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Abstract - Preventing and physiological healing problems need early stress diagnosis and a participant's predisposition to 

operate healthily under stress. Traditional methods of evaluating anxiety levels, such as interviewing the person and 

having to ask strain-based queries to develop a better understanding of their situation and observing facial gestures - 

individuals under stress respond by changing their brows, pupils dilating, or one’s flashing strobe percentage could 

differentiate - are limited even though they may overlook stress episodes. Electroencephalogram (EEG) is a newly created 

physiological measure that has the potential to be utilized as a stress gauge in everyday life. It is due to the commercial 

availability of EEG headsets for studying brain activity conveniently and cost-effectively. This investigation used machine 

learning methods to classify stress status using resting-state EEG signal recordings. The method was tested using a dataset 

from the MathWorks® EEGLAB toolbox, and a dataset of 20 patients was constructed using a questionnaire and Neurosky's 

Mindwave EEG headset. For stress detection, a support vector machine (SVM), recurrent neural network (RNN), long 

short-term memory (LSTM), and a novel technique based on a parallel fusion of RNN-LSTM are used. The results of the 

MATLAB simulations show that the proposed technique is faster and more accurate than other machine-learning 

approaches. The proposed technique has a 95% accuracy rate, up to a 15% improvement over other results. 

 
Keywords - Stress detection, EEG signals, machine learning, EEGLAB toolbox, Meurosky's Mindwave EEG headset, 

MATLAB. 

1. Introduction 
Mental stress, a psychological phenomenon that 

mirrors the body's innate defences against predators and 

danger, has become more prevalent in recent years due to 

its prominence as the most pressing societal issue of the 

twenty-first century, particularly during the Covid-19 

epidemic [1-4]. It is important to diagnose mental stress 

early on. It is important to diagnose mental stress early on 

to avoid any significant health complications due to it [5]. 

Stress may be detected and quantified using a variety of 

techniques and procedures, including Positron Emission 

Tomography (PET), electrocardiogram (ECG), 

Electromyography (EMG), and magnetic resonance 

imaging (MRI) [6], [7]. EEG is a medical procedure that 

measures the physiological features produced by electrical 

activity in the brain [8], [9]. EEG is the greatest alternative 

over ECG, EMG, PET, and Functional magnetic resonance 

imaging for faster, less expensive, and much more 

approachable insight into brain processes and high time 

resolution. EEG has become a vital tool since it is based on 

a non-invasive technique that uses stress hormones as 

input, allowing it to be utilized as a precise and trustworthy 

tool for stress calculation in cognitive and neuroscience 

research [10]. With the use of a revolutionary machine-

learning algorithm, mental stress is recognized using EEG 

data in this study. 

 

Stress is described as a state of high pressure and 

mental strain in layman's words., but it is defined in 

research studies as a bodily mechanism that responds to a 

challenge or a body reaction to mental, emotional, or 

physical suffering [11-12]. The fight-or-flight response is 

the name for this system. It also partially or completely 

impacts the practicality of everyday labour and the 

country's economy [13]. 

Because there is little time to rest between trials, stress 

can cause mental and behavioural changes [14], [15]. 

These alterations represent stress symptoms. Perspiration, 

spasms, dizziness, headaches, hypertension, muscular 

pains, and night terrors are all common symptoms; 

difficulties are examples of physical symptoms, whereas 

psychological symptoms include rage, nervousness, 

sadness, memory disorientation, mood swings, and 

melancholy [16-17]. 

Food cravings, abrupt furious outbursts, greater 

cigarette or alcohol usage, and frequent sobbing have all 

been recognized as important stress symptoms in stressed 

individuals [18]. Stress might not only produce 

dysfunctional behaviour, but it can also increase 

hypertension, cardiovascular disease, and gastrointestinal 

disease if it lasts for a long time [19-20].  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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As a result, researchers must recognize tension at a 

preliminary phase, and individuals must be aware of the 

implications of being over-stressed before it causes 

substantial health difficulties [21–23]. Stress harms human 

health and impairs the immunological system [24–26]. As 

a result, the scientific community is concentrating on 

determining the best method for recognizing stress early 

on to prevent it from becoming chronic and providing 

solutions to avoid irreparable harm [27–30]. To help 

society, low-cost, precise, and efficient technologies for 

emotion recognition and mitigation approaches are needed 

in healthcare, educational, scientific, military, science, 

athletics, or social activities are some of the areas where 

the government and industry intersect [31]. 

