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Abstract - In this paper, we tackle the problem of COVID-19 detection. We present a survey on machine learning (ML) and deep 

learning (DL) methods to predict different vaccines' severity, mortality, and efficacy. For severity, we study the spread of Alpha, 

Beta, Delta, and Gamma in the countries where the variant first appears, such as the United Kingdom, South Africa, India, and 

Brazil. For mortality, we present works that study the rate of mortality caused by each variant. Finally, we present an overview 

of methods that respond to the question: do the five vaccines—produced by—Moderna, Pfizer, Novavax, Johnson & Johnson, 

and Astra Zeneca slow down the progress of COVID-19 variants? 
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1. Introduction 
The coronavirus disease 2019 (COVID-19), or the severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

was the second coronavirus to emerge and spread globally, 

causing a public health crisis. In December 2019, the virus 

moved from bats to humans in Wuhan, China, and has since 

spread throughout the rest of the world. As of October 2022, 

there have been around 623 million COVID-19 confirmed 

cases, more than 6.5 million reported deaths, and around 604 

million recovered cases [1]. The World Health Organization 

(WHO) created the SARS-CoV-2 variations naming system—

Alpha, Beta, Delta, and Gamma [2]—to avoid referring to the 

variants by the country where they were originally identified. 

Governments worldwide have responded to the crisis by 

creating strategies to fight the pandemic or even help mitigate 

the territorial effects of the crisis. Several studies, such as [3-

5], have discussed factors, such as biochemical, 

hematological, and immunological findings, that clinicians 

can utilize to predict COVID-19 severity and mortality. From 

a technical point of view, COVID-19 has accelerated using 

artificial intelligence (A.I.) technologies in healthcare [6]. 

Several have enabled significant progress in the fight against 

the pandemic. 

Solicited to respond to the COVID-19 health crisis, A.I. 

has been effective in several aspects of the fight against the 

pandemic, whether to understand this new coronavirus, 

diagnose it to predict its evolution, slow down its spread, or 

accelerate other aspects of medical research. More than a year 

after the onset of the crisis, AI-based tools continue to 

multiply and deliver good results. However, the need to 

accelerate their deployment should not obscure the ethical 

questions they raise. Faced with COVID-19, researchers 

worldwide have quickly and massively mobilized, giving rise 

to an avalanche of scientific publications. However, since 

COVID-19 literature is abundant and freely accessible, it is 

also indigestible because it is challenging to navigate. This 

challenge sparked several initiatives, such as allowing articles 

to be categorized and rated or creating interactive 

visualizations. The challenge is to guide researchers and 

practitioners toward the research results most relevant to them 

and facilitate their interpretation. The techniques to predict 

COVID-19 severity, mortality, and vaccine efficacy are 

divided into two categories: traditional approaches, including 

the machine learning (ML) approach, and deep learning (DL) 

approaches.  

This paper is organized as follows: Section 2 presents 

various prediction techniques used in ML and DL. Section 3 

presents an overview of works related to COVID-19 variants' 

severity. Section 4 tackles the problem of mortality caused by 

COVID-19. Section 5 introduces the efficacy of vaccines in 

slowing the progression of COVID-19 variants. Section 6 is a 

discussion followed by Section 7, which concludes the paper 

and provides some suggested future works related to COVID-

19 detection. To remove any confusion regarding the 

abbreviations used in this study, a list of abbreviations and 

their definitions are provided in Table 1. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1. List of abbreviations and their definitions 

Acronym Definition 

COVID-19-related abbreviations 

A.E. Adverse Effect 

CoVA COVID-19 Acuity Score 

COVID-19 Coronavirus Disease 2019 

CXR Chest X-Ray 

hs-CRP high-sensitivity C-Reactive Protein 

ICU Intensive Care Unit 

LDH Lactate Dehydrogenase 

mRNA messenger Ribonucleic Acid 

MV Mechanical Ventilation 

PCR Polymerase Chain Reaction 

RCT Randomized Clinical Trial 

SARS-CoV-

2 

Severe Acute Respiratory Syndrome 

Coronavirus 2 

SGTF S-Gene Target Failure 

Machine learning-related abbreviations 

A.I. Artificial Intelligence 

ANN Artificial Neural Network 

AUC Area Under the Curve 

CI Confidence Interval 

CNN Convolutional Neural Network 

DL Deep Learning 

D.T. Decision Tree 

GBDT Gradient-Boosted Decision Trees 

KNN K-Nearest Neighbors 

L.R. Logistic Regression 

LSTM Long Short-Term Memory 

ML Machine Learning 

MLC Machine Learning Classifier 

MLP Multi-Layer Perceptron 

MSE Mean Squared Error 

Q.M. Quantitative Matrix 

ResNet Residual Network 

R.F. Random Forest 

RMSE Root Mean Squared Error 

SVM Support Vector Machine 

XGBoost eXtreme Gradient Boosting 

Organizations or entities 

CDC 
Centers for Disease Control and 

Prevention 

E.D. Emergency Department 

MGH Massachusetts General Hospital 

WHO World Health Organization 

  

2. Machine Learning Approaches 
2.1. Traditional Approaches 

ML approaches are considered traditional machine 

learning and are based on a learning-by-example paradigm; 

they require both training and testing sets. The algorithms for 

decision trees (D.T.s), support vector machines (SVMs), and 

k-nearest neighbors (KNNs) are covered in the following 

subsections. 

