
International Journal of Engineering Trends and Technology Volume 70 Issue 10, 277-284, October 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I10P227 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Analysing the Energy Value of GPU and Spoting the

Energy Hungry Area in the Software Testing Scripts
G. Anithakrishna1, M. Mohankumar2

1,2Department of CS, IT and CA, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.

1Corresponding Author : anithamohanvm@gmail.com

Received: 29 June 2022 Revised: 16 September 2022 Accepted: 12 October 2022 Published: 20 October 2022

Abstract - Nowadays, the Graphic Processing Unit, GPU become a pronounced tool for individual and business

computing. GPU plays a great role in a wide range of areas like parallel processing, video rendering, graphics, gaming

and artificial intelligence. This work analyses the performance and energy efficiency of designing manual and automated

scripts for game development and prominent video and graphics applications. These days' software games have

prolonged lifetimes and have many patches and releases compared to the olden days. Nowadays green concept has a

very important role in developing efficient software. Software development is cognate with different phases, which include

a broad range of activities. Software metrics are some techniques that enable the analysis of code and its improvement. A

powerful Graphic Processing Unit is compulsory for executing upscale games and applications that use 3D and video

editing. This paper aspires to monitor GPU's performance and power concern for video rendering and game development

and to spot the energy-hoggish area in the script using the thread concept.

Keywords - Green software, GPU, Software Testing, Sustainability, Green IT, Energy efficiency.

1. Introduction
Generally, people consider GPU for gaming and

scenarios like video rendering. These applications require

computations to quickly represent curves, polygons and

different shapes on the screen, which is difficult in real-

time using a CPU. It is a matter of embarrassingly

parallel means of computation to handle large batches of

vertices and large blocks of pixels to render image

processing like raytracing of 3D images etc.

The working of the GPU compared to the CPU is

almost the same except for processing graphics-related

data and functions. In integrated graphics deploying both

CPU and GPU will limit one of their prospective

processing powers, whereas a dedicated graphics card has

its circuit board, processor, memory and cooling systems,

which will reduce the workload of the main processor.

Most applications carted on GPU are parallel with data

independence and have no synchronisation on execution

threads.

CPU and GPU, the brain and soul are the key factors

in modern computing and breaking a complex problem

into several millions of tasks and handling it through [26]

parallel computing makes GPU more powerful. Figure 1

depicts the difference between the Central Processing Unit

and Graphics Processing Unit, and It's clear that the CPU

remains essential, fast and versatile.

The power consumption of GPU has a remarkable

impact on solidity, economic attainability, performance

and arrangements in a broad range of applications.

Certain management techniques are vital for the CPU and

GPU to handle the power dissolution. Power management

on GPU is an effective step towards green.

 Fig. 1 CPU and GPU

 This work aims to analyse GPU's energy efficiency

and spot a script's energy-hungry area. A GPU has

several streaming multiprocessors with multiple cores [10].

Now the latest NVIDIA GeForce RTX 30 series graphics

cards have the fastest ray tracking cores and tensor cores,

providing eminent quality for images and videos and

excellent frame speed.

2. Literature Review
Several tools and models have recently been proposed

to measure GPU power consumption. Caroline Collange

and David Defour investigated Nvidia GPU for general

purpose in a CUDA environment [3], identified the

consumption and characterised it using physical

measurement.

Hong and Kim proposed a power and performance

modelling system for general-purpose GPU and focused on

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

278

active processors [7] for an application. Luo and Suda

proposed an execution time and energy consumption

model for [14] parallel mass programs.

Rofouei and Ryffel conducted a study on energy cost

in GPU operations [17] compared to CPU solely systems.

Hamada and Benkrid performed a comparative study on

general purpose processors,[27] GPU and FPGA based on

some criteria. It includes performance, speed, power and

cost development. Liamocca and Carranza compared

FPGA and GPU for video processing programs and found

the efficiency of GPU over FPGA due to its mass parallel

processing feature.