Various methods for assessing and studying stress 

levels have been produced, including questionnaires, 

assessments, and surveillance of people to quantify 

changes in physiological signals [32–34]. Physiological 

signals can be recorded and processed with greater 

precision in online real-world applications for the 

measurement of anxiety, which may be split into two 

subgroups:  

 

• “Invasive type” and  

• “Non-invasive form” [35]. 

 

Invasive treatments have drawbacks in some 

approaches, such as testosterone analysis, necessitating the 

development of non-invasive, efficient, precise, and 

trustworthy technologies [36]. The following techniques, 

which may detect stress through individual physiological 

data, are classified as non-invasive procedures [37–40]. 

EEG is the greatest choice over other non-invasive 

technologies for faster, cheaper, and more accessible 

insights into brain activities with a tight temporal 

resolution [41–44]. Small metal discs with thin wire 

electrodes are placed on the scalp, and impulses are sent to 

a device that records the information [45]. Due to the rapid 

nature of these electrical changes, precise temporal 

precision on the microsecond order may be attained [46]. 

The graphs of the brain's electrical energy versus time are 

mentioned in [47-48].  

 

In this work, mental stress is detected using EEG 

signals using a parallel fusion RNN-LSTM-based novel 

machine learning algorithm. Conventional machine 

learning algorithms like SVM, RNN, and LSTM are 

compared with the proposed algorithm for performance 

evaluation. MATLAB EEGLAB toolbox is used as a 

platform to train and test the algorithms. An EEGLAB 

dataset of 20 EEG signals was created using Neurosky’s 

Mindwave EEG headset on sample patients. The suggested 

method appears to outperform standard algorithms, 

according to the results.  

 

This research elaborates on EEG signals in section - 2 

following the introduction from section - 1. Section - 3 

describes conventional algorithms applied to EEG devices. 

The proposed method of the RNN-LSTM approach is 

described in section - 4. Furthermore, the result-oriented 

discussion with a conclusion and future scope are 

incorporated in sections 5 and 6, respectively. 

 

2. EEG Signals 
2.1. EEG Features 

EEG activity is a temporal summation of the 

synchronized activity of millions of precisely coordinated 

neural cells. EEG analysis and interpretation are both an 

art and a science. The typical EEG has a wide range of 

physiological variability and is quite variable. When 

evaluating the waveforms in an EEG recording, it's critical 

to use a systematic approach. Even before beginning the 

analysis, one must know numerous confounding factors, 

such as the patient's age, level of awareness, the existence 

of muscle function, and the presence of various biological, 

ecological, and pharmaceutical drugs that may impact the 

waveforms. 

The position, magnitude, duration, structure, 

consistency (periodic, sporadic, or constant), 

synchronization, symmetrical, and responsiveness of EEG 

waves may all be used to classify them. 𝛿 (Delta)-type 

operates between 0.5 to 4 Hz, 𝜃 (Theta)-type operates 

between 4 to 7 Hz, 𝛼 (Alpha)-type operates between 8 to 

12 Hz, 𝛾 (Gamma) -type operates between 12 to 16 Hz, 

and 𝛽 (Beta) -type operates between 13 Hz to 30 Hz. Other 

frequencies beyond the typical spectrum of clinical EEG, 

such as ultra-slow oscillation (less than 0.5 Hz) and 

elevated oscillations (higher than 30 Hz), have lately 

acquired clinical value with the rise of digital signal 

analysis. 

