
International Journal of Engineering Trends and Technology Volume 70 Issue 11, 1-9, November 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I11P201 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Novel Hash Functions for Data Integrity Based on

Affine Hill Cipher and Tensor Product

Ahmed Y. Mahmoud

Department of Information Technology, Faculty of Engineering and Information Technology,

Al Azhar University-Gaza, Palestine

Corresponding Author : ahmed@alazhar.edu.ps

Received: 24 July 2022 Revised: 05 September 2022 Accepted: 22 September 2022 Published: 26 November 2022

Abstract - Nowadays, Cryptographic hash functions as a part of cryptosystems play an essential role in information security.

It is aimed at providing confidentiality, authentication, integrity and non-repudiation. Thus the importance of hash functions

and their use in several applications showed the necessity of strong and efficient hash functions. The hash function only works

in one direction and cannot be reversed. In this paper, we present two new efficient and secure hash functions; the first hash

function is based on affine Hill cipher transformation; it uses non-invertible matrix multiplication; the second hash is based on

the tensor (Kronecker) product. The proposed schemes depend on matrix multiplication and addition over ZN; essentially, they

use a non-invertible matrix and utilize the properties of affine ciphers. The analysis of the proposed hash functions proves that

the proposed schemes satisfy the requirements of hash functions.

Keywords - Hash function, Data integrity, Affine cipher, Matrix cipher, Tensor product, Kronecker product.

1. Introduction
One of the most well-known and significant methods in

the realm of cryptography is the hash function. The

contemporary cryptographic hash functions take an arbitrary

length input and produce a fixed length "unique

pattern/fingerprint". At the dawn of the development of

cryptographic hash functions, the leading approach was

algorithmic. Accordingly, the main concern was to create

algorithms which are a combination of mathematics and

computer science. Cryptographic hash functions have added

many security characteristics, particularly beneficial and

valuable for computer science and engineering applications,

among other disciplines.

Moreover, the hash function uses one-way

transformation, which helps avoid revealing the hashed

value; it is very useful for verifying data integrity and

authentication. In recent years, hash functions have been

considered with extreme concentration and developed by

many researchers (see, for instance, [1] and the bibliography

therein). The main goal is to establish and create a simple

(straightforward), efficient and robust algorithm.

On the other hand, many researchers have devoted their

effort to developing new algorithms and fixing the

drawbacks in the existing ones. Hill cipher (HC), invented by

Lister Hill [2, 3], is well known in cryptography. The HC is

considered the inventor of symmetric encryption algorithms;

it is strong against brute-force and statistical attacks.

Nonetheless, it is susceptible to a known plaintext-

ciphertext attack (KPCA). Several researchers have proposed

improvements to the Hill cipher to address this weakness and

make it more secure [4]–[9]. The main operation of Hill-

cipher is matrix manipulation; it multiplies a plaintext vector

by a key matrix to get the ciphertext.

On the other hand, it multiplies the ciphertext vector by

the inverse of the key matrix to get the plaintext. It is

attractive due to its simplicity and high throughput [10]–[12].

The use of HC requires the existence of K-1; note that K-1

sometimes does not exist. The non-invertible matrices are not

eligible as key matrices in the HC algorithm [12].

In 1990, a tensor-theoretic enhancement to improve the

security of the basic Hill system was proposed [9], where a

tensor (Kronecker) product is used to increase the block size.

The scheme uses m x m (m by m) invertible matrix over𝑍𝑁; it

is expanded to an invertible matrix of order m3 by using

tensor products.

Abu Taha et al. [1] take the opportunity to benefit from

the HC simplicity and the non-invertible matrix. They

proposed a one-way Hash algorithm primarily based on the

non-invertible matrix. Although their design is ineffective,

matrix multiplication is used in the Abu Taha et al. hash

algorithm. Abu Taha et al. Scheme has numerous security

flaws due to the following. In fact, it is inefficient in hashing

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

2

the exact/identical plaintext blocks because the same key is

used for hashing all plaintext blocks, which makes it

vulnerable to statistical analysis.

Furthermore, if all characters in a plaintext block are

zero, then the plaintext block Pi= Ci ciphertext block is due to

matrix multiplication. The zero plaintext blocks are

transformed to zero. Based on the former reasons, it is clear

that the proposed one-way hash function may become

problematic for identical plaintext blocks, zero plaintext, and

grayscale images containing a significant portion of black

pixels or large areas of a single color.

This paper's primary goal is to propose and introduce a

novel hash algorithm variant of Abu Taha et al.'s scheme [1],

which overcomes all of its security flaws. Our proposed

Hash functions use the affine Hill cipher and the tensor

product. The main idea of an affine cipher is to use

multiplication and addition modulo N, where N is a positive

integer, to create a more complicated substitution [25][26].