2.1.1. Decision Trees 

The D.T. technique is a supervised learning technique 

whose goal is to automatically calculate the values of the 

endogenous variable (to be predicted), fixed a priori, from 

other information (exogenous or predictive variables) [7]. The 

principle of D.T.s is based on the recursive partitioning of 

data. Partitioning aims to obtain homogeneous groups from 

the predicted variable's point of view. The result is a 

hierarchical chain of rules. A path, starting from the root to a 

tree leaf, constitutes an assignment rule of the type "If 

condition Then conclusion." All these rules constitute the 

prediction model [8], either a set of individuals or objects 

affected by the learning problem. 

The learning algorithm takes a sample as the input, 

comprising N records (texts) classified (Dj, Ci), and provides 

a D.T. as output. The algorithm proceeds top-down; it starts 

from the root and then recursively chooses the children's label. 

Most of these classifiers use a representation of the binary 

document and are, therefore, created by binary trees. There are 

several algorithms, with the most popular being ID3 [9] and 

its successors C4.5 [10] and C5.0 [11]. 

2.1.2. Support Vector Machine 

SVMs are a recent class of ML methods introduced by 

[12]. SVMs look for a "thick" decision surface to separate the 

training set points into two classes. With this technique, the 

model's parameters are learned using a training dataset. It uses 

a kernel function, which enables the best possible data 

separation. The SVM aims to find a classifier that best divides 

the data into these two classes and optimizes the distance 

between them. As seen in Figure 1, the hyperplane, a linear 

classifier used with an SVM, distinguishes between the two 

categories of points. 

From Figure 1, we notice that the optimal hyperplane 

separating the points of two classes is the one that passes in 

the middle of the space between these classes. Support vectors 

are the closest instances necessary to identify the ideal 

hyperplane. The margin is the separation between this plane 

and the support vectors. 

 
Fig. 1 Solution of a classification model using support vector machines 
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Table 2. Machine learning techniques 

ML 

Technique 
Description Applications Algorithms 

SL 

Labeled data 

The known number of classes 

Used to classify future observations 

Classification 

Regression 

Estimation 

Linear Regression  

SVM  

Descision Tree (DT) 

UL 

Unlabeled data 

An unknown number of classes 

Focus on finding patterns and gaining insights from the data 

Used to explore and understand data 

Clustering 

Prediction 

K-means Clustering 

Gaussian mixture 

Hidden Markov models 

SSL 
Combination of S.L. and U.L. methods  

(mix of a small amount of labeled data and unlabeled data) 

Classification 

Clustering 

Transductive SVM  

Graph-based algorithm 

Generative models 

RL Based on the system of rewards and punishment 
Decision 

making 

Markov decision process 

Brute force 

Q-learning 

2.1.3. K-Nearest Neighbors 

The basic idea of KNN is to predict the class or author of 

a text(T) as a function of the k closest neighbors already 

tagged in memory [13]. The learning phase consists of storing 

the labeled examples. The classification of new texts is done 

by calculating the distance between the vectorial 

representation of the document and that of each example in the 

corpus. Measuring the similarity between documents is one of 

the essential traits of this classifier. Since the texts are 

represented in vector form, points in an n-dimensional space, 

we determine the nearest neighbors by calculating the distance 

between these points. 

Four distinct groups primarily comprise ML methods. 

Among them are supervised learning (S.L.), which employs 

labeled input and output data; unsupervised learning (U.L.), 

where the system analyzes and clusters unlabeled data; semi-

supervised learning (SSL), where a small amount of labeled 

data is mixed in with a large amount of unlabeled data during 

training; and reinforcement learning (R.L.), where the 

machine interacts with a dynamic context. Table 2 

summarizes the differences between ML techniques and lists 

their applications and algorithms. 

2.2. Deep Learning Approaches 

DL approaches represent an emerging branch of ML 

methods based on artificial neural networks (ANNs) [14]. This 

approach applies multiple layers of neural networks, which 

permits learning data representation in a supervised and 

unsupervised way with several levels of abstraction using a 

training set. DL approaches include numerous techniques, 

starting from basic ones such as feed-forward neural network 

(FFNN), recurrent neural network (RNN), long short-term 

memory (LSTM), or gated recurrent unit (GRU) to more 

complicated techniques. Figure 2 displays the overall DL text 

classification architecture (excerpted from [15]). 

 

The represented architecture includes various layers: 

• Dense Embeddings: This layer allows transforming text 

into real numbers. 

• Hidden Layers: It is located between the algorithm's input 

and the output. These layers permit applying a nonlinear 

transformation of the inputs entered into the network. 

• Output Units: According to the existing problem, the 

output layer could have either a Sigmoid function when 

we face a binary classification or a Softmax function for 

binary and multi-classification output.  