2.2. Measurement of Frequency 

The typical spectrum of industrial EEG focuses on 

pulses with wavelengths ranging from 0.5-70 Hz. The EEG 

recordings are subjected to commonly related filtering for 

this study. A larger EEG gamut, but at the other extreme, 

has been researched by medical groups and academics and 

has been proven clinically meaningful in specific 

situations. When the infra-slow or ultra-fast portions of the 

frequency range are removed from normal EEG, several 

physiological and pathologically significant characteristics 

of cerebrum activity are lost. A full-bandwidth EEG 

(FbEEG) examines all biologically and therapeutically 

significant waveforms without making any compromises 

that favour one frequency range over another. Conversely, 

collecting EEG data at extremely high frequencies is not 

common in clinical practice since it requires specialized 

equipment to acquire data with higher sampling rates, 

doubling the amount of storage space required. EEG 

waveforms may be classified into several kinds based on 

the FbEEG recording: - 

Intradural oscillation (ISO) (just under 0.5 Hz): ISOs 

are indeed the dominant frequency in preterm newborns, 

and they range from 0.01 Hz to 0.1 Hz. It is also known as 

spontaneously activity transients (SAT). It is endogenous 

cannabinoids driven, spontaneously activities that are 

critical in forming neural connections at such an early 

infantile stage when sensory information is minimal. 
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Furthermore, during non-REM sleep, ISOs across the 0.02 

to 0.2 Hz frequency range are observed, phase synced with 

high frequencies EEG activity.  

The majority of low-frequency EEG research has 

focused on conditional activation causal negative 

variability, motor motions, and the orienting paradigm. The 

amplitude of these slow scalp-recorded potentials is 

frequently only a few microvolts, necessitating Fb-EEG-

based electrodes and skin-based electrode connections for 

true DC-type characteristics for reliable audio-based 

recording. Furthermore, spasms are associated with very 

sluggish EEG reactions and varied limited oscillations near 

the epileptic foci, according to invasive and non-invasive 

EEG tracking in animal studies and people. Non-invasive 

epileptic DC measurements recently revealed that 

localized onset episodes are associated with protracted and 

rather large DC changes.  

1. 𝛿- within the range of 0.5 Hz to 4 Hz: 𝛿-rhythm is 

physically noticeable in profound slumber and is 

prevalent in about identical head locations. A faulty 

rhythm develops in waking states in situations of 

extensive neurodegeneration and targeted 

neurodegeneration. Adults have frontal intermittent 

rhythmic 𝛿-activity, whereas the children’s occipital 

rhythm is infrequent. Patients with status epilepticus 

typically have temporal interspersed rhythm 𝛿 activity 

(TIRDA).  

2. 𝜃- within the range of 4 Hz –7 Hz: This is the cadence 

that is set off by exhaustion in the early stages of 

sleep, such as N1 and N2. Linked to premature 

sleepiness, it is most pronounced in the inferior frontal 

brain zones and gradually makes its way rearward, 

replacing the 𝛼-cluster. In youngsters and early 

adulthood, elevated emotional moods can also 

improve prefrontal cyclic 𝜃 rhythm. During waking 

states, localized 𝜃 The presence of activity is a sign of 

localized brain dysfunction. 

3. 𝛼-(8–12Hz): In typical awake EEG recordings in the 

frontal head area, the dominant anterior groove is 

typically present. It is the characteristic element of the 

adult EEG recording's regular ambient frequency. In 

healthy people, the anterior rhythm reaches the 𝛼-

range of 8 Hz at the age of 3 years but does not 

diminish only until the 9th decade of life. Rapid 

variants of the atmospheric beat have been identified 

in the regular populace. The backstory's lowering is 

regarded as a sign of widespread brain damage. 

The rhythms fluctuate from patient to patient and from 

time to time within such a single individual. The 𝛼-

rhythm's reactivity is a distinguishing feature that aids 

in its identification. It is most visible when the eyes 

are open, the mind is relaxed, and it is often 

diminished when the eyes are opened and mental 

effort is exerted. Patients with widespread 

encephalopathy may have generalized 𝛼-activity, 

which is non-responsive to internal stimuli and is 

known as “𝛼-coma”. 

𝜇-rhythm is a sort of 𝛼-rhythm with an arch-like 

architecture that appears in the central head regions. 

This pattern often ceases with contralateral limb motor 

action or thought about commencing the motor 

activity. Eye-opening, on the other hand, is mostly 

unaffected. Young individuals are the most commonly 

affected, whereas adults and children are less affected. 

Insomnia, sensorimotor stimulus, and mathematical 

ability are all variables that reduce the effectiveness of 

the treatment. On both ends, they are very uneven and 

inconsistent. 