The proposed hash functions use a non-invertible matrix for

multiplication and use the output of the previous round or

select a column or row vector randomly for addition over

modulo purposes. The selection of row/column is done based

on a pseudo-random number generator (PRNG); a pseudo-

random permutation (PRPerm) is generated for hashing

different blocks.

The paper is divided into the following sections. Section

2 contains basic concepts, definitions of encryption,

decryption, symmetric, asymmetric encryption algorithms,

hash function and requirements of the hash function. Section

3 overviews the proposed hash function based on affine hill

cipher HFB-AHC and a practical example is introduced in

Section 4. The proposed hash function based on the tensor

product HFB-TP is introduced in Section 5. In Section 6, the

proof of hash function requirements is presented and

discussed. Section 7 discusses the security analysis. Section

8 has the conclusion.

2. Encryption Algorithm vs Hash Algorithm
There are two classes of encryption algorithms,

asymmetric encryption (a terminology for public key

encryption) uses two separate keys, public and private [15]

(e.g. RSA and ElGamal). Symmetric encryption algorithm

(e.g. AES, DES, and Blowfish) which uses the same key

securely exchanged between the sender and the receiver

[16]–[18]. Usually, symmetric encryption is used for large

sizes of data such as images and text files. Asymmetric

encryption is used for small data, such as encryption keys.

According to [10], encryption is defined as

transforming/converting the original message/information/

data into an unreadable message; the input of the encryption

algorithm is called plaintext, and the produced output is

referred to as ciphertext, the general form of the encryption

process is illustrated by (1)

𝐶𝑖 = 𝐸𝑘(𝑃𝑖) (1)

Where C denotes the ciphertext, E represents the

encryption algorithm, K is the encryption key, P is the

original message, and 1≤ i ≤ n, n is the number of blocks.

The plaintext is defined/known as the original message.

Decryption is defined as the reverse of the encryption

operation; it reveals the plaintext from the ciphertext, the

general form of the decryption process is depicted by (2) [10]

𝑃𝑖 = 𝐷𝑘(𝐶𝑖) (2)

Where C denotes the ciphertext, D is the Decryption

algorithm, K is the decryption key, Pi is the block of the

original message, and1≤ i ≤ n, n is the number of blocks.

On the other hand, the hash algorithm is employed for

one-way encryption, i.e., the original message or plaintext

cannot be revealed back from the hashed value [19]. The

hash function output is used for data integrity, digital

signatures, and authentication [20][21]. It is appropriate to

mention that the one-way hash function is a mechanism that

transforms a variable string length into a fixed length and the

output length is shorter than the input length (e.g., SHA256,

SHA512, MD4, and MD5) [10]. To have an effective hash

algorithm, the following four requirements must be satisfied:

(1) applicable to any arbitrary size of data, (2) produce a

fixed size of data, (3) simple to compute for any arbitrary

data, and (4) one-way property [10].

3. Overview of Affine Cipher, Hill Cipher,

Tensor Product and Affine Hill Cipher
The basic idea of AHC depends mainly on the

combination of Affine and Hill cipher, respectively. For deep

understanding, we first recall AC and HC, Tensor Product,

and then present the AHC.

3.1. Affine Cipher AC

The AC is one of the well-known substitution ciphers.

The main operation of AC is multiplication and addition.

When AC is used, the two parties of the communication,

(sender A) and (receiver B), share a secret multiplicative

key and an additive key b. The sender A transforms plaintext

to ciphertext by applying (3)

c= a . p + b mod N (3)

The receiver, B, decrypts the ciphertext by applying (4)

p = a-1 . c +b mod N (4)

Where a, b ∈ ZN, N is (alphabet cardinality) and a-1 is the

multiplicative inverse of a over ZN, for the existence of a-1, a

must be relatively prime (co-prime) to N, i.e., gcd(a, N)=1,

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

3

gcd stands for the greatest common divisor. Note that when

a=1, the Affine cipher works similar to the Caesar cipher

[10]. Affine cipher is not secure; it is susceptible and

vulnerable to the frequency analysis attack and has the same

essential drawbacks as the substitution ciphers.

3.2. Hill Cipher HC

The fundamental concept of the HC is to break (divide)

the plaintext characters into blocks of length m. HC assumes

the dimension (size) of the secret key matrix is m x m and

then transforms every block of plaintext characters into a

vector of integers by the selected alphabet. The transformed

plaintext block is multiplied by m x m key matrix. The

ciphertext message is then created when the obtained results

are transformed into letters.