Lange compares the multi-core CPU, GPU and FPGA

performance for geometric algebra calculations using a

reconfigurable [20] computer. Chandramowlishwaran and

Williams analysed and compared the efficiency [4] of

GPU with multi-core CPU and analysed the fast multipole

method. Mcintosh and Smith focused on real-time data

to compare [15] multi-core CPU and GPU for molecular

mechanism problems.

3. Green energy-efficient GPU
Energy management is important for the performance

and reliability of the computing system. Power

constraints are important for the simultaneous usage of

cores in a mass parallel processing system. Sustainable

computing, which causes less carbon emission from ICT

devices, is a major concern, and researchers place giant

prominence on energy efficiency in the design of

computing systems [21, 25]. Energy-efficient components

are important for achieving environmentally sustainable

products.

4. Related works
In the early stage, GPUs have limited functions like

3D graphics rendering and subsequently, 3D graphic APIs

like Open Graphics Library wide open new features to the

developers. As time passes, programmers need to create

more complex and special visual effects on the screen, and

GPU's development domain has extended enormously.

This section will discuss some early-stage studies to

improve the energy efficiency of GPU.

4.1. Power Usage and Control Mechanisms

Power is a time-related quantity; for GPU, total power

is the sum of idle power, multiprocessor power, and

memory power. It can be summarised as

Total Power = Multiprocessors Power + Memory Power +

Idle Power (1)

Here Multiprocessor power is the sum of power used

by each streaming multiprocessor.

4.2. DVFS based approach

Earlier, Dynamic Voltage and Frequency Scaling are

used to reduce energy consumption. The power and

frequency are related as

P α F V2 (2)

Here F stands for frequency, and V stands for voltage.

Bringing down the frequency leads to saving power, but it

should ensure that it will not affect the performance. Nam

and Yoo proposed a GPU which uses less power for

logarithmic calculations. They applied DVFS to the

processor and rendering engine and supplied frequency

drawn on workload. Anzt and Heuveline studied an

iterative linear solution using DVFS, which provides large

energy savings with small performance [12] dropping.

4.2. Energy Efficiency in GPU elements

Various techniques are applied in the structure to save

component-level energy usage, which utilises components'

run time transformations. Lashgar and Benjasadi

exploited Instruction [16] Temporal Locality in GPU to

explore the filter cache instead of the instruction cache.

Gebhart and Johnson proposed a mechanism to reduce

the energy usage of GPU for on-chip memory for the

register storage [1] of threads. Here they implemented a

tiny storage structure to the register files and provided

prioritisation to the active threads by the scheduler, which

pilots notable energy savings.

Lee and Kim proposed thread-level parallelism since

[8] GPU has more threads than CPU. Hence applied, a

core sampling technique to evaluate cache on GPU

performance.

4.3. Code Level Techniques

Through many research works, it has been observed

that code-level optimisation has a significant role in energy

savings and CPU and GPU performance [22]. So,

optimising the GPU implementation can lead to great

energy savings. Ghosh and Chandrasekharan studied high

performance computing on GPU and multi-core CPU.

They recognised that GPU has a significant role in power

consumption for global memory access. Yang and

Mandor analysed many GPU-based applications [6],

selected works from various disciplines, and traced certain

patterns that will degrade the hardware performance.

Optimising the source code for GPU-specific features will

provide energy efficiency.

5. Automated Testing and Validation for

Game Development
Nowadays, trend-setting video games have become

more creative and interdisciplinary and need to board new

technologies regularly. Here the targeted clients are from

multiple platforms, and we should ensure that it performs

as expected in each platform. So, the testing activity is

very important and is performed on various hardware

setups, including a wide class of CPU, GPU, RAM and

drivers. A game released with even a minor defect

negatively impacts goodwill and commercial bang [23].