4. 𝛾-Waves: sleep patterns, also known as 𝜎-waves, are a 

type of activity that occurs medically during N2 sleep. 

They are mainly noticeable in the fronto-central head 

areas and might be sluggish (12 Hz to 14 Hz) or rapid 

(14 Hz to 16Hz). A pathological spinning pattern is 

present in widespread encephalopathy, referred to as 

“spindle-coma”. 

5. 𝛽-(13 Hz to 30Hz): In healthy kids and adults, the 𝛽-

pulse is the most common. It is most noticeable in the 

forehead and centre skull areas and gradually fades as 

it moves backwards. 𝛽-activity normally has an 

amplitude of 10 - 20 𝜇𝑉 and rarely exceeds 30 𝜇𝑉. Its 

amplitude often increases during weariness, and if 

the N1 sleeps, it decreases throughout when the N2 and 

N3 sleep. Sedatives, thionyl chloride hydrate, and 

benzodiazepine, among other sedatives, enhance the 

amplitude and amount of 𝛽-activity in people. A 

cranial injury, abnormalities, spinal cord compression, 

epidural, or subgaleal fluid accumulation are all 

possibilities that can cause focal, regional, or 

hemispheric suppression of 𝛽. 

6. HFOs (High-Frequency Oscillations): Vibrational 

modes with a frequency higher than 30Hz. These are 

further divided into three categories: gamma (30 Hz to 

80 Hz), ripples (80 Hz to 200 Hz), and rapid ripple 

(200 Hz to 500Hz). Sensation awareness incorporating 

diverse regions has been linked to the gamma rhythm. 

HFOs have been the subject of substantial study 

worldwide, notably in the area of epilepsy. 

Epileptogenic foci are known for causing high-

frequency activity bouts. Ultrafast frequency bursts 

(fast ripples) have been seen in intracranial depth 

recordings from epilepsy hippocampal (animal and 

human models), which are thought to correspond with 

the localized epileptogenicity of the cerebral cortex. 

Sub-arachnoid-based space recording during pre-

surgical epileptic evaluations, on either hand, has 

shown that activation outbursts in a lower frequency 

band (60 Hz to 100 Hz) can also identify the position 

of an epilepsy focus. Myoclonus HFOs have been 

identified as prospective biomarkers of the human 

epileptic cerebral cortex. 
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Fig. 1 MATLAB EEGLAB Toolbox 

2.3 MATLAB EEGLAB Toolbox 

EEGLAB Toolbox from MathWorks is used for 

analyzing consistent and occasional EEG, 

Magnetoencephalography (MEG), and other 

electroencephalographic data. It includes the impartial 

principle of analyzing the components, time vs frequency 

analysis, artefact denial, occurrence statistics, and a variety 

of valuable visualization configurations for an averaged 

and single feature. Typical EEGLAB Toolbox is illustrated 

in Fig. 1. EEGLAB uses a graphical user interface (GUI) 

that allows users to handle high-density EEG and other 

studies provide insights into the data utilizing autonomous 

principles analyzing the components and time to frequency 

analysis (TFA), as well as typical average techniques, 

flexibly and interactively. To make a move from GUI-

based data discovery to batch or custom data supervisory 

script creation and execution easier, EEGLAB contains 

extensive instructional and help panels, as well as a 

command prompt facility. EEGLAB offers several ways to 

observe and model incidences of significant function at the 

individual EEGLAB 'data' level and across a group of 

datasets in an EEGLAB 'study set.' [49]. 

 

2.4 Neurosky’s’ Mindwave EEG headset 

The collection of EEG data was carried out using 

Neurosky's Mindwave EEG headgear equipment which is 

shown in Fig. 2. It records one EEG signal at a time using 

parched conductors placed at the prefrontal location (PFL) 

of the brain, which is referred to as electrodes in the ear 

lobe. The device, which runs at a minimum of 2.7V and 

has a frequency of 3 Hz to 100 Hz, uses Thinkgear 

implementation electronic circuit module dry electrode 

technology. The silvery TGAM electrodes are suited for 

use in quasi-regions. The TGAT chip, a sophisticated, 

completely integrated single-chip EEG sensor, is included 

in the TGAM. Neurosky's eSense [31], A/D, amplification 

of skull recognition, and noisy filters for EMG and 

50/60Hz AC power-line disturbance are all included in the 

chip. 