Distinct approaches were developed and tested to predict 

the mortality or severity of COVID-19. The dataset essentially 

determines each method's use. A linguistic approach, for 

instance, is used when a strong lexicon is available. Due to 

their improved performance and ability to deliver more 

accurate findings, ML and DL approaches are more popular 

today. The DL model used in ResNet-50 and ResNet-152 is 

presented in the following section. Image classification is a 

technique for digitally extracting data from image classes. 

Image classification can be supervised (each image is 

given a label) or unsupervised (the training model has learned 

to classify images based on patterns). We present ResNet-50 

layers, a convolutional neural network (CNN) architecture. To 

sum up, CNN's feeds are: 

 
Fig. 2 General deep learning text classification architecture 
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Fig. 3 The architecture of ResNet-50 with 34 residual layers 

• Convolution layer (extraction function with filtering) 

• Strides (displacement of pixels on the input matrix) 

• Padding rectified linear unit (ReLU) (introduce non-

linearity into the network) 

• Padding layer (reduce the number of parameters) 

• Fully connected layer (the input to the fully connected 

layer is the output from the final pooling or convolutional 

layer) 

ResNet uses residual learning instead of trying to learn 

certain features. Simply put, the residue is the characteristic 

subtracted from the input that this layer learned. There are 

some variations of ResNet other than ResNet-50. A shortcut 

connection that omits one or more levels is the primary 

concept behind ResNet. 

ResNet-50 is a CNN that is 50 layers deep. Figure 3 

shows the architecture of ResNet50 with 34 residual layers 

(excerpted from [16]). 

2.3. Evaluation Metrics 

ML models cannot be used without measuring the 

efficiency of their algorithms. To evaluate ML and DL 

algorithms, certain statistical measures are utilized. These 

measures are calculated based on true positive (T.P.), true 

negative (T.N.), false positive (F.P.), and false negative (F.N.) 

possible outcomes. For example, the four outcomes of the 

model constituting a 2x2 confusion matrix for COVID-19 

tests are displayed in Figure 4. 

 
Fig. 4 An example of a 2x2 confusion matrix made by a COVID-19 

prediction model 

The main measures utilized—accuracy, precision, 

sensitivity (recall), specificity, and an F1 score—are formally 

defined in Equations 1 to 5. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)  (5) 

To evaluate model performance, an area under the curve 

(AUC), also known as the area under the ROC curve 

(AUROC), metric is utilized. It is a number between 0.0 and 

1.0 and measures the model's ability to separate positive and 

negative classes. The higher AUC, the better model's 

performance at differentiating between the positive and 

negative classes. 

Finally, two popular measures are applied to assess the 

model's quality: mean squared error (MSE) and root mean 

square error (RMSE). Both measures are used to panelize the 

large prediction errors. However, RMSE is more widely used 
than MSE because it has the same units as the dependent 

variable Y-axis. The formal definition of MSE is given as 

follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1   (6) 
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Where:  

𝑛 is the number of examples in the dataset, 

�̂� is the predicted value for the ith observation, and 

𝑦 is the observed value for the ith observation. 

RMSE metric is a square root of the MSE and can be 

defined as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1   (7) 

The following sections explore studies applying ML 

methods to predict COVID-19 severity, mortality, and vaccine 

effectiveness. 

3. Overview of Works Related to COVID-19 

Variants Severity 
The COVID-19 pandemic has caused many disorders and 

upheavals in terms of health, economics, and society. From a 

scientific standpoint, a single pathology rarely mobilises much 

effort and resources. As a result, nearly 300,000 articles were 

indexed in PubMed between 2019 and 2022. This study 

investigates how innovative solutions relying heavily on 

digital technologies such as A.I., ML, and DL have emerged 

successfully. 

COVID-19 symptoms, according to WHO, include fever, 

cough, and fatigue in mild cases and difficulty breathing in 

moderate cases. In severe cases, patients could suffer from 

acute pneumonia and organ failure and even face death. 

Pregnant women, elderly adults, especially those 60 years and 

older, and persons with medical illnesses, including diabetes, 

obesity, high blood pressure, cancer, or lung or heart 

problems, are more prone to experience severe sickness. 

A Public Health Ontario [17] study tackles the impact and 

gravity of the Delta variant for children in the United States. 

The study shows an increase in pediatric hospitalizations 

related to COVID-19. Although pediatric hospitalization rates 

are increasing in the U.S., hospitalizations and COVID-19-

related deaths in children remain low relative to clinical 

severity and COVID-19-related deaths in adults. Some 

hospitals and regions reported a higher absolute number of 

hospitalized pediatric COVID-19 cases. A crude analysis 

comparing pediatric hospitalization rates between Delta-

dominant and non-Delta waves with similar case counts 

indicates a possible increase in hospitalizations due to 

COVID-19 caused by the Delta variant. The increase in the 

absolute number of pediatric hospitalizations in the United 

States may be the result of higher overall transmissibility of 

the Delta variant and high rates of community-based infection, 

leading to more pediatric cases and, therefore, pediatric 

hospitalizations. 

To assist in identifying COVID-19 cases and stop its 

spread, authors in [18] are using online questionnaires to 

collect data (patients' signs and symptoms) and then using 

them as input for various prediction models, such as logistic 

regression (L.R.), SVM, and multi-layer perceptron (MLP). 

