 5 FPR vs occlusion % 

 

 
Fig. 6 Comparison of execution time 

 
 The false positive increment is lower in the proposed 

solution due to deformable model-based filtering and Deep 

learning signature matching. While other solutions have 

adopted shape-based features, they often mistake similar 

structures in the image.  

 The average execution time in each solution is given 

in Figure 6. Due to the deep learning signature, the 

execution time is 1% higher than Huang et al. (2019). Still, 

it is 10.8% higher compared to  Al-Moadhen et al. (2020) 

and 11.6% higher compared to Ortega et al. (2021) 

because low complexity deep learning architecture on the 

frequency domain is used in the proposed solution 

compared to more number convolution layers used in Al-

Moadhen et al. (2020) and Ortega et al. (2021). Also, the 

signature matching is done using hamming distance in the 

proposed solution, which is of low complexity to deep 

learning matching of each combination of images adopted 

in existing works.  

Half total error rate is calculated as  

𝐻𝑇𝐸𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
+

𝐹𝑁

𝐹𝑁+𝑇𝑃
 

2
                         (11) 

 

 In the above equation, FP is a false positive. FN is a 

false negative, TN is a true negative, and TP  is truly 

positive. The results for HTER across the solutions are 

given in Table 2. 

Table 2. Comparison of HTER 
Solution HTER 

Proposed 18.21 

Huang et al. (2019) 20.84 

Al-Moadhen et al (2020) 21.50 

Ortega et al. (2021). 23.20 

 The proposed solution has lower HTER compared to 

existing works. The HTER has lowered in the proposed 

solution due to considering various combinations of 

occlusions in the signature construction. Due to this, even 

if there is a partial match, the fake portions are detected 

accurately, reducing the error.   

  

 The deep learning features for aggregation signature 

are computed with the QDCT method adopted in the 

proposed solution to other deep learning models of 

Densenet, VGG16 and Resnet. The accuracy results across 

the deep learning models are given in Table 3. 

 The proposed QDCT model provided at least 5% 

higher accuracy than other models. Accuracy has 

improved in the QDCT-based CNN model compared to 

others; the QDCT coefficients provided scope for more 

intricate learning compared to image-based feature 

extraction used in Densenet, VGG16 and Resnet models.  

  The ROC plot comparing the solutions is given in 

Figure 7. 
  

 The ROC is 0.907 in the proposed solution, which is 

higher than the existing works. The higher ROC indicates 

better sensitivity in the proposed solution. The sensitivity 

has increased due to considering different occlusion 

combinations in the signature construction process in the 

proposed solution. But existing works considered only 

scaling. 
Table 3. Comparison of deep learning models 

Solution Accuracy 

Proposed QDCT-based model 95 

Densenet 90 

VGG16 89 

Resnet 87 

 
Fig. 7 Comparison of ROC 
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5. Conclusion 
 This work is a deep learning signature matching-based 

method for copy move forgery detection. In this two-stage 

solution, coarse regions for forgery detection are first 

selected using deformable model segmentation and SIFT-

based selection. The selected coarse regions are then 

matched using deep learning signatures considering the 

probable partial occlusions. The method detected copy-

move regions with more than 92%, even in the presence of 

more than 60% occlusions. Also, a 60% increase in 

occlusion caused only a 0.44% increase in FPR compared 

to more than 2% in the existing solution. Extending the 

proposed solution for colouration-based forgery is in the 

scope of future work.  
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