When HC is used, m x m square invertible matrix𝐾is

exchanged securely between the sender A, and a receiver B;

K must be invertible. For the existence of K-1, K must satisfy

the following: det(K) ≠ 0 and det(K) must be co-prime to N;

more precisely, K must satisfy (5)

det(K)≠0, and

gcd(det(K) mod N, N)=1

(5)

Where m represents the block size and N (alphabet

cardinality), det(k) stands for the determinant of K, and gcd is

the greatest common divisor. The encryption is achieved by

applying (6)

𝐶 = 𝐾 × 𝑃 𝑚𝑜𝑑 𝑁 (6)

The decryption is achieved by applying (7)

𝑃 = 𝐾−1 × 𝐶 𝑚𝑜𝑑 𝑁 (7)

Where P represents plaintext, C denotes the ciphertext,

K is the key matrix, K-1 stands for the inverse of K, and N is

the alphabet cardinality.

It is worth mentioning that diffusion is a feature of the

HC; changing a single letter in the plaintext will affect many

letters throughout the ciphertext. Frequency testing becomes

more challenging and difficult to implement with the

presence of diffusion features. On the other hand, confusion

is another characteristic that HC possesses. Each letter in the

ciphertext depends on many key components (elements).

Consequently, it is impossible to calculate the key part by

part. HC is secure against ciphertext-only attacks but suffers

when plaintext-ciphertext attacks are applied.

3.3. Tensor Product TP

The scheme proposed in [9] is described below. Given

an arbitrary plaintext message 𝑃of length𝐿, defined over an

alphabet of order N and a non-singular matrix 𝐾𝑚𝑥𝑚 in𝑍𝑁 ,

proceed as follows:

1. Convert 𝑃as in the Hill system, each character in the

alphabet is assigned a unique integer in {0, 1,…, N-1},

(e.g., N=26 for the English alphabet, and N=256 for

grayscale images).

2. Divide the plaintext into 𝑏 blocks of length m3 and load

the plaintext 𝑃𝑙𝑚×𝑚×𝑚
into a rank-three tensor by some

predetermined method,
where b = ceil(L/m3) and 1 ≤ 𝑙 ≤ 𝑏. It is noticed that if

the length 𝐿is not a multiple of𝑚3 , the last plaintext

block must be padded with bm3 - L extra characters.

3. Create ciphertext cube Cl, entry-by-entry, by using (8)

 [𝐶𝑙]𝑖𝑗
𝑢 = ∑ ∑ ∑ 𝑘𝑟𝑖 ⋅ 𝑘𝑠𝑗 ⋅ 𝑘𝑢𝑡 ⋅ [𝑃𝑙]𝑟𝑠

𝑡𝑚
𝑡=1

𝑚
𝑠=1

𝑚
𝑟=1

 (8)

where 𝐾 = (𝑘𝑖𝑗),𝐾−1 = (𝑘𝑖𝑗),

(𝑘𝑟𝑖 ⋅ 𝑘𝑠𝑗 ⋅ 𝑘𝑢𝑡) = 𝐾 ⊗ 𝐾𝑇 ⊗ 𝐾−1

and 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑢 ≤ 𝑚 , 1 ≤ 𝑟 ≤ 𝑚,

1 ≤ 𝑠 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑚.

4. Reassemble 𝐶𝑙 in the Hill system.

3.3.1. Attacks on the Tensor Product Scheme

It is mentioned in [9] that equation (8) can be rewritten

as

(
𝑐11
1

⋮
𝑐𝑚𝑚

𝑚
) = (

𝑘11𝑘11𝑘11 ⋯ 𝑘𝑚1𝑘𝑚1𝑘1𝑚

⋮ ⋱ ⋮

𝑘𝑚1𝑘1𝑚𝑘𝑚1 ⋯ 𝑘𝑚𝑚𝑘𝑚𝑚𝑘𝑚𝑚

) .(
𝑝11

1

⋮
𝑝𝑚𝑚

𝑚
)

(9)

Furthermore, the most natural attack against the scheme

is a known plaintext-ciphertext attack. From equations (8)

and (9), the proposed scheme succumbs to a known

plaintext-ciphertext attack as in the original Hill cipher. In

[9], section 1-c, it is recognized that the Hill cipher is

vulnerable to plaintext-ciphertext attack; in [9] - section 4, it

is claimed that the proposed there encryption scheme based

on the use of the tensor (Kronecker) product improves the

security. From equation (9), one can easily notice that the

proposed system operates as the original Hill cipher.