The authors use accuracy, sensitivity, specificity, and 

precision standard metrics to evaluate the models. Among all 

evaluated models, MLP shows the best accuracy with a value 

of 91.62%; therefore, it is the most useful ML model for 

COVID-19 detection based on signs and symptoms. 

[19] developed a prediction model where data consisting 

of 151 COVID-19 patients from the Tumor Center of Union 

Hospital in Hubei, China, was collected. After selecting 

features, the author employed ANN algorithms to build a 

model that predicted and assessed the severity of COVID-19 

in 151 samples. The created model accomplished a good 

estimation performance, with an F1 score of 96.4% and an 

AUC of 0.953 (0.889–0.982). 

Using ML-based approaches for triage assessment and 

distinguishing between severe and non-severe COVID-19 is a 

technique used by [20]. The authors utilized a variety of ML 

models trained with tested-positive data from six locations in 

Switzerland. They relied on a set of parameters known as 

specialized laboratory markers. Sex, hemoglobin, glomerular 

filtration rate, sodium, C-reactive protein, blood glucose, and 

leucocytes are the most reliable indicators. 

According to the study, the most successful ML model 

was the SVM, which achieved a median AUC value of 0.96. 

Using clinical symptoms and laboratory markers for 

diagnosing seriously ill patients increased the level of model 

complexity. Authors of [21] also employed the SVM approach 

to developing a model based on a dataset gathered from the 

Shanghai Public Health Clinical Center. The dataset is 

relatively small, containing 336 records. However, the model 

achieved excellent AUC values of 0.99 and 0.97 in the training 

and testing datasets, respectively. 

To anticipate negative COVID-19 infection-related 

outcomes, [22] created a predictive score called the COVID-

19 acuity score (CoVA) based on data from the Massachusetts 

General Hospital (MGH) and Emergency Department (E.D.). 

CoVA was developed to help frontline clinicians in out-

patient screenings and used 98 variables, including vital signs, 

demographics, COVID-19 symptoms, and pre-existing 

diagnoses. The severity outcome of this model was the ordinal 

scale of negative events: no event, hospitalization, intensive 

care unit (ICU) and mechanical ventilation (MV), and death. 

Using the KNN algorithm, the developed model can be used 

in forecasting the risk of hospitalization prognosis. However, 

the collected data (e.g., medical images and vital signs) relied 

heavily on the hospital or office visit. 
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Additionally, it only included patients at MGH and E.D. 

Another predictor developed by [23] collected data from six 

hospitals in northeastern Pennsylvania. The study evaluated 

the risk based on age, gender, and historical variables. The 

developed L.R. model was used to develop the scoring system 

and performed well in predicting with an AUC value of 0.81. 

Forecasting the required number of ICU beds is essential 

for resource allocation and patient management during the 

COVID-19 pandemic. A study by [24] created four separate 

ML classification models, namely random forest (R.F.), 

extreme gradient boosting (XGBoost), SVM, and L.R., that 

forecasted the need for hospitalization, admission to ICU, and 

MV with validation accuracies of 88%, 87%, and 86%, 

respectively. The prediction model was built based on patient 

characteristics, clinical symptoms, laboratory findings, and 

chest X-rays (CXR). While clinical features used in this study 

produced mixed results, blood laboratory and arterial gas 

analysis feature generally increased the predictability. Also, to 

predict ICU admission, authors of [25] developed a model 

based on classic machine learning classifiers (MLCs), 

including D.T., SVM, KNN, R.F., and ANN, and an ensemble 

learning technique, that aggregated the predictions of 

individual classifiers into a single prediction using a complete 

analysis data voting system. The results showed that the ANN 

has the lowest MSE with a value of 0.08 and the highest 

accuracy with a value of 0.97 over other models. 

A survey conducted by [26] investigated different 

strategies and methods to prevent COVID-19. The study's 

authors stated that the only way to reduce virus transmission 

during the lockdown was to applicable government 

regulations, such as wearing masks, hygiene stations, and 

maintaining social distancing. They also implemented a real-

time A.I. system using Raspberry Pi to monitor public spaces 

to ensure minimal human interaction. The authors applied an 

Extremely Randomized Trees Classifier (also known as an 

Extra Trees Classifier), which achieved an F1 score value of 

98.2% and an accuracy value of 99.8%. They deployed a 

CNN-based face detection model to monitor the violation of 

wearing face masks. The same idea was applied by [27] on 

public transport in Morocco to reduce COVID-19 cases. A 

CNN algorithm with the aid of computer vision was applied 

to detect passengers with no masks. Detectors were also used 

to capture drivers' emotions and produce responses that can 

make drivers more comfortable. The model achieved good 

results, obtaining 91.23% accuracy with only 300 epochs. The 

authors used the MobileNetV2 DL model for mask detection, 

which provided a recognition rate of 97.96% during 50 

epochs. 