Murphy-Hill and Zimmermann conducted a study to

compare video game development [5] and other software

development and motivated researchers to create testing

tools for game developers. Cooper and Scacchi focused

on various software testing areas in video game [9]

development which enabled automated testing.

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

279

Fig. 2 Visual error in software rendering [SRB2wiki]

Flaws in an in-game application can emerge from

conventional code-level programming mistakes,

amendments in the game content or difference in the

hardware exemplar of developer and consumer.

Uncovering and rectifying defects is a time-consuming and

expensive activity in the software development process

[24], and finding bugs in Graphical User Interface is

comparatively difficult. Mixed bags of commercially

released games reported graphical defects through the

game company forum and user's community, which led to

post-release updates.

 Quality analysts categorised bugs in the video game

based on severity and prioritised them into various

categories. Based on priority, bugs are classified into

various classes like A, B, and C. Correct categorisation

and prioritisation of bugs can eliminate extra effort in

locating and rectifying the defects. Lewis and Whitehead

presented a taxonomy that categorises [11] invalid

representation of graphical data, lack of information,

invalid data access and response issues as different bugs

and has different subcategories. The hall of mirror effect is

an example of a visual defect in software rendering due to

missing texture or outside boundary. Figure 2 depicts the

effect of the hall of mirror defect. Automated testing will

reduce testing time and testers' overhead [18] compared to

manual testing.

6. Automated and Manual Video Testing
A web application with a lot of video content needs a

visual video testing technique to check the correctness. To

check the quality of the video to play, select the time to

capture a frame in the video, the video's play length, and

correctness while converting the video to another format

like WAV, MOV, MP4 etc. Visual aberrations are tiring to

detect, so to ensure visually flawless applications, we need

an automated framework to detect and correct them.

Management of UI components and their perfect rendering

on various platforms and devices is highly prioritised

because customer experience depends on what they see

and makes a difference.

7. Testing on VR Applications
Virtual Reality enables sound drenching in simulated

domains through which customers can interact. Time

frame constraints to use VR devices, late application

access to the test phase in the development life cycle, and

multi-level analysis on multiple platforms are the major

obstacles in the testing activity.

8. Approach
This section describes the overview and scope of

the work to evaluate and analyse the energy efficiency of

GPU, memory, and CPU over various test suits. Table 1

depicts the system configuration.

For implementing green metrics in the software

testing process focuses on the software part, which causes

hardware components to consume more energy which

leads negative impact on the environment as the first step

is to select the test script and analyse the performance and

energy usage for the execution of the selected application.

Table 1. Platform configuration

CPU Intel(R) Core (TM) i7-7820HQ

Clock rate 2.90GHz

RAM 16.0GB

Main Board Dell Inc. -0R6JFH, A00

Hard Disk MTFDDAV512TBN-1AR1ZABH

GPU NVIDIA Quado M1200

Memory clock rate 2901

9. Experimental Procedure
Software testing aims to ensure the software is bug-

free and to release quality products to the client. It ensures

that the system meets customer requirements,

specifications and end-user expectations. To experiment,

two demo projects are selected, "fountoTuto", a web

application for innovative personalised private tutoring and

"travoaide", a travel guidance platform for planning,

reserving and proceeding to a trip. Figure 4 shows test

cases generated for the manual test of "fountoTuto", a web

application for innovative personalised private tutoring.

We have conducted an experiment to analyse energy

consumption and performance of GPU, CPU and memory

resources on the software test phase and implemented

some manual test cases and automated test scripts using

the selenium testing tool.

Fig. 5 shows the Selenium test script for

"travoaide". Selenium is a powerful testing tool suite of

tools such as an Integrated Development Environment,

Remote control, Web driver and Selenium Grid.

Fig. 3 Steps towards green testing activity

Select and setup various test
cases for various applications

Analysing GPU and memory usage for the execution
various test scripts.Comparing the GPU, CPU efficiency.