 

 
Fig. 2 Neurosky MindWave Single-Channel EEG Headset 
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3. Conventional Machine Learning 

Algorithms 
3.1. Collection of test data using Neurosky’s Mindwave 

EEG headset 

During this task, 20 people were asked to close their 

eyes and keep their brains clear of extraneous ideas. The 

wearable headset was set up independently for each 

person, and data was collected for 3 minutes with the eyes 

closed. The group consisted of both gender from an age 

group of 25-40 years. The questionnaire prepared for this 

activity is given in Appendix A. The device's recorded data 

was transferred to a personal computer using Bluetooth. 

All data were collected in a room with identical 

illumination conditions and a calm atmosphere to avoid 

causing any extra stress. The wavelet decomposition was 

used to analyze the frequency domain of the EEG data. 

 

The existing EEGLAB dataset was used to train the 

algorithms used for feature extraction and classification 

beyond stress and no stress levels. One channel data from 

the Mindwave headset was acquired and preprocessed 

using wavelet transform, as shown in Fig. 3, with the help 

of the questionnaire. Generating the dataset of these 20 

people is one of the contributions of this research activity.

 

 

 

 

 

 

 

 
Fig. 3 Process of detecting mental stress 

The dataset available with the EEGLAB toolbox is 

shown in Fig. 4. 

 
Fig. 4 EEGLAB Toolbox 

 

A 32-channel brain-computer interface is used for data 

acquisition in the existing dataset of EEGLAB. The 

acquired waveforms for one subject are shown in Fig. 5. A 

graph of spectral power at different frequencies and 

channel one data for its spectral power is shown in Fig. 6 

and Fig. 7, respectively. 

It can be seen from Fig. 6 that the signal has a peak 

frequency of 8 Hz, indicating a relaxed state of mind. 

 
Fig. 5 EEG Signal at Channel 1 

 
Fig. 6 Spectral Power at different frequencies 

 

 
Fig. 7 Channel 1 data and its power spectrum concerning frequency 

 
3.2. Deployment of Conventional Algorithms for Stress 

Detection 

3.2.1 SVM Algorithm for Stress Detection 

SVM is a supervised learning technique that can be 

applied to various classification and regression problems, 

including signal processing, computational linguistics, and 

audio and image identification. The SVMs’ purpose is to 

generate a hyperplane that separates data from one 

category from another class to the maximum extent 

possible. In the diagram below, “best” is defined as the 

high energy with the greatest disparity between the 2 

10 % Training 

EEG Data Aequisition Feature Extraction Classification Pre-processing 

90 % Training 
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categories, as shown by the small deviation in Fig. 8. The 

total width of the surface is orthogonal to the hyper-plane 

with no inside data points is called the margin. The 

approach can only locate such a hyper-plane for linearly 

separable issues; for most actual situations, the algorithm 

optimizes the slender edge, permitting a relatively tiny 

group of errors. 

 
Fig. 8 Establishing the “margin” across subclasses, which is the 

criterion that SVMs are trying to improve 

 

Attribute values are a subtype of preparatory stages 

that specify where the dividing hyperplane should be 

placed. Multiclass issues are often simplified to a string of 

binary situations, and the standard SVM technique is 

developed for binary classification. In this research work, 

SVM is used to classify the EEG signals in mental stress or 

relaxed state according to the flowchart given in Fig. 9. 

The frequency bands form features of the classifier. 

Fig. 9 Flowchart for SVM-based mental stress detection 

3.2.2. RNN Algorithm 

The RNN is indeed a supervised neural network 

arrangement that enhances the show's efficiency on present 

and time-ahead signals by using knowledge from the 

previous. The existence of a hidden layer and loop 

distinguishes RNNs. The cyclical structure of the network 

allows it to store past data on a hidden layer and act on 

sequences. Because of these characteristics, recurrent 

neural networks are highly suited to handling several 

issues involving sequential data of various durations, such 

as: 

• Signal classification, 

• Video analysis, and 

• Natural language processing [49]. 

 
Fig. 10 An RNN cell is unrolled one at a time. 

 

Fig. 10 depicts how a data sequence moves via the 

system. The hidden layer of the cellular unit acts on the 

elements to generate the outcome, and the hidden layer is 

transmitted to another sampling interval. There are 2 types 

of network weights: one for obscured vector field and the 

other for the output results. This network can learn the 

weight for input and the hidden layer throughout 

activation. The outcome is based on the current intake and 

the hidden layer, dependent on prior input when enabled. 

The training algorithm is a typical method for training 

RNNs, and it can result in either a vanishing or an 

expanding gradient issue. The networking values 

sometimes become extremely low or very high due to 

these issues, reducing the efficacy of establishing carriage 

returns. In this study, RNN is used to identify stress 

similarly to SVM. 

3.2.3. LSTM Networks 

Lengthy correlations among clock cycles of data sets 

may be learned using an LSTM model. A pattern-based 

input layer and an LSTM layer are the two main 

components of an LSTM network. A sequential input layer 

feeds packets into the system in the form of a sequence or 

a time series. The long-term relationships among sequence 

data time steps are learnt using an LSTM layer. Fig. 11 

shows the construction of a simple LSTM network for 

assessment. A sequence input phase is defined by either an 

LSTM intermediate node. The network finishes with a 

convolution layer, a soft-max layer, and a segmentation 

output vector to forecast classifier. 

 

Establish a layered array with sequences of input 

nodes, an LSTM surface, a fully-connected layers, a Soft-

max, and a categorization output unit to make an LSTM 

network for sequential classifications. Set the number of 

features inside this input data to the size of the serial input 

layer. Make the completely linked layer the same size as 

the class labels. Fig. 12 shows the transport for time-series 

data 𝑋 containing 𝐶 characteristics (streams) of 

dimensions 𝑆 via LSTM layers.  

Fig. 11 LSTM Network Architecture 

 

Input EEG signal 

Decomposed into 

five EEG subbands 

Discrete Wavelet transform 

Classification of EEG signal 

Feature Extraction 

Statistical Features 

Support Vector Machine 

Sequence Input LSTM Softmax Classification Fully Connected 
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The consequences (also described as that of the hidden 

state) and the transceiver at time interval 𝑡 are represented 

in the diagram by ℎ𝑡 and 𝑐𝑡, respectively. 

 
Fig. 12 LSTM Layer Architecture 

The first LSTM block computes the first result and the 

modified corresponding output using the initial condition 

of the network and sequence's 1st phase. Using the current 

network state (𝑐𝑡−1, ℎ𝑡−1) then, the next periodic stride in 

the sequence, the module computes the outcome and the 

modified corresponding output 𝑐𝑡 at sample time 𝑡. 

The concealed information (commonly known as the 

output state), as well as the layer of the network, make up 

the layer's state. The outcome of the LSTM layer for such 

a sampling interval is stored in the hidden neuron at time 

step 𝑡. The preceding time steps' data is contained in the 

cell state. The layer includes or subtracts data from the cell 

state at every sampling interval. Furthermore, the layer 

includes or subtracts data from the cell state. The layer 

uses gates to regulate these changes. This image depicts 

the flow of information at intervals 𝑡. The diagram in Fig. 

13 depicts how the gating remembers, modifies, and emits 

the hidden and cellular states. 

 
Fig. 13 Gates of LSTM Layer 

4. Proposed RNN-LSTM Algorithm 
4.1. Proposed Method of LSTM-RNN for Mental Stress 

Detection 

The construction of a basic LSTM network for 

regression is shown in Fig. 14. Sequential layers of inputs 

are fed to LSTM, which is further fully connected, and the 

output response is regressive. 

To develop an LSTM model for sequential 

forecasting, a multi-arrangement with a pattern artificial 

neuron, an LSTM layer, fully linked layers, and a regress 

output unit is introduced. A variety of features (EEG 

Frequency Bands) are set inside the data input to a length 

of the sequential input nodes. A completely linked level the 

same size as the number of responses is thus made. The 

proposed parallel fusion RNN-LSTM method is depicted 

in Fig. 15 as a flowchart. 

 

 

Fig. 14 a)  RNN-LSTM Output 

 

 
Fig. 14 b) RNN-LSTM Network layer 

 

Sequence Input LSTM Fully Connected Regression 

Output 
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Fig. 15 Flowchart for LSTM with dropout layer 

LSTMs can selectively recall similarities for just a 

significant period, which is important for extracting 

features from physiological data. RNN, on the other hand, 

can quickly discern the recurrence of patterns in a signal. 

To minimize over-training of sequence data from LSTM, 

the proposed technique follows each fully - connected with 

a 0.5 single hidden layer that discards 50% of random 

features.  

This data and information utilize RNN, and then after 

dropping, the final FC layer is linked to the categorization 

hidden layers through to the softmax for LSTM condition 

categorization. This technique is novel and is one of the 

contributions of this research work. A 50% reduction in 

random features reduces the data size to be handled, and 

conjunction for two classifiers increases the accuracy of 

the results. It can be seen from Fig. 16 that after the feature 

extraction step, RNN continues to sample the values; 

however, LSTM starts the classification process parallelly. 

4.1. Training existing dataset from EEGLAB Toolbox 

The EEGLAB dataset consists of 32 channels from a 

brain-computer interface. Only channel 1 input is 

considered for training purposes, as shown in Fig. 17. Data 

from 10 EEG signal sources are used to train the 

algorithms. Before training, data preprocessing, 

decomposition and feature extraction are done using 

wavelet transformation. The data from single-channel and 

its decomposition to different EEG frequency bands are 

shown in Fig. 18. 

The EEG signals are converted to frequency and time 

domain signals using the Parks-McClellan optimal 

equiripple finite impulse response order estimator and a 

Chewing function in MATLAB, a Chebyshev filter. The 

spectrum of filtered outputs is shown in Fig. 19. 

These features are used for classifiers as input for the 

algorithm's training. The weights used for training are 

decided based on the average values of the training dataset 

for all frequency bands' power spectrums. 

Fig. 16 The flowchart of the proposed RNN-LSTM combined for mental stress detection 

1 Channel EEG Input 

LSTM (50 Neurons) 

LSTM (40 Neurons) 

LSTM (40 Neurons) 

Dropout (0.5) 

Dense (20 Neurons, Sigmoid) 

Dropout (0.5) 

Dense Output (1 Neurons,Softmax) 

Dense (10 Neurons,ReLU) 

Stressed/Relaxed 

Input raw EEG signal of Fp1 

Pre-processing: Convert the raw signal to .csv file format 

Decomposing: Use Parks-Mc Clellan and Chebwin functions along with discrete wavelet transform to separate input 

signals into various frequency bands with their time and frequency domain representations 

Feature Extraction: Convert these values and calculate power spectrum of these bands. These are used as features 

LSTM: Input from RNN and Spectrum both 

Dropout layer as a part of LSTM Use 10 values to train RNN and 20 to test the results 
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Fig. 17 EEG Signal from a stressed mind 

 

 
Fig. 18 Decomposition of EEG signals in different frequency bands 

 

 
Fig. 19 Power Spectrum of different EEG frequency bands used as features 
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4.2. Testing of the dataset created 

The authors collaborated with Dr. Rajesh Alone, a 

Sigmund Freud's Mental Health Research & 

Psychoanalysis Institute psychologist, to verify the 

people's state of mind based on samples given to him. The 

physician assessed the EEG signals gathered from the 

individual as stressed or calm, as indicated in Table I. 
 

Table 1. Evaluation of Mental Stress by Doctor 

Patient No. State of Mind 

1 Stressed 

2 Stressed 

3 Relaxed 

4 Relaxed 

5 Relaxed 

6 Stressed 

7 Relaxed 

8 Stressed 

9 Relaxed 

10 Relaxed 

11 Stressed 

12 Stressed 

13 Stressed 

14 Stressed 

15 Relaxed 

16 Stressed 

17 Relaxed 

18 Relaxed 

19 Stressed 

20 Stressed 
 

MATLAB-based algorithms were used to run the 

experiments. The information regarding detecting the 

mental state from EEG and psychological and 

physiological data was taught to the algorithms using 10 

indicators from the available data. Around 33% of the data 

was used for training, while the remaining 67% was used 

to test the efficacy of the algorithms. 