This study has limits. For example, it is difficult to 

compare the severity of different COVID-19 variants due to 

differences in transmissibility between strains, as well as 

variables such as screening practices, time of year when the 

different variants peaked, public health measures in place, 

adherence to public health measures at different times during 

the pandemic, and changes in vaccine coverage and 

effectiveness. Table 3 summarizes research papers exploiting 

ML methods to tackle COVID-19 severity. In the next section, 

we explore ML methods for predicting deaths caused by 

COVID-19. 
 

Table 3. Summary of works on machine learning methods related to COVID-19 severity 

Study Objective/s Data Methodology Results 

E. 

Fayyoumi, 

et al., [18] 

(2020) 

Predicting COVID-19 

cases based on signs 

and symptoms. 

Online questionnaire on 

April 2020 containing 105 

samples. 

Statistical model: 

LR and ML models: 

SVM and MLP 

MLP achieved the best 

accuracy (91.62%) and 

specificity (93.75%), 

whereas the SVM achieved 

the best precision (93.75%). 

J. Kang, et 

al., [19] 

(2021) 

Predicting and 

evaluating the severity 

of COVID-19 based on 

clinical data. 

The dataset containing 151 

samples from the Tumor 

Center of Union Hospital 

was collected between Jan- 

Mar 2020. 

ANN algorithms 

The model achieved an F1 

score value of 96.4% and an 

AUC value of 0.953 (0.889–

0.982). 

V. 

Schöning, 

et al., [20] 

(2021) 

Building a model for 

patient triage. The 

model categorizes a 

patient's state as non-

severe or severe based 

on a set of selected 

laboratory markers. 

The dataset containing 198 

samples (first wave) 

collected between Feb-Aug 

2020 and 459 samples 

(second wave) from Insel 

Hospital Group Bern 

collected between Sep-Nov 

2020. 

L.R. and ML 

models: Decision 

Tree Induction 

(DTI), RF, KNN, 

AdaBoost, SVM, 

and MLP 

The SVM was the best, 

achieving an AUC value of 

0.96. 

L. Sun, et 

al., [21] 

(2021) 

Predicting COVID-19 

cases. 

The dataset contains 336 

samples between Dec 2019 

and Mar 2020. 

SVM algorithm 

The model achieved AUC 

values of 0.99 and 0.97 in the 

training and testing dataset, 

respectively. 
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H. Sun et 

al., [22] 

(2021) 

Developing an 

outpatient screening 

predictive score 

(CoVA) that classifies 

the level of acuity 

based on COVID-19 

symptoms and pre-

existing diagnoses. 

The dataset contains a 

development cohort (9,381 

samples) and a prospective 

cohort (2,205 samples) 

collected between Mar-

May 2020. 

KNN algorithm 

Model performance in 

prospective validation for 

hospitalization (expected-to-

observed event ratio (E/O): 

1.01; AUC: 0.76), critical 

illness (E/O: 1.03; AUC: 

0.79), and death (E/O: 1.63; 

AUC: 0.93). 

Z. Chen, et 

al., [23] 

(2021) 

Determining whether a 

patient needs to be 

admitted to the hospital 

based on age, gender, 

and historical 

variables. 

The dataset contains 6,485 

COVID-19 samples from 6 

hospitals in northeastern 

Pennsylvania. 

L.R. algorithm 
The model achieved an AUC 

value of 0.81. 

B. Hao, et 

al., [24] 

(2020) 

Forecasting the level of 

care needed based on 

clinical and laboratory 

data. 

The dataset containing 

2,566 COVID-19 samples 

from 5 Massachusetts 

hospitals was collected in 

Mar-Apr 2020. 

RF, XGBoost, 

SVM, and L.R. 

models 

The models achieved a 

validation accuracy of 0.88 

for hospitalization, 0.87 for 

ICU care, and 0.86 for MV. 

H. 

Ghandorh, 

et al., [25] 

(2021) 

Predicting COVID-19 

patients' ICU 

admission. 

The dataset containing 639 

records from Saudi 

National Health 

Laboratory collected 

between Mar 1, 

2020, and Mar 31, 2020. 

MLCs, including 

D.T., SVM, KNN, 

R.F., and ANN, and 

the ensemble 

learning method 

The ANN had the lowest 

MSE with a value of 0.08 

and the highest accuracy with 

a value of 0.97 over other 

models. 

R. Sanjay, 

et al., [26] 

(2021) 

Developing a real-time 

system using 

Raspberry Pi to 

monitor social 

distancing and face 

masks. 

Internet of things devices 

send the sensors data. 

Extremely 

Randomized Trees 

Classifier and a 

CNN-based face 

detection model 

The model achieved an F1 

score value of 98.2% and an 

accuracy value of 99.8%. 

T. Karim, et 

al., [27] 

(2021) 

Developing a CNN-

based system to detect 

mask violations and 

drivers' emotions. 

Emotion dataset containing 

31,424 images downloaded 

from the FER2013 

database [28], and the face 

mask dataset containing 

1,485 images. 

A CNN algorithm 

with the aid of 

computer vision. 

For face mask 

detection, 

MobileNetV2 was 

used 

The model achieved an 

accuracy rate of 91.23%. The 

DL model achieved a 

recognition rate of 97.96%. 