Speck the area of test script which cause
more energy consumption

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

280

Subject
Test
Case

Name

Test Case
Description

Step

Step
Description

Expected Result
Input

Parameters
Designer Status Priority Type Reviewer *

founto
Tuto
before
sign in

TC_001

Verify that User
can able to see the
videos in home
page or not

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
should be loaded

 Anitha High Manual
<<reviewer
name>>

 2

Check
Whether the
videos are
displayed or
not

Videos should
display

founto
Tuto
before
sign in

TC_002

Verify that the
user is able to
Scroll videos or
not.

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
with video should
be loaded

 Anitha Medium Manual
<<reviwer
name>>

 2
Click on the
Scrollbar and
move it

Videos should
scroll according to
the movement of
the scrollbar

founto
Tuto
before
sign in

TC_003
Verify that the
user can pause the
video or not

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
with video should
be loaded

 Anitha Medium Manual
<<reviewer
name>>

 2
Click on the
video or pause

Videos should
pause

founto
Tuto
before
sign in

TC_004
Verify that the
user can mute the
video or not.

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
with video should
be loaded

 Anitha Medium Manual
<<reviewer
name>>

 2
Click on the
mute button

Videos should
mute

founto
Tuto
before
sign in

TC_005

Verify that the
user is able to
increase and
decrease the
volume or not.

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
with video should
be loaded

 Anitha Medium Manual
<<reviewer
name>>

 2
Change the
volume of the
video

Videos should be
change accordingly

founto
Tuto
before
sign in

TC_006

Verify that the
user is able to
click on a mini
player

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
with video should
be loaded

 Anitha Medium Manual
<<reviewer
name>>

 2
Click on the
mini player

After clicking on it,
the screen should
be minimized.

founto
Tuto
before
sign in

TC_007

Verify that the
user is able to
select the video
quality from the
list.

1

Give url for
the founto
Tuto in the
browser

The founto Tuto
with video should
be loaded

 Anitha Medium Manual
<<reviewer
name>>

 2
Select video
quality from
the list.

User should be able
to select the quality
and video should
be displayed with
the selected quality

Fig. 4 Manual Test Case designed for the "fountoTuto" application

Our proposed tool is Linux based, which estimates

GPU, CPU and Memory utilisation of the testing activity.

It continuously observes the energy usage and saves the

output in a comma-separated value format. Test scripts are

generated for the least graphic application and a video-

enriched application to analyse the performance.

Continuously monitor and save the resource usage into a

file by the process script, which will iterate and filter out

the specific process and appends the result to the file.

While performing the testing process, we ran the above

shell script and stored the data usage as a csv file. To

examine code's role in energy consumption, scrutinised the

per thread CPU usage. The thread concept helps us slice,

detail, and find the energy-hungry area of the process.

10. Result

This section describes the evaluation of the result

generated during the experiment. The result gathered in the

csv file is organised, and the graph is plotted. Graphs show

the usage of GPU, CPU and memory during the automated

test process of the "travoaide" application.

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

281

Fig. 5 Test Script written for the "travoaide" project

Algorithm

Step 1: Delete the output .csv file <<OutputFile.csv>> if exists.

Step 2: Create the output .csv file <<OutputFile.csv>>

Step 3: Print Caption “Output of CPU, Memory, GPU Usage”

Step 4: Print Heading “TIME_STAMP, CPU_USAGE%, MEMORY_USAGE%, GPU_USAGE%”

Step 5: Start Iteration

Step 6: Format Date with Time Stamp

Step 7: Filter the CPU usage for given program that is being executed

Step 8: Calculate the Memory usage by considering the total memory utilisation and the memory usage

for given program that is being executed

Step 9: Filter the GPU usage for given program that is being executed

Step 10: Append the file with the data from the steps 6, 7, 8 and 9 separated with comma.

Step 11: Pause iteration the for 1 second

Step 12: Repeat from Step 6:

Step 13: Stop test process

Step 14: Locate the folder for <<OutputFile.csv>> file

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

282

Fig. 6 Graphical representation of CPU, GPU and MEMORY usage on testing the "travoaide" project

Fig. 7 Resource Usage on Testing the "fountoTuto" application

Fig. 8 Comparison of GPU and CPU usage for both "fountoTuto" and "travoaide"

0

0.5

1

1.5

2

2.5

3

3.5

4

0

20

40

60

80

100

120

C
P

U
 %

 a
n

d
 G

P
U

%

m
em

o
ry

 u
sa

g
e

(m
b

)

Time stamp (HH:MI:SS)

Utilization Over Time

CPU GPU Memory

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

20

40

60

80

100

120

140

160

C
P

U
 %

 a
n

d
 G

P
U

%

m
em

o
ry

 u
sa

g
e

(m
b

)

Time stamp (HH:MI:SS)

Utilization Over Time

CPU GPU Memory

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

283

For evaluation, considered two applications, one with

the least graphical interfaces and one supplemented with

videos. The Linux-based script analysed the performance

while testing the application. The continuous usage of

these resources has a major influence on energy

consumption.

Fig. 6 illustrates the resources' usage while testing

"travoaide" The graph is plotted with the timestamp in

HH:MI: SS on the x-axis and memory in megabytes

on the y-axis. The usage percentage of CPU and GPU

readings are indicated on the right axis of the graph. Here

GPU usage is less compared to CPU. Figure 7 exemplifies

the memory usage on the y-axis and CPU and GPU usage

on the right axis of the graph. Each one is plotted against

the x-axis, which indicates the timestamp for the

"fountoTuto" project. This application includes more video

and graphical content; thus, GPU usage increased here

compared to previous test scenarios. Graphs are plotted by

analysing the csv file mapped the result while testing.

GPU has primacy over CPU in energy efficiency in

parallel processes and those applications with concerted

computations. Assigning all workloads to GPU is not an

efficient solution, and that will lead to CPU idling. Proper

issuance of resources and optimised utilisation of same can

procure green sustainable development. In Figure 8, the

First graph shows the GPU usage of two applications,

"fountoTuto" and "travoaide" x-axis is plotted with the

timestamp in HH:MI: SS and the y-axis is plotted with a

percentage of GPU usage, whereas the second graph

illustrates the comparison of CPU usage of the two

applications.

11. Conclusion and Future Work
As technologies grow, the use of related devices

greatly impacts the environment. A single individual or a

big organisation both have some responsibility towards the

environment to promote green principles. Green

computing is the practise of using computing resources

efficiently by reducing the technology's negative effect on

the environment.

The sight of green computing is to reduce carbon

emissions by reducing resource usage and energy

efficiency of CPU, GPU and other peripherals. The future

of this chore is to unroll the scope of code complexity

analysis, which will lead to an environment- friendly

software development Life cycle. The system with many

complex interfaces and requirements is extravagant to

debug and maintain. Evaluating the code complexity is an

appropriate tool to foresee the defect possibility.

References
[1] Gebhart, Mark, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally, Erik Lindholm, and Kevin Skadron,

“Energy-Efficient Mechanisms for Managing Thread Context In Throughput Processors,” In 2011 38th Annual International

Symposium on Computer Architecture (ISCA), pp. 235-246. IEEE, 2011.

[2] Lee, Jeabin, Byeong-Gyu Nam, and Hoi-Jun Yoo, “Dynamic Voltage and Frequency Scaling (DVFS) Scheme for Multi-Domains

Power Management,” In 2007 IEEE Asian Solid-State Circuits Conference, IEEE, pp. 360-363, 2007.

[3] Collange, Sylvain, David Defour, and Arnaud Tisserand, “Power Consumption of Gpus From A Software Perspective,”

In International Conference on Computational Science, Springer, Berlin, Heidelberg, pp. 914-923, 2009.

[4] Chandramowlishwaran, Aparna, Samuel Williams, Leonid Oliker, Ilya Lashuk, George Biros, and Richard Vuduc, “Optimising

and Tuning the Fast Multipole Method for State-of-The-Art Multi-Core Architectures,” In 2010 IEEE International Symposium on

Parallel & Distributed Processing (IPDPS), . IEEE, pp. 1-122010.

[5] Murphy-Hill, Emerson, Thomas Zimmermann, and Nachiappan Nagappan, “Cowboys, Ankle Sprains, and Keepers of Quality:

How is Video Game Development Different from Software Development?,” In Proceedings of the 36th International Conference

on Software Engineering, pp. 1-11. 2014.

[6] Yang, Yi, Ping Xiang, Mike Mantor, and Huiyang Zhou, “Fixing Performance Bugs: An Empirical Study of Open-Source GPGPU

Programs,” In 2012 41st International Conference on Parallel Processing, pp. 329-339. IEEE, 2012.

[7] Hong, Sunpyo, and Hyesoon Kim, “An Integrated GPU Power and Performance Model,” In Proceedings of The 37th Annual

International Symposium on Computer Architecture, pp. 280-289. 2010.

[8] Lee, Jaekyu, and Hyesoon Kim, “TAP: A TLP-Aware Cache Management Policy for A CPU-GPU Heterogeneous Architecture,”

In IEEE International Symposium on High-Performance Comp Architecture, IEEE, pp. 1-12, 2012.

[9] Scacchi, Walt, and Kendra M. Cooper, “Research Challenges At The Intersection of Computer Games and Software Engineering,”

In Proceedingd 2015 Conference Foundations of Digital Games, 2015.

[10] Ghosh, Sayan, Sunita Chandrasekaran, and Barbara Chapman, “Energy Analysis of Parallel Scientific Kernels on Multiple Gpus,”

In 2012 Symposium on Application Accelerators in High-Performance Computing, pp. 54-63. IEEE, 2012.

[11] Lewis, Chris, Jim Whitehead, and Noah Wardrip-Fruin, “What Went Wrong: A Taxonomy of Video Game Bugs,” In Proceedings

of the Fifth International Conference on the Foundations of Digital Games, pp. 108-115. 2010.

[12] Anzt, Hartwig, Vincent Heuveline, José I. Aliaga, Maribel Castillo, Juan C. Fernandez, Rafael Mayo, and Enrique S. Quintana-

Orti, “Analysis and Optimisation of Power Consumption in the Iterative Solution of Sparse Linear Systems on Multi-Core and

Many-Core Platforms,” In 2011 International Green Computing Conference and Workshops, pp. 1-6, IEEE, 2011.

[13] Hanan Qassim Jaleel, "Testing Web Applications," SSRG International Journal of Computer Science and

Engineering, vol. 6, no. 12, pp. 1-9, 2019. Crossref, https://doi.org/10.14445/23488387/IJCSE-V6I12P101.

https://doi.org/10.14445/23488387/IJCSE-V6I12P101

G. Anithakrishna & M. Mohankumar / IJETT, 70(10), 277-284, 2022

284

[14] Kim, Gloria YK, Akihiro Hayashi, and Vivek Sarkar, “Exploration of Supervised Machine Learning Techniques for Runtime

Selection of CPU Vs GPU Execution In Java Programs,” In International Workshop on Accelerator Programming Using

Directives, Springer, Cham, pp. 125-144, 2017.

[15] Mcintosh-Smith, Simon, Terry Wilson, Amaurys Ívila Ibarra, Jonathan Crisp, and Richard B. Sessions, “Benchmarking Energy

Efficiency, Power Costs and Carbon Emissions on Heterogeneous Systems,” The Computer Journal, vol. 55, no. 2 , pp. 192-205,

2012.

[16] Lashgar, Ahmad, Amirali Baniasadi, and Ahmad Khonsari, “Inter-Warp Instruction Temporal Locality In Deep-Multithreaded

Gpus,” In International Conference on Architecture of Computing Systems, Springer, Berlin, Heidelberg, pp. 134-146, 2013.

[17] Rofouei, Mahsan, Thanos Stathopoulos, Sebi Ryffel, William Kaiser, and Majid Sarrafzadeh, “Energy-Aware High Performance

Computing With Graphic Processing Units,” In Workshop on Power Aware Computing and System, 2008.

[18] Petrillo, Fábio, Marcelo Pimenta, Francisco Trindade, and Carlos Dietrich, “Houston, We Have A Problem..A Survey of Actual

Problems in Computer Games Development,” In Proceedings of The 2008 ACM Symposium on Applied Computing, pp. 707-711.

2008.

[19] Ramya D, Ramyashree P R, Sunaina Rashmi R, Nalina V , "Green Cloud Computing,” A Review - International Journal of

Recent Engineering Science, vol. 5, no. 6, pp. 16-18, 2018. Http://Ijresonline.Com/Archives/IJRES-V5I6P103.

[20] Lange, Holger, Florian Stock, Andreas Koch, and Dietmar Hildenbrand, “Acceleration and Energy Efficiency of A Geometric

Algebra Computation Using Reconfigurable Computers and Gpus,” In 2009 17th IEEE Symposium on Field Programmable

Custom Computing Machines, IEEE, pp. 255-258, 2009.

[21] Muthu, Mohankumar, K. Banuroopa, and S. Arunadevi, “Green and Sustainability In Software Development Lifecycle

Process,” Sustainability Assessment at the 21st Century, vol. 27, no. 63 , 2019.

[22] Anithakrishna, G., Mohankumar, M, “SEFGAST: Step-Up to Environment Friendly Green Automated Software

Testing,” International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 162-169, 2022.

Crossref, https://doi.org/10.14445/22315381/IJETT-V70I3P218.

[23] Rosziati Ibrahim, Ammar Aminuddin Bani Amin, Sapiee Jamel, Jahari Abdul Wahab, "Epit: A Software Testing Tool for

Generation of Test Cases Automatically," International Journal of Engineering Trends and Technology vol. 68, no. 7, pp. 8-12,

2020. Crossref, https://doi.org/10.14445/22315381/IJETT-V68I7P202S.

[24] Bijendra Singh, Dr. Ankit Kumar, Dheeraj Kumar Sahni, Divya Shree, Anu, Khushboo, Kapil Sirohi, Dhiraj Khurana ,"A Model

to Measure Software Testing Effort Estimation in the Integrated Environment of ERNN, BMO & PSO," International Journal of

Engineering Trends and Technology, vol. 69, no. 8, pp. 81-88, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-

V69I8P210.

[25] Sandhya, Nidhi B.Satija, Priyank Singhal, “Green and Sustainable FPGA Based Counter for IOT Based Processor,” International

Journal of Engineering Trends and Technology, vol. 67, no. 9, pp. 51-54, 2019.

 Crossref, https://doi.org/10.14445/22315381/IJETT-V67I9P208.

[26] Llamocca, Daniel, Cesar Carranza, and Marios Pattichis, “Separable FIR Filtering in FPGA and GPU Implementations: Energy,

Performance, and Accuracy Considerations,” In 2011 21st International Conference on Field Programmable Logic and

Applications, IEEE, pp. 363-368, 2011.

[27] Hamada, Tsuyoshi, Khaled Benkrid, Keigo Nitadori, and Makoto Taiji, “A Comparative Study on ASIC, Fpgas, Gpus and General

Purpose Processors in the O (N^ 2) Gravitational N-Body Simulation,” In 2009 NASA/ESA Conference on Adaptive Hardware and

Systems, IEEE, pp. 447-452, 2009.