Regardless of how the matrix key encryption is constructed

and the plaintext representation, the proposed scheme is still

vulnerable to the known plaintext-ciphertext attack. As it has

been recognized and described in [9] that (8) can be viewed

as equation (9), and equation (9) can be rewritten as depicted

in equation (10)

𝐶 = 𝐾𝑒 ⋅ 𝑃 (10)

Which is exactly the same as the traditional Hill cipher;

if the encryption is performed by using the same key for

several messages, then an opponent needs to capture 𝑚3

pairs of column vectors of plaintext and ciphertext to be able

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

4

to determine𝐾𝑒 = 𝐾 ⊗ 𝐾𝑇 ⊗ 𝐾−1; for example, using an 8

× 8 key matrix, as suggested in [9], it would be able to

encrypt blocks of 512 characters. Moreover, implementing a

plaintext ciphertext attack is feasible if the opponent collects

512 blocks.

Despite the key matrix size expansion up to 𝑚3as stated

in [9], the proposed enhancement [9] is still susceptible and

vulnerable to the known plaintext-ciphertext attack. On the

other hand, it fails to encrypt a plaintext block of the fixed

value zero, as illustrated below (see Figure 1).

A second attack can be implemented if the scheme is

implemented for encrypting grayscale images having large

portions of pixels in black color or sparse messages, i.e., if

all the pixels/ characters in a plaintext block are zeros, then

Pi=Ci=0. Since black pixels are often mapped to zero in

grayscale, the suggested approach may present issues for

images with a significant amount of black region. This

situation is illustrated in Figure 1.

(a)

(b)

Fig. 1 Encryption an image black background image. (a) Original

image, (b) Encrypted image by Tensor Product Scheme

3.4. Affine Hill Cipher AHC

AHC combines both the affine cipher and the Hill cipher

[10]. AHC differs from the original affine cipher in the

following. To encipher a plaintext P, AHC uses the same

initialization as in HC; it also uses a vector of m elements,

where m is the block size. The encryption is achieved by

applying (11)

𝐶 = 𝐾 × 𝑃 + 𝑉 𝑚𝑜𝑑 𝑁 (11)

and the decryption is achieved by applying (12)

𝑃 = 𝐾−1 × 𝐶 + 𝑉 𝑚𝑜𝑑 𝑁 (12)

Where P represents plaintext, C represents the

ciphertext, K is the encryption key matrix, K must satisfy (5),

K-1 is the inverse of K over the modulo N, V is a vector of m

elements, and N is the alphabet cardinality.

3.5. Abu Taha et al Scheme

Abu Taha e.t. al [1] work similar to the HC and use the

same parameters, except it is different from the used key. HC

uses an invertible matrix, whereas Abu Taha e.t. al scheme

used a non-invertible matrix. The scheme is depicted as

follows:

𝐻(𝑃) = 𝐾 × 𝑃 𝑚𝑜𝑑 𝑁 (13)

Where H denotes the hash function, H(P) is the

computed hash value, P is the plaintext block, K is a non-

invertible matrix, and N is the cardinality of the alphabet or

symbols, respectively.

3.5.1. Comments on Abu Taha et al.'s scheme

Abu Tahaet al. scheme is inefficient in hashing identical

plaintext due to using the same key. On the other hand, Abu

Tahaet al. use matrix multiplication as the main operation

similar to the original HC; it multiplies the plaintext with a

non-invertible key matrix to calculate the hash message,

which makes it vulnerable and weak when it is applied to the

plaintext block containing zero values or a black color image.

The output hash value will be similar to the plaintext (input

value). The hashing output of the scheme will be similar to

the tensor product scheme due to the matrix multiplication,

and zero (black pixels) block input will be mapped to zero

(black pixels) block.

4. Proposed Hash Function Based on Affine Hill

Cipher HFB-AHC
The proposed hash algorithm for data integrity HFB-

AHC varies from AHC in the following. To hash a plaintext

P, the sender A and the receiver B securely share a non-

invertible matrix, a secret SEED that is used to produce a

pseudo-random sequence of permutations according to (14)

𝑡𝑟 = 𝑃𝑅𝑃𝑒𝑟𝑚𝐺(𝑆𝐸𝐸𝐷, 𝑟) (14)

obtaining the r-th output permutation from the pseudo-

random permutation generator PRPermG (e.g., RC4 [10]).

Permutes the rows and columns of a key matrix K according

to tr producing a new key-matrix Kt=tr(K). The number of

dynamic keys used in the proposed hash function is m! where

m denotes the block size. The hashing is then performed by

(15)

𝐻(𝑃𝑖) = 𝐾𝑡 × 𝑃𝑖 + 𝑉𝑖 𝑚𝑜𝑑 𝑁 (15)

Where H represents the hash function, H(Pi) is the

output of the hashing algorithm, K is the key matrix, Pi is the

plaintext block with index i, and 1≤ i ≤ n, n is the number of

blocks, V1 is the initial vector generated randomly based on

the pseudo-random number by using (16), V1={v1, v2,

....vj}⊏ ZN−{0}, 1 ≤ j ≤ m, ZN={0, 1, 2, ..., N-1}. V2=H(P1),

V3=H(P2),Vi=H(Pi-1).