 

 

4. Overview of Works Related to Methods for 

COVID-19 Mortality 
With the increasing spread of COVID-19, accurately 

predicting future patient outcomes or at least their 

vulnerability and risk of death from the disease is critical. A 

team from the Mount Sinai School of Medicine (New York) 

describes in [29] a new model for predicting mortality 

associated with COVID-19. Developed from the most 

extensive clinical data set to date and based on systematic ML, 

this prediction model achieved 0.91 accuracies. The ML 

framework uses L.R., SVM, R.F., and XGBoost for 

prediction. The model, however, is simply because it is based 

only on three clinical characteristics regularly collected, 

namely the patient's age, the minimum oxygen saturation 

during their admission medical assessment, and the nature of 

the consultation or initial contact (emergency, hospitalization, 

outpatient, or teleconsultation). This new evaluation technique 

could also allow a score to be re-evaluated regularly or even 

continuously for the patient, whether the latter is "remote 

monitoring" at home or hospitalized. The assessment could be 

integrated into the COVID-19 patient's care pathway and their 

data added to the health record. Clinical teams could also use 

the outcomes of the prediction model to track peak mortality 

risks throughout hospitalization. The development dataset 

consists of 3,841 patients, initially fed into the model for 

mortality prediction. Applied to other datasets of diagnosed 

and suspected patients (n = 961 and n = 249), the model 

validated its level of precision with an AUC value of 0.91. The 

patient's age, the minimum oxygen saturation on admission, 

and the type of first medical contact with the patient are 

sufficient factors to result in the patient's prediction. While 

predicting mortality in patients with COVID-19 who present 

a broad spectrum of health issues remains a challenge and 
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hinders disease management, this model for predicting 

COVID-19 mortality allows a very precise prognostic 

approach based on simple and accessible clinical 

characteristics. 

The clinical course of COVID-19 infection is very factor, 

with the overwhelming majority of patients recovering 

without challenges; however, some individuals cannot recover 

and eventually pass away. Appropriate and prompt supportive 

therapy can reduce mortality, and enhancing patient risk 

classification based on simple clinical data is critical for 

successful triage when healthcare systems are under strain. 

The study [30] adopted ML algorithms to create risk 

stratification and mortality prediction models based on clinical 

data from 544 COVID-19 patients in New Delhi, India. It 

compared XGBoost and L.R. algorithms for their predictive 

performance. The L.R. model generated the most outstanding 

results in predicting mortality (an F1 score value of 0.71), 

whereas the XGBoost classifier produced the best results in 

risk stratification (an F1 score value of 0.81). Biomarkers were 

developed to predict risk and mortality. The authors also 

compared the data to a comparable dataset with a Wuhan 

cohort of 375 people [31] to better understand the causes of 

India's significantly lower mortality rates. ML methods based 

on blood test data were proposed in this study to predict 

COVID-19 mortality risk. Lactate dehydrogenase (LDH), 

high-sensitivity C-reactive protein (hs-CRP), and 

lymphocytes form a strong combination. 

In summary, the XGBoost classifier accurately predicted 

mortality with a 96.5% accuracy for each day the sickness 

persisted and a 90% accuracy for predictions made more than 

10 days ahead. The obtained performance metrics are at a high 

level of confidence in the proposed model. Other prospective 

characteristics that predict capacity have been identified, but 

they require data from various sources to demonstrate their 

relevance and potentially improve the model. 

In ML, boosting is a technique where several models are 

trained sequentially, i.e., each model learns from the mistakes 

of the previous one. Boosting algorithms can be applied using 

gradient-boosted decision trees (GBDT). This algorithm was 

applied by [32] to predict mortality cases caused by COVID-

19. The study was conducted in 25 departments in Peru and 

revealed that Lima, Piura, Huánuco, and Ica departments had 

the highest death rates. The project was conducted using the 

Scrum approach, which makes it easy to adhere to the 

structure and solve the problem. The steps applied in this 

methodology are identifying the problem; using an analytical 

approach; gathering and interpreting the data; preparing the 

data; training, evaluating, and deploying the model; and 

finally, receiving feedback. The data was obtained from the 

national open data managed by the ministry of health.  

A study using a similar ML method based on blood tests 

was conducted by [33] to predict mortality risk. The authors 

examined X-ray features and created a CNN-based DL model 

to identify COVID-19 patients. A dataset consisting of 5,493 

non-COVID images and 3,914 COVID images was used in the 

proposed model. The model performed exceptionally well, 

achieving accuracies of 99.76%, 96.10%, and 96% in the 

training, validation, and test phases, respectively. Their model 

outperformed MobileNetV2, InceptionV3, and Xception, 

three state-of-the-art pre-trained models. Analyzing X-ray 

images to detect COVID-19 infections was also used by [34]. 

The stand-alone CNN model and hybrid ML models were 

compared. In this study, the VGG-16 served as a features 

extractor for the hybrid model, and a typical ML algorithm, 

e.g., SVM, R.F., or XGBoost, served as a classifier. The study 

showed no significant improvement when the hybrid model 

was applied. A high accuracy value of 99.82% and a 

sensitivity value of 100% were obtained by both VGG-16 and 

(VGG16+SVM) models. The study used 5 datasets, 4 of which 

were COVID-19-related datasets, with a total of 1,466 CXR 

and C.T. images, and 1 non-COVID-19 dataset with 5,863 

CXR images. 