5. Results and Discussions 
5.1. Results of the Proposed Classifier 

The accuracy of different algorithms used in this 

research work is shown in the form of a bar chart in Fig. 

20. It can be seen from the figure that the proposed parallel 

fusion RNN-LSTM algorithm gives the highest accuracy 

among the compared algorithms. The findings, which 

show that RNN - LSTM categorizing is more precise than 

other machine learning techniques, emphasize the 

importance of EEG data for stress evaluation using RNN - 

LSTM classifications. The findings, which show that RNN 

- LSTM categorization is more effective than some other 

machine learning techniques, emphasize the importance of 

EEG data for stress evaluation using RNN - LSTM 

categorizing. An improvement of at least 5% to 15% is 

seen in the test results, as shown in Fig. 21 and Fig. 22. 

 
Fig. 20 Percentage Accuracy of Classifiers for created dataset 

 

 

 
Fig. 21 Change in percentage error of SVM, RNN, LSTM and 

proposed RNN-LSTM of EEGLAB Dataset Classifier 

 

    
Fig. 22 Percentage accuracy of SVM, RNN, LSTM and proposed 

RNN-LSTM of EEGLAB Dataset Classifier 

 

5.2. Testing the algorithms on DEAP Dataset 

The development of the algorithm is tested using 

DEAP Dataset in “DEAP: A Database for Emotion 

Analysis using Physiological Signals (PDF) written by S. 

Koelstra, C. Muehl, M. Soleymani, J.-S. Lee, A. Yazdani, 

T. Ebrahimi, T. Pun, A. Nijholt, I. Patras in EEE 

Transactions on Affective Computing, vol. 3, no. 1, pp. 18-

31, 2012” [50]. The algorithms are tested on 21 subjects 
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from the dataset, which classify emotions into happy and 

angry categories. For this research, the happy state of mind 

is converted to a relaxed state and the angry state is 

converted into a stressed state. In the dataset, there were 12 

angry participants and 9 happy participants. The same 

EEGLAB dataset was used to train the algorithms. 

 
Fig. 23 Percentage Accuracy of classifiers for the DEAP dataset 

 

The response of the proposed RNN-LSTM is shown in 

Fig. 23, which gives better results than other algorithms. 

Moreover, it was observed that the time taken to simulate 

the results due to the dropout layer was reduced to 9.83 

secs from twice that in the RNN-LSTM algorithm. 

 

6. Conclusion and Future Directions 
EEG signals from a person's mind can be used to 

identify many sorts of emotions. The EEGLAB toolbox's 

dataset of 10 EEG signals was utilized for training the 

machine learning algorithms. Using a Neurosky Mindwave 

EEG headset, an EEG dataset of 20 patients from a well-

known psychologist was obtained. To separate the signals 

into different frequency bands. To categorize the state of 

mind, an RNN-LSTM-based classifier was suggested and 

evaluated against existing classifiers, including SVM, 

RNN, and LSTM. It was demonstrated that the 

recommended approach had an accuracy of 5% to 15% 

greater than previous methods. 

 

Additionally, the DEAP dataset was utilized to 

evaluate classifier accuracy for further validation of 

results, showing that the new approach performs better 

than earlier techniques. The goal of this research's future 

work is to evaluate a suggested algorithm for stress 

detection using voice signals. To design a novel algorithm 

for stress identification utilizing EEG and above signals 

and evaluate a suggested method for detecting stress using 

audio-visual inputs. The developed algorithm is 

recommended for further evaluation and use in a practical 

scientific environment like research laboratories and 

medical institutes. 

 
Appendix A 
Questionnaire for Dataset formation 

The answer is as minimum words as possible or a 

simple yes/no. 

1. What is your name? 

2. What is your profession? 

3. Did you sleep well last night? 

4. Do you feel you are leading a successful life? 

5. Do you have conflicts with anyone? 

6. Were you happy as a child? 

7. Do you feel stressed at work? 

8. Do you feel you have a healthy work-life balance? 

9. Do you have a good family life? 

10. Do you feel you are stressed right now? 
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