 𝑉1

(𝑚)

,
 (16)

Where PRSetGSEED(m) is a pseudo-random set

sequence generator (e.g., RC4 initialized by SEED) returning

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

5

a set of cardinality m, m denoting the block size. It is worth

mentioning that Period (RC4) is estimated to be greater than

10100 [10].

Example

Suppose that the (sender) A and the (receiver) B want to

grantee the data integrity of the plaintext P1=" 15 141 113 10

107 16 102 215" and P2=" 65 148 132 0 19 61 229 136", note

that N=256.

Our proposed HFB-AHC works as follows:

1. A and B exchange a secret non-invertible key matrix and

a seed value to compute V1 based on (16), V1= {17, 12,

121, 139, 251, 223, 78, 151}, and suppose that

𝐾 =

[

14 2 19 221 231 119 24 67
10 72 194 36 119 121 22 13
20 15 250 243 127 75 70 84
121 15 250 243 127 75 20 84
79 19 7 1 124 247 110 88
192 250 87 71 105 35 6 75
128 235 70 52 119 23 0 7
1 45 60 78 20 49 9 39]

Note that K must be non-invertible; in the case of our

example,

The det(K) mod 256 = 224 ≠ 0, but gcd (256,224)=32.

Thus K-1 does not exist over modulo N=256, and hence

K is non-invertible.

2. The plaintext is divided into three blocks since,

 the size of K = 8, and the plaintext size = 16,

the number of blocks = plaintext sizes/ key size = 16/8 =

2; in the case of plaintext size is not a multiple of key

size, the last block will be padded by x values where x is

calculated according to (17).

𝑥 = " 𝑘𝑠 − "("𝑝𝑠 𝑚𝑜𝑑 𝑘𝑠") (17)

Where ks denotes the key size, and ps is the plaintext

block size.

3. The plaintext block (i) will be hashed according to (15)

4. Set Vi=H(Pi-1), i≥2

5. Apply the permutation tr over the key matrix Kt=tr(K)

6. Repeat step 3 as long as i ≤ n (number of blocks).

The first block is hashed as follows:

𝐻(𝑃1) =

[

14 2 19 221 231 119 24 67
10 72 194 36 119 121 22 13
20 15 250 243 127 75 70 84
121 15 250 243 127 75 20 84
79 19 7 1 124 247 110 88
192 250 87 71 105 35 6 75
128 235 70 52 119 23 0 7
1 45 60 78 20 49 9 39]

×

[

15
141
113
10
107
16
102
215]

+

[

17
12
121
139
251
223
78
151]

𝑚𝑜𝑑 256

𝐻(𝑃1) =

[

212
80
245
6
52
114
57
186]

V2=H(P1)={212, 80, 245, 6, 52, 114, 57, 186}, suppose

that the generated t1={3, 1, 5, 6, 7, 2, 8, 4}, then after

applying the permutation over the rows of the key matrix the

following will be obtained:

Then the second block is hashed by applying (15) by

using the key (𝐾𝑡1
) after applying the permutation:

𝐾𝑡1 =

[

20 15 250 243 127 75 70 84
14 2 19 221 231 119 24 67
79 19 7 1 124 247 110 88
192 250 87 71 105 35 6 75
128 235 70 52 119 23 0 7
10 72 194 36 119 121 22 13
1 45 60 78 20 49 9 39

121 15 250 243 127 75 20 84]

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

6

𝐻(𝑃2) =

[

20 15 250 243 127 75 70 84
14 2 19 221 231 119 24 67
79 19 7 1 124 247 110 88
192 250 87 71 105 35 6 75
128 235 70 52 119 23 0 7
10 72 194 36 119 121 22 13
1 45 60 78 20 49 9 39

121 15 250 243 127 75 20 84]

×

[

50
18
220
124
124
114
35
29]

+

[

212
80
245
6
52
114
57
186]

𝑚𝑜𝑑 256

𝐻(𝑃2) =

[

6
98
209
130
176
228
92
215]

The given plaintext and the output of HFB-AHC (hashed

value) will be sent by sender A to receiver B. The receiver B

recomputed the hash value as the sender had done. The

computed hash value HFB-AHCcomputed_by_B(P) by the

receiver B will be compared with the computed hash value

HFB-AHCcomputed_by_A(P) by sender A.

If HFB-AHCcomputed_by_B(P) = HFB-AHCcomputed_by_A(P),

then the integrity is obtained.

On the other hand, we examined our proposed HFB-

AHC scheme for hashing black background image; the visual

inspection of the obtained results show that the proposed

hash function is effective in hashing images with the black

color area and with identical plaintext (see Figure 2).

(a)

(b)

Fig. 2 Hashing a black background image. (a) Original image,

(b) Hashed image HFB-AHC

5. Proposed Hash Function based on Tensor

Product HFB-TP
The proposed hash function based on tensor product

HFB-TP uses the same steps as in HFB-AHC but differs in

constructing the key; it is well known that calculating the

determinant of a matrix is considered a challenge for

computation due to its complexity. Calculating the

determinant of a matrix n x n requires n! steps produced

through minors expansion. As a result, the number of steps

required to compute the determinant of a given matrix of

integer elements using minor expansion is bounded below by

O(n!) [22]. On the other hand, if we use the Gaussian

elimination method to calculate the determinant of a matrix,

we need O(n3) steps. The size of the matrix entries affects

how many steps are necessary for practice. Calculating the

determinants is necessary for the proposed scheme to decide

whether the matrix is invertible or not invertible since we

used a non-invertible matrix for hashing purposes.

Constructing a non-invertible matrix with a large size is a

challenge. Therefore the tensor product is used to construct

the key; a small-size non-invertible matrix is used to

construct/generate a large-size matrix. To hash a plaintext P,

the sender A and the receiver B securely share a non-

invertible matrix K and calculate the key matrix Kh

according to (18).

𝐾ℎ = 𝐾 ⊗ 𝐾𝑇 ⊗ 𝐾 (18)

Based on (18), the size of the generated matrix is n3; for

example, if n=2, then the size of the generated matrix is 8.

HFB-TP follows the same steps as in HFB-AHC except in

the key construction. The key construction of the proposed

HFB-TP is depicted and illustrated by the following

example:

Suppose, 𝐾 = [
27 14
95 4

], then 𝐾𝑇 = [
27 95
14 4

], det(k) mod

256=58≠0 but gcd(58,256)=2, thus Kis a non-invertible

matrix. The result of the tensor product of non-invertible

matrices is a non-invertible matrix. Kh can be calculated and

constructed according to (18) as follows:

𝐾𝑡𝑒𝑚𝑝 = 𝐾 ⊗ 𝐾𝑇 = [
27 14
95 4

] ⊗ [
27 95
14 4

]𝑚𝑜𝑑 256

= [

217 5 122 50
122 108 196 56
5 65 108 124
50 124 56 16

]

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

7

𝐾ℎ = 𝐾𝑡𝑒𝑚𝑝 ⊗ 𝐾 = [

217 5 122 50
122 108 196 56
5 65 108 124
50 124 56 16

] ⊗ [
27 14
95 4

]

𝐾ℎ =

[

227 222 135 70 222 172 70 188
135 100 219 20 70 232 142 200
222 172 100 232 172 184 232 16
70 232 20 176 188 16 200 224
135 70 219 142 100 232 20 200
219 20 31 4 20 176 4 240
70 188 20 200 232 16 176 224
142 200 4 240 200 224 240 64]

On the other hand, we examined our proposed hash

function based on tensor product HFB-TP for hashing black

background image; the visual inspection of the obtained

results show that the proposed HFB-TP is effective in

hashing images with the black color area and with identical

plaintext (see Fig. 3).

(a)

(b)

Fig. 3 Hashing a black background image. (a) original image, (b)

Hashed image HFB-TP

6. Proof of the Proposed HFB-AHC and HFB-

TP Hash Functions
In this section, we discuss the former mentioned four

requirements in section 2 for having an effective hash

function. We prove that our proposed HFB-AHC and HFB-

TP satisfy those requirements.

6.1. Applicable to any Arbitrary Size of Data

The proposed HFB-AHC and HFB-TP hash functions

effectively hash any arbitrary data size; it follows the same

steps as in HC; more precisely, if the plaintext size is less

than the key size, then the plaintext will be padded with (key

size – plaintext size). In the case of plaintext size is a

multiple of key size, then it is divided into a number of

blocks plaintext size div key size; finally, in the case of

plaintext size is not a multiple of key size and it is greater

than the key size, the plaintext is divided into many blocks,

and the last block will be padded by x values where x is

calculated according to (13).

6.2. Fixed Size Output

The proposed HFB-AHC and HFB-TP hash functions

can process any arbitrary size. This requirement has been

proofed in the given an example (section 4). The proposed

HFB-AHC and HFB-TP effectively hashed a sequence of

blocks and produced a fixed data length. Figure 2 and Figure

3 showed that HFB-AHC and HFB-TP effectively hashed

images with a large black background area.

6.3. Easy to Compute

The hashing process is performed by multiplying the

plaintext P, with a key matrix and carrying out an addition

over modulo N; the proposed HFB-AHC and HFB-TP have

the same operation as in AHC. It has only two primitive

operations (matrix multiplication and addition over modulo

N).

6.4. One Way Property

Our proposed HFB-AHC and HFB-TP hash algorithms

used a non-invertible matrix. Hence the produced hashed

value cannot be decrypted due to the fact that K-1 does not

exist, and hence the hashed value cannot be reversed back.

Hence the one-way property is satisfied.

7. Security Analysis
A good indicator of a cryptosystem's performance is its

ability to tolerate and resist various cryptanalysis and attacks

[23]. The security of our hashing algorithm is assessed using

its robustness against attacks. From a strongly cryptographic

point of view, it is demonstrated that our suggested hash

HFB-AHC and HFB-TP are secure. As described and

addressed in the following subsections.

7.1. Known Plaintext-Ciphertext Attack KPCA

The KPCA is effective if we use the same invertible key

matrix. Our proposed HFB-AHC and HFB-TP hash

functions use a non-invertible matrix; hence the KPCA does

not apply to our proposed HFB-AHC and HFB-TP, and thus

it is secure against the KPCA.

7.2. Key Space Analysis

The complete variety of keys available for use in

cryptosystems is known as the key space. The key space

must be sufficiently large to prevent brute force attempts

from being considered to be secure. For the HFB-AHC and

HFB-TP, the key space is the same as that of HC [11], [12].

In fact, it covers all matrices that are not invertible. Since we

utilized a non-invertible matrix, the key matrix can also be a

rectangular matrix. Therefore the key space of the proposed

HFB-AHC and HFB-TP is large; hence it is secure against

brute-force attacks.

8. Conclusion
Information security heavily depends on cryptographic

hash functions, a core of cryptosystems. It aims to provide

non-repudiation, confidentiality, authentication, and

integrity. Hash functions must therefore be robust and

effective, as demonstrated by the significance of hash

functions and their use in different applications. Thus far, we

proposed novel hash functions for data integrity based on the

affine Hill cipher and tensor product; the proposed HFB-

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

8

AHC and HFB-TP are secure and effective in hashing the

plaintext blocks; this is very clear when handling and

hashing black or zero plaintext blocks. We proved that HFB-

AHC and HFB-TP satisfy the hash algorithm requirements.

The security analysis showed that the proposed HFB-AHC

and HFB-TP are secure against the KPCA and brute force

attacks.

References
[1] M. Farajallah, M. Abu Taha, and R. Tahboub, "A Practical One Way Hash Algorithm Based on Matrix Multiplication," In

International Journal of Computer Applications, vol. 23, no. 2, pp. 34–38, 2011. Crossref, http://doi.org/10.5120/2859-3677

[2] Hill L. S, "Cryptography in an Algebraic Alphabet," American Mathematical, vol. 36, no. 6, pp. 306–312, 1929. Crossref,

https://doi.org/10.1080/00029890.1929.11986963

[3] Hill L. S, "Concerning Certain Linear Transformation Apparatus of Cryptography," The American Mathematical Monthly, vol. 38, no.

3, pp. 135–154, 1931. Crossref, https://doi.org/10.2307/2300969

[4] A. G. Mahmoud, A. Y, and Chefranov, "Hill Cipher Modification Based on Eigenvalues HCM-EE," Proceedings 2nd International

Conference on Security of Information and Networks, pp. 164–167, 2009. Crossref, https://doi.org/10.1145/1626195.1626237

[5] A. G. Mahmoud, A. Y, and Chefranov, "Secure Hill Cipher Modifications and Key Exchange Protocol," 2010 IEEE International

Conference on Automation, Quality and Testing, Robotics, vol. 2, pp. 1–6, 2010. Crossref,

https://doi.org/10.1109/AQTR.2010.5520828

[6] A. Mahmoud and A. Chefranov, "Hill Cipher Modification Based on Pseudo-Random Eigenvalues," Applied Mathematics and

Information Sciences, vol. 8, no. 2, pp. 505–516, 2014. Crossref, https://doi.org/10.12785/Amis/080208

[7] A. Y. Mahmoud and A. G. Chefranov, "A Hill Cipher Modification Based on Eigenvalues Extension with Dynamic Key Size HCM-

EXDKS," International Journal of Communication Networks and Information Security, vol. 6, no. 5, pp. 57–65, 2014. Crossref,

https://doi.org/10.5815/Ijcnis.2014.05.08

[8] A. Y. Mahmoud and M. M. Abu-Saqer, "Modification of Select Operation Model for Multilevel Security: Medical Database Systems

as an Application," International Conference on Assistive and Rehabilitation Technologies 2020 Icare Tech 2020, pp. 47–50, 2020.

Crossref, https://doi.org/10.1109/Icaretech49914.2020.00016

[9] W. A. Kiele, "A Tensor-Theoretic Enhancement to the Hill Cipher System," Cryptologia, vol. 14, no. 3, pp. 225–233, 1990. Crossref,

https://doi.org/10.1080/0161-119091864931

[10] W. Stallings, “Cryptography and Network Security Principles and Practices,” 2012.

[11] S. Saeednia, "How to Make the Hill Cipher Secure," Cryptologia, vol. 24, no. 4, pp. 353–360, 2000. Crossref,

https://doi.org/10.1080/01611190008984253

[12] J. Overbey, W. Traves, and J. Wojdylo, "On the Keyspace of the Hill Cipher," Cryptologia, vol. 29, no. 1, pp. 59–72, 2005. Crossref,

https://doi.org/10.1080/0161-110591893771

[13] Chaitra D B, Dr. Rashmi R Rachh, "Lightweight Integrity Verification in Named Data Networking," SSRG International Journal of

Computer Science and Engineering, vol. 4, no. 8, pp. 5-10, 2017. Crossref, https://doi.org/10.14445/23488387/IJCSE-V4I8P102

[14] M. Selvavathi, S.Edwin Raja, "Anticipation of Vulnerable Attacks in Vanet Using Blockchain Technique," SSRG International

Journal of Computer Science and Engineering, vol. 8, no. 1, pp. 19-23, 2021. Crossref, https://doi.org/10.14445/23488387/IJCSE-

V8I1P104.

[15] A. Shamir, "New Directions in Cryptography," Lecture Notes in Computer Science, (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 2162, pp. 159, 2001. Crossref, https://doi.org/10.1007/3-540-44709-1_14

[16] A. Y. Mahmoud, “Development of Matrix Cipher Modifications and Key Exchange Protocol,” Doctor of Philosophy in Computer

Engineering. Thesis (Ph.D.)-Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2012.

[17] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and Y. Khamayseh, "Comprehensive Study of Symmetric Key and

Asymmetric Key Encryption Algorithms," 2017 International Conference on Engineering and Technology, ICET 2017, pp. 1–7, 2017.

Crossref, https://doi.org/10.1109/Icengtechnol.2017.8308215

[18] M. Gupta, S. Mahto, and A. Patel, "Implementation of 128, 192 & 256 Bits Advanced Encryption Standard on Reconfigurable Logic,"

International Journal of Engineering Trends and Technology, vol. 50, no. 6, pp. 305–309, 2017. Crossref,

https://doi.org/10.14445/22315381/IJETT-V50P251

[19] Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, Xian-Sheng Hua, "A Survey on Deep Hashing

Methods," The ACM Transactions on Knowledge Discovery from Data, vol. 1, no. 1, 2022. Crossref, https://doi.org/10.1145/3532624.

[20] S. Han, K. Xu, Z. Zhu, S. Guo, H. Liu, and Z. Li, “Hash-Based Signature for Flexibility Authentication of IOT Devices,” Wuhan

University Journal of Natural Sciences, vol. 27, no. 1, pp. 1–10, 2022. Crossref, https://doi.org/10.1051/Wujns/2022271001

[21] M. Phys, E. U. Moya-S, and E. Bayro-Corrochano, “On a Tomic Functions for Image,” pp. 1–32, 2012.

[22] Gilbert Strang, “Introduction to Linear Algebra,” 5th Ed., Wellesley-Cambridge Press, 2016.

https://doi.org/10.14445/23488387/Ijcse-V4i8p102
https://doi.org/10.14445/23488387/IJCSE-V8I1P104
https://doi.org/10.14445/23488387/IJCSE-V8I1P104

Ahmed Y. Mahmoud / IJETT, 70(11), 1-9 2022

9

[23] H. E. D. H. Ahmed, H. M. Kalash, and O. S. Farag Allah, "An Efficient Chaos-Based Feedback Stream Cipher (ECBFSC) for Image

Encryption and Decryption," Informatica, vol. 31, no. 1, pp. 121–129, 2007.

[24] Dr. M E Purushoththaman, Dr. Bhavani Buthtkuri, "Effective Multiple Verification Process Ensuring Security and Data Accuracy in

Cloud Environment Storage," SSRG International Journal of Computer Science and Engineering, vol. 6, no. 7, pp. 1-4, 2019.

Crossref, https://doi.org/10.14445/23488387/IJCSE-V6I7P101

[25] T. H. Bar, Invitation to Cryptology, 2002.

[26] M. Mokhtari and H. Naraghi, "Analysis and Design of Affine and Hill Cipher," Journal of Mathematics Research, vol. 4, no. 1, pp. 67-

77, 2012. Crossref, https://doi.org/10.5539/Jmr.V4n1p67