After being discovered for the first time in the United 

Kingdom in September 2020, SARS-CoV-2 strain B.1.1.7 has 

since spread to several countries worldwide [35]. Several 

investigations have found B.1.1.7 to be more transmissible 

than previously known variants, although none have found 

that it increases disease severity. Data analysis from 17,452 

COVID-19 deaths and 2,245,263 community SARS-CoV-2 

positive tests conducted in England between September 1, 

2020, and February 14, 2021, revealed an increase in COVID-

19 mortality [36]. Due to mutations in this line that prevent 

polymerase chain reaction (PCR) amplification of the spike 

gene target, the presence or absence of B.1.1.7 was identified 

in 1,146,534 (51%) of these tests (s-gene target failure, 

SGTF). The authors concluded that the risk of mortality 

related to SGTF is 55% (95% confidence interval (CI): 39% 

to 72%) greater after accounting for age, sex, ethnicity, 

deprivation, nursing facility residency, and local authority of 

residency based on 4,945 fatalities with known SGTF. 

In [13], the authors created a prediction model supporting 

A.I. and ML algorithms to assess the mortality risk and 

determine the health risk of COVID-19 patients when the 

SARS-CoV-2 virus elicited the illness. They employed a 

dataset of more than 2,670,000 laboratory-confirmed COVID-

19 patients, with 307,382 labeled samples in their 

investigation. The ML model was proposed to help hospitals 

and other healthcare institutions prioritize patients when the 

system is overcrowded and determine who needs to be seen 

first and who has a higher priority for the hospital admission. 

The results showed an overall accuracy of 89.98% in 

forecasting death rates. The ML algorithms used were R.F., 

D.T., SVM, ANN, and L.R. To estimate the death rate in 

patients, LR and KNN were applied. Another study presented 

in [37] resorted to R.F. and k-means clustering to predict 

mortality associated with COVID-19. Due to the virus being 
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widespread in the United States, it was imperative to pinpoint 

the populations most at risk of mortality due to infection. The 

study's authors collected data from the Centers for Disease 

Control and Prevention's (CDC) case surveillance [38] and 

discovered an unsurprising broad pattern. They found that 

under-attributed young people and older persons were 

unaffected by the high-risk group. Their results showed that 

clustered R.F. performance is better than the boosted R.F. 

method, with a 0.93 recall and a 0.93 F1 score. 
 

To create and validate predictive models for mechanical 

requirements and COVID-19 mortality, four current automatic 

learning algorithms, three data equilibration methodologies, 

and a set of defining characteristics were used [39]. Complete 

blood counts (CBC), CXR, demographics, and clinical data 

for 5,739 patients with confirmed COVID-19 PCR at King 

Abdulaziz Medical City in Riyad, Saudi Arabia, were 

collected retrospectively from April 2 to June 18, 2020. 

However, only 1,508 and 1,513 of these patients met the 

criteria for admission in the ventilatory assistance program 

and the mortality criteria, respectively. The following were the 

outcomes: in a series of independent tests, the model for 

predicting ventilation needs with the 20 most essential 

characteristics selected using the ReliefF algorithm from the 

radiological, laboratory, and clinical data using the SVM 

technique achieved an AUC value of 86% and a balanced 

accuracy of 81%. The model's balanced accuracy for the 

mortality outcome was 80%, and its AUC value was 83%. 
 

Some ML algorithms have been developed to forecast the 

probability of severe complications and mortality [13, 40-47]. 

The list of previous works and their characteristics related to 

COVID-19 mortality can be found in Table 4. This is critical 

because, during peaks, COVID-19 patients are becoming 

more common. The allocation and distribution of resources 

among patients based on their prognosis is a critical problem, 

and the question of prognosis is crucial. [48] established two 

models to predict COVID-19 patients' mortality based on 

clinical and laboratory characteristics. 

 

Table 4. Summary of works on machine learning methods related to COVID-19 mortality 

Study Objective/s Data Methodology Results 

A. S. Yadaw, et 

al., [29] (2020) 

Predicting mortality 

associated with 

COVID-19 based on 

clinical characteristics. 

The dataset contains 

3,841 records collected 

between Mar-Apr 2020. 

L.R., SVM, R.F., and 

XGBoost approaches 

The model achieved 91% 

accuracy. 

S. Alle, et al., 

[30] (2022) 

Developing risk 

stratification and death 

prediction models. 

The dataset contains 544 

records collected 

between Jun-Oct 2020. 

XGboost and L.R. 

algorithms 

XGBoost provided the 

best risk stratification 

results with an F1 score 

value of 0.81. L.R. 

provided the best results in 

predicting death with an 

F1 score value of 0.71. 

L. Yan, et al., 

[31] (2020) 

Predicting the 

mortality based on 

LDH, lymphocyte, and 

hs-CRP markers. 

The dataset contains 375 

blood samples collected 

between Jan-Feb 2020. 

XGBoost algorithm The model provided 

predictions with more than 

90% accuracy for more 

than 10 days ahead and 

95% accuracy for every 

day. 

E. Ortega-

Espinoza, et al., 

[32] (2022) 

Using the Scrum 

methodology to 

predict COVID-19 

deaths. 

Datasets obtained from 

COVID-19 open data 

Ministry of Health-

MINSA. 

GBDT algorithm Not provided 

M. Masud, et 

al., [33] (2021) 

Predicting COVID-19 

cases by analyzing 

C.T. scan images. 

A publicly available 

dataset consists of 5,493 

non-COVID images and 

3,914 COVID images. 

Applied a CNN 

model and compared 

it with MobileNetV2, 

InceptionV3, and 

Xception models 

The model achieved 

99.76%, 96.10%, and 96% 

accuracy in the training, 

validation, and test phases, 

respectively. 

W. Alawad, et 

al., [34] (2021) 

Analyzing X-ray 

images to detect 

COVID-19 infections. 

4 COVID-19 datasets 

with a total of 1,466 

CXR and C.T. images 

(from Github) and a non-

COVID-19 dataset 

containing 5,863 CXR 

images (from Kaggle). 

Stand-alone CNN 

model and hybrid-

ML models SVM, 

R.F., and XGBoost 

The highest accuracy 

(99.82%) and sensitivity 

(100%) were obtained by 

VGG-16 and 

(VGG16+SVM) models, 

respectively. 
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M. 

Pourhomayoun 

and M. Shakibi, 

[13] (2021) 

Evaluating the 

mortality risk and 

identifying the health 

risk of COVID-19 

patients. 

The dataset contains 

2,670,000 confirmed 

COVID-19 cases 

representing 146 

countries. 

R.F., D.T., SVM, 

ANN, L.R., and KNN 

algorithms 

The model achieved 

89.98% overall accuracy. 

E. Cornelius et 

al., [37] (2021) 

Predicting mortality 

associated with 

COVID-19. 

The dataset containing 

over 22 million 

occurrences of COVID-

19 was collected 

between Jan 2020 to Mar 

2021. 

R.F., k-means 

clustering, and 

AdaBoost methods 

Clustered R.F. 

performance was better 

than the boosted R.F. 

method, with a 0.93 recall 

and a 0.93 F1 score.  

A. F. Aljouie, et 

al., [39] (2021) 

Creating and 

validating predictive 

models for mechanical 

requirements and 

COVID-19 mortality. 

The dataset contains 

5,739 records of 

confirmed COVID-19 

PCR collected between 

Apr-Jun 2020. 

SVM algorithm The model achieved an 

AUC of 86%, a balanced 

accuracy of 81% for 

predicting ventilation, an 

AUC of 83% and a 

balanced accuracy of 80% 

for the mortality outcome. 

W. Liang, et al., 

[40] (2020) 

Developing a risk 

score (COVID-

GRAM) to predict the 

degree of patients' 

suffering.  

The dataset contains 

1,590 records from 575 

hospitals collected from 

the China National 

Health Commission 

between Nov 2019 to Jan 

2020. 

L.R. algorithm. 

Statistical analysis 

conducted with R 

software 

The model achieved a 

mean AUC of 0.88. 

P. Gemmar [41] 

(2020) 

Predicting mortality of 

COVID-19 patients 

from their biomarkers. 

The same dataset of [30]. SVM and 

Sugenotype Fuzzy 

classifier (FIS). An 

artificial neural 

network (SOM) [49] 

was used for 

biomarker selection. 

The model achieved AUC 

scores up to 97.84%. 

M. E. H. 

Chowdhury et 

al., [42] (2021) 

Predicting mortality 

risk among COVID-19 

patients. 

The same dataset of [30]. XGBoost algorithm The model achieved AUC 

scores of 0.96 for the 

derivation cohort and 0.99 

for the validation cohort. 

S. Bolourani, et 

al., [43] (2021) 

Providing a 48-hour 

forecast of respiratory 

failure. 

The dataset containing 

11,525 records from 

Northwell Health acute 

care hospitals was 

collected between Mar-

May 2020. 

XGBoost and L.R. 

algorithms 

The XGBoost model 

achieved the best mean 

accuracy with a value of 

0.919 and an AUC with a 

value of 0.77. 

E. Jimenez-

Solem, et al., 

[44] (2021) 

Estimating risks at 

various management 

stages. 

The dataset containing 

5,594 records from the 

Capital and Zealand 

Regions, Denmark, was 

collected between Mar-

Jun 2020. 

R.F. model The model predicted 

hospital admission, ICU 

admission, ventilator 

treatment, and death AUC 

scores of 0.820, 0.802, 

0.815, and 0.902, 

respectively. 

K. Ikemura, et 

al., [45] (2021) 

Examining several ML 

models for predicting 

a patient's propensity 

to survive a COVID-

19 infection. 

The dataset containing 

4,376 records from the 

University Hospital for 

Albert Einstein Clg. of 

Medicine was collected 

in Mar-Jul, 2020. 

Used an autoML 

open-source tool that 

generated 20 ML 

models and ranked 

them 

The stacked ