
International Journal of Engineering Trends and Technology                                     Volume 70 Issue 10, 428-437, October 2022 

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I10P242                                 © 2022 Seventh Sense Research Group®        
      

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 
 

Location Estimation of Multiple Emitting RF Sources 

Using Supervised Machine Learning Technique 
 

Kamel H. Rahouma1, Aya S. A. Mostafa2 

 

Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia, Egypt  
 

2Corresponding Author : ayasami89@yahoo.com 

 

Received: 15 July 2022        Revised: 16 October 2022              Accepted: 20 October 2022                Published: 23 October 2022 

Abstract - Location estimation of many emitting RF sources in space is considered crucial in civilian and military 

applications. In the present work, many emitter source signals are separated into individual emitting sources, and the 

location of each source is estimated. Two antenna array stations, A and B, are used to collect the data of the emitting 

sources. A music algorithm is used to estimate the AOAs. The emitter signals are separated using the Music output angles 

and array signal processing. The correlation of a source signal received by station A and station B will estimate the 

TDOA between the two array stations. Thus, a hybrid AOA-TDOA method is used to estimate the location of every 

individual emitting source. Matlab programming environment is used to design the algorithms used in the geolocation 

estimation process and present the output results. Supervised machine learning is tested to simplify the calculation 

complexity and enhance the output results. The present work uses the Matlab 2019b Statistics and Machine Learning 

Toolbox to build the classification models of emitter station received signals. Different classification algorithms of the tool 

kit classification learner were tried to get better accuracy. It is found that fine tree and KNN algorithms achieve better 

results. The resulting output proves that ML could be used to apply multi-emitter geolocation estimation. 

Keywords - Classification with Matlab toolbox, Emitter-Sensor data collection, Geolocation with machine learning, 

Machine learning applications, Supervised Machine learning. 

1. Introduction 
Geolocating emitting sources may be solved by 

dividing the multi-emitter into multiple mono-emitters. In 

the present work, two methods are tested to solve the 

problem. At first, the analytical method is used, and 

supervised machine learning is tried for simplification and 

enhancement. The following assumptions are made to 

simplify the process of signal detection and data collection 

[1]: -The sensors are arranged in an antenna array, the 

antenna elements are placed in the shape of a uniform 

linear array (ULA), and all elements are identical, and the 

positions are accurate. - The antenna array is located in the 

far field region of the source such that the wave is 

projected to the plane wave. - All emitter signals are 

narrowband uncorrelated signals having the same center 

frequency. This assumption ensures that any element in the 

array can detect the signal. - Signal and noise are 

uncorrelated, the noise is zero mean white Gaussian noise, 

and the noise between array elements is zero. 

 

1.1. Analytical Method  

An AOA algorithm is firstly performed using the 

output of the antenna array of elements. Next, TDOA is 

computed for each emitter using the same technique for the 

two sensors, but there will be two antenna arrays. Then the 

location of the emitter is calculated with the previously 

used hybrid AOA-TDOA algorithm [2] 

 

1.2. Previous Work 

A variety of methods for locating multi-RF emitting 

sources have been developed. Ferréol et al. [3] introduced 

a hybrid AOA-TDOA multistage algorithm to estimate 

multi-emitters' locations in the x-y plane. Bryan [4] 

investigated the problem of locating multiple 

noncooperative radio frequency (RF) emitters using only 

received signal strength (RSS) data. The novel target 

acquisition and localization algorithm (TALA) introduced 

by Hernandez [5] offers a capability for detecting and 

localizing multiple targets using the intermittent “signals-

of-opportunity” (e.g., acoustic impulses or radio frequency 

transmissions) they generate. Wu et al. [6] introduced a 

multi-emitter 2D angle-of-arrival (AoA) estimation scheme 

based on impinging signal spatial sparsity. In the present 

work, the geolocation process is simplified to be a mono-

emitter location problem utilizing the hybrid AOA-TDOA 

method. 

 

1.3. Antenna Array Received Signals  

Let us consider where the RF emitters and the two 

antenna stations are located, as shown in Figure 1. 

Both antenna arrays in stations A and B are identical. 

Assuming that the antenna array has N elements detecting 

M emitters such that N ≥ M [7]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 (a) emitters-stations geometry, (b) emitters-stations data 

 

According to the stated assumptions, the incident 

signals of the emitting sources will be as shown in Figure 

2, where:e1:eM emitting sources, 𝜃1: 𝜃𝑀AOAs of the 

emitters, 𝜏1: 𝜏𝑀 delay times of the emitters, 1:N antenna 

array elements, s1:sN antenna output signal, d the array 

elements separation distance, and x(t) the array output 

signal. 

 
Fig. 2 Emitter signals impinging antenna array elements 

According to Figure 2, the M-emitters are em (1 ≤ m ≤ 

M). In general, the emitter observation vector x(t) at the 

array output is [8]: 

 𝐱(𝑡) = ∑ γ𝑚 ×  𝐚(𝜃𝑚) × 𝑒𝑚(𝑡 − 𝜏𝑚) + 𝒏(𝑡)
𝑀

𝑚=1
   (1) 

where: τm is the TOA(Time Of Arrival) of the mth emitter, 

γm .. the attenuation coefficient of the mth emitter, θm is the 

AOA of the mth emitter, a(θ) is the emitter angle vector in 

the azimuth θ (steering vector), n(t) is the additive noise 

vector, em(t) is the signal of the mth emitter, and em(t − τm) 

is then associated to the emitter path. Thus, in vector 

representation expression, Equation 1 becomes: 

 
𝑥(𝑡) = 𝐴(𝜃𝑒) × 𝛤𝑒 × e(𝜏𝑒 , 𝑡) + 𝑛(𝑡)                               (2) 

 

where τe = [ τ1, • • •, τM ]T, is the TOA vector, and θe = [ θ1, 

• • •, θM ]T is the AOA vector (.)T is the transpose operator 

and, 

𝐞(𝝉e, 𝑡) = [𝑒1(𝑡  −  𝜏1),· · · , 𝑒𝑀(𝑡 − 𝜏𝑀) ]𝑇                    (3) 

 A(𝜃𝑒) =  [ a(𝜃1), … , a(𝜃𝑀)]𝑇                                            (4) 

𝛤𝑒 = 𝑑𝑖𝑎𝑔(γ1, … . . ,    γ𝑀)                                               (5)                                                                         

According to Equation 2, x(t) will be: 

 
𝑥(𝑡) = 𝐴(𝜃𝑒) × 𝛤𝑒 × s(𝜏𝑒 , 𝑡) + 𝑛(𝑡)                               (6) 

1.4. A Multi-Emitters Geolocation Based on AOA-TOA 

Estimation 

AOA/TOA parameters of multi-emitters are used to 

separate the location problem into single-emitter location 

problems. The system configuration is illustrated in Figure 

3. 

 

Fig. 3 Multi-emitters geolocation system 

Signals xA(t) and xB(t) collected by array stations A 

and B are then equal to:           

 

𝑥𝐴(𝑡) = 𝐴(𝜃𝐴) × s(𝜏𝐴, 𝑡) + 𝑛𝐴(𝑡)                                      (7) 

 

The kth components of the system are: θA, θB, τA, and τB are 

θAk, θBk, τAk, and τBk, respectively. For example, as shown 

in Figure 1, M=3. The array of angles received by array 

station A: θA=[θA1, θA2,θA3], and that received by B: [ 

θB1,θB2,θB3]. The measured TOA arrays are: τA = 

[τA1,τA2,τA3], and τB = [τB1,τB2,τB3] for array stations A, and 

B respectively. 

 
1.5. AOA Estimation Using the Multiple Signal 

Classification MUSIC Algorithm 

The angles θ are estimated with a subspace method and 

give estimated values θ ̃A and θ ̃B. Many algorithms are 

used to estimate the AOA of the received signals. The 

MUSIC algorithm is a well-known high-resolution 

algorithm used to estimate the AOA of multiple emitters 
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and classify the multiple received signals [9-10]. MUSIC 

stands for Multiple Signal Classification algorithm. It has a 

low biasing error or ambiguity confusion. It is commonly 

applied to narrowband signals.  

 

1.6. Implementation of the MUSIC Algorithm 

In the first step, the estimation of the input covariance 

matrix is based on N received signal vectors, as shown in 

the equation below. 

 
𝑅𝑥 = 𝐸[𝑥(𝑡)𝑥𝐻(𝑡)]                                                               (8) 

 

where Rx is the data covariance matrix,  E denotes the 

expected value, and xH is the complex-conjugated 

transpose. A general vector representation of signal x using 

Equ.6 or 7 is:        

 

 X = AS+N                                                                      (9) 

 

Substituting (9) in (8): 

 

𝑅𝑥 = 𝐸[𝑋𝑋𝐻]  
      = 𝐸[(𝐴𝑆 + 𝑁)(𝐴𝑆 + 𝑁)𝐻]    
      = 𝐴𝐸[𝑆𝑆𝐻]𝐴𝐻 + 𝐸[𝑁𝑁𝐻]                                              
𝑅𝑥 = 𝐴𝑅𝑠𝐴

𝐻 + 𝑅𝑁                                                              (10) 

 

where Rs=E[SSH] is the signal correlation matrix, 

RN= I is the noise correlation matrix with noise 

power= , and I is a unit matrix of size M*M. In 

practical applications, R x̃ is estimated to be: 

  �̃�𝑥 =
1

𝑛
∑𝑥(𝑖)𝑥𝐻(𝑖)

𝑛

𝑖=1

                                                       (11) 

The estimation error tends to zero as n →∞. 

Characterized by an array of covariance 

eigendecompositions, the matrix Rx's eigenvalues are 

sorted according to the size, which is λ1≥ λ2≥….. λM>0, 

where larger eigenvalues M correspond to the signal while 

N-M smaller eigenvalues are corresponding to noise.  

Get the noise matrix En: 

 

En=[VN+1, VN+2, …., VM]                                               (12)                                                                                 

 

where VN+1, VN+2, …., VM are the eigenvalues 

corresponding to the noise subspace. Calculating the value 

of the spectrum function 𝑃(𝜃) in Equation 13. Peaks will 

be found at the direction of arrival of the source signal (𝜃). 
 

𝑃(𝜃) =
1

𝑎𝐻(𝜃)𝐸𝑛𝐸𝑛
𝐻𝑎(𝜃)

                                                  (13) 

 

The flow chart illustrates the Music algorithm in 

Figure. 4. As an example, Figure 5 shows the output of the 

MUSIC algorithm of three incident signals at angles [50, 

80, and 140] degrees. The number of array elements N=10, 

and the number of sources is M=3. 

 

 

 

1.7. Emitting Source Separation 

 The emitter signals s(τA, t) of the array A are estimated 

from the angles  �̃�𝐴as [11]: 

�̃�(𝑡) =  𝐀# (�̃�𝐴) × 𝐱𝐀 (𝑡) =

[
 
 
 
 
�̃�1(𝑡)

⋮
�̃�k(𝑡)

⋮
�̃�M(t)]

 
 
 
 

                              (14) 

 

where A#(θ) = (AH(θ)A(θ))-1AH(θ)), (.)H is the 

transpose conjugate and  �̃�𝐴 = [�̃�𝐴1, ... , �̃�𝐴𝑘]T. The signal 

�̃�(𝑡)  stands for the estimation of 𝛤𝐴s(𝜏𝐴, 𝑡). Now the signal  

�̃�𝑘(𝑡) is associated with the kth components �̃�𝐴𝑘 of the 

vector �̃�𝐴. For instance, in Figure 1, M = 3 emitters, and the 

signal  �̃�𝑘(𝑡) is associated with one of the three emitters, 

e1, e2, or e3. The flow chart shown in Figure 6 describes the 

emitter signal identification using the emitter AOA (θ) 

assuming three emitting sources. 

 
Fig. 4 Steps of MUSIC algorithm 

 

 
Fig. 5 Angles of the arrival of incident source signals (N=10, M=3) 
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1.8. TDOA Estimation 

The antenna array output signals of stations A and B 

are cross-correlated in the time domain to get the time 

difference of arrival of source signal w.r.t. station A and B. 

For example, if the correlator output is as shown in Figure 

7, then the TDOA of sources signals are [219, 290, 346] 

nanoseconds. 

 

1.9. Geolocation Estimation 

The problem of multi-emitters is divided into 

problems of individual emitters. Knowing the emitting 

source data, the AOA of the source signal at station A, θA, 

and station B, θB, and the TDOA of each emitter signal, the 

location is estimated using the pre-described algorithm [2]. 

 

1.10. Results Analysis of Analytical Method 

A novel of the steps of a mathematical method to 

solve the multi-emitter locating problem is presented. The 

prescribed analytical method feeds the geolocation 

algorithm with the AOA and TDOA necessary to estimate 

each emitter location. In the present work, instead of using 

a single antenna senor, ULA is used to make the 

processing of the mixed received signal possible. Two 

array stations are used to detect the TDOA of each emitter 

source and hence the signal time delay between stations. 

The emitting sources example shows that the Geolocation 

process between many emitting sources is now in hand. 

2. Machine Learning Application 
We will apply supervised machine learning to simplify 

the process of multi-emitter Geolocation [11-12]. Once the 

emitter sensors' signals are associated with each other, the 

signal parameters are collected, and the geolocation 

algorithm is directly applied. Sousa and Thomä [19] used 

Machine Learning and fingerprinting to enhance the 

localization process. Papageorgiou and Sellathurai [14] 

tried to fasten the direction of arrival estimation of 

multiple-target using deep learning. The previously 

mentioned methods discuss special cases of studies. The 

present work presents a general yet simple solution to 

multi-emitter sources' geolocation problem.  

 

The Matlab machine learning classification learner 

Toolkit 2019b [15] is used to classify and associate the 

emitter's sensor signals and feed the resulting associated 

emitter sensor pair to the geolocation estimation algorithm. 

The system is assumed to consist of two sensors, s1, and 

s2, that are used to detect three emitters, e1, e2, and e3. 

The output of sensor1 is the collection of s1e1, s1e2, and 

s1e3, and the output of sensor2 is the collection of s2e1, 

s2e2, and s3e3. We need to classify the sensor-emitter 

pairs to start the geolocation process. The supervised 

machine learning process consists of two steps; the training 

step utilizes the output of the multi-emitters geolocation 

system described above. The trainer will classify the data 

of the emitters collected by sensor1, s1e1, s1e2, and s1e3, 

and the data collected by s2, s2e1, s2e2, and s2e3. Once 

the data are classified, the location could be estimated 

directly using the machine regression models explained by 

the authors [16]. 

 
Fig. 6 Sources signals separation. 

 
Fig. 7 TDOA between sources signals of array stations A and B. 

 

The classification model is now generated, and the 

resulting model is now tested for new unlabeled data. The 

toolbox classification algorithms are tested to generate the 

most accurate classification model. The flow chart shown 

in Figure 8 illustrates the process. 

 

2.1. Importing Data 

The classifier input data is a table containing the 

sensor locations, emitter measured data, AOAs azimuth 

and elevation, and TOA for each sensor. Figure 9 describes 

the input data to the classifier. A data set of about1206 

observations is used to train the system. The data is fed in a 

table containing the data of the three emitters collected by 

the two sensors. After importing the data, the classification 

learner extracts the workspace predictors and output 

response. A new classification session is now ready to 
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start; see Figure 10. Pushing the start button, the 

classification session starts. 

2.2. Classification Training Session 

Figure 11 shows the classification learner algorithms 

used to train the data and generate the classification model. 

The Toolkit classification learner's library has many 

applicable classification algorithms. After selecting an 

algorithm to train the data, the train green button is pushed 

to start the training session and generate the classification 

model. Trying most of the ToolBox classification 

algorithms, it is found from the output results that the two 

algorithms, Fine decision tree, and KNN algorithms, 

achieve better results, as shown in Figure 12. The next 

subsection introduces the decision trees and the KNN 

methods used for generating the classification models that 

achieve better results among the ToolBox classification 

algorithms. 

 

Fig. 8 Classification training (a) and classification testing (b) processes. 

2.3. Decision Trees and KNN Algorithms 

Now we will introduce the two best algorithms for this 

application. 

2.3.1. Decision Trees  

Decision Trees are important types of algorithms for 

predictive modeling and machine learning [20]. The 

classical decision tree algorithms have been around for 

decades. The decision tree algorithm is called CART, 

which stands for Classification and Regression Trees. 

Decision Tree Analysis is a general predictive modeling 

tool with several applications in different areas. Decision 

trees are generally constructed via an algorithmic approach 

that identifies ways to split a data set based on different 

conditions. It is one of the most widely used and practical 

methods for supervised machine learning. Decision Trees 

are a non-parametric supervised learning method for 

classification and regression tasks. The goal is to create a 

model that predicts the value of a target variable by 

learning simple decision rules collected from the data 

features. The decision rules are generally in the form of if-

then-else statements.  

 

Decision trees are easy to interpret, fast for fitting and 

prediction, and low on memory usage, but they can have 

low predictive accuracy. Try to grow simpler trees to 

prevent overfitting. Control depth with the maximum 

number of split settings. Classification and Regression 

Trees can be used for classification or regression predictive 

modeling problems. You train trees to predict responses to 

data. To predict a response, follow the decisions in the tree 

from the root (beginning) node down to a leaf node. The 

leaf node contains the response. Statistics and Machine 

Learning Toolbox trees are binary. Each step in a 

prediction involves checking the value of one predictor 

(variable). Figure 13 illustrates the classification tree of the 

Fine Tree algorithm. 
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Fig. 9 Input data of the sensors and collected emitter parameters. 

 
Fig. 10 Data set predictors and response  
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Fig. 11 Selecting a classification training algorithm 

 
Fig. 12 Classification algorithms training results 

2.3.2. K-Nearest Neighbors Algorithm 

The KNN algorithm is used in the classification and 

regression of many applications in supervised machine 

learning [18]. The key idea behind its machine learning 

applications is that points tend to share the properties of 

nearby points (the distance function from one point to 

another often depends on the context; some common ones 

include Euclidean distance between particles in space, 

Hamming distance between words, etc.). In a classification 

setting, a majority vote on the labels of the KNN is often 

used to determine the label of a point. In a regression 

setting (where regression is a machine learning technique 

commonly used to obtain continuous outputs as opposed to 

discrete outputs in classification), an average (or maximum 

or minimum) of the KNN is typically used to determine the 

value of the variable being regressed. Due to its wide 

applicability and simplicity, KNN is simple and commonly 

used in many machine learning applications. 
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There are many approaches to finding the KNN of a 

given point, usually known as a query point. Assuming a 

suitable distance function, one approach is to iterate 

through all points and compute distances from the query 

point. The nearest k distances can then be selected. 

However, each query takes a linear time in the dataset size. 

The k-nearest neighbor (KNN) algorithm is a supervised 

ML algorithm that can be used for both classifications and 

regression predictive problems. However, it is mainly used 

for classifying predictive problems in the industry. The 

following two properties would define KNN well: 

- Lazy learning algorithm − KNN is a lazy learning 
algorithm because it does not have a specialized training 

phase and uses all data for training classification.  

- Non-parametric learning algorithm  

- KNN is also a non-parametric learning algorithm 

because it does not assume anything about the underlying 

data.  

 

 
Fig. 13 Fine Tree classification decision tree.

2.3.3. Implementing KNN Algorithm 

K-nearest neighbors (KNN) algorithm uses ‘feature 

similarity’ to predict the values of new data points, which 

further means that the new data point will be assigned a 

value based on how closely it matches the points in the 

training set. We can understand its working with the help 

of the following steps: 

 

- Feeding algorithm with both training and testing data  

   sets. 

- Compute the Euclidean distances for each test data using  

   Equation 15: 

 

Euclidean distance = (testing data –training data)2       (15)           

- Sort the calculated distances (ascending). 

- For each distance, detect its position. 

- For a specified test observation, select the nearest  

  neighbor positions according to the predefined number k. 

- For those positions, detect the responses of the training  

   observations. 

 

- The frequently repeated response is selected to be the  

   response of the test observation. 

Figure 14 describes the KNN example of classifying tested 

data (black) among the training data (red and blue). 

2.4. Testing the Classification Model 

Testing the models is done using two sets of data. As 

part of the training data, random observations are selected 

and tested. The output results accuracy reached about 96%, 

as shown in the confusion matrices in Figure 15 of the two 

algorithms. After testing the selected classification models 

using known data set, a new data set is now tested for 

convenience. The new observations are fed to the two 

classification models, and the output results are shown in 

Figure 16. The accuracy reaches about 87%, which is 

considered an acceptable result. 

2.5. Machine Learning Results Analysis 

Mathematical methods used to estimate multi-emitter 

Geolocation suffer from many difficulties like time and 

calculation overheads. It is proved that machine learning is 
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used to classify the emitter's sensors directly and feed the 

data directly to the simple geolocation algorithm to draw 

the emitter's positions. The emitter's sensors platforms 

severely affect the geolocation process in mathematically 

designed systems. Using ML, it is sufficient to know the 

data of the received signal at each sensor.  

 

 

Classification models can do that task. The training 

accuracy of a set of data of random samples used in the 

training model accuracy reaches 96%. Testing the model 

with a new data set, the accuracy reaches 87%, which is 

considered an acceptable result. The above ML application 

results prove that the machine learning system can deal 

efficiently with the multi-emitter geolocation problem. 

 

 

 

 

 
Fig. 14 KNN algorithm principle (k=3). 

 

Fig. 15 Confusion matrices classifying known data 

 

Fig. 16 Confusion matrices classifying new data 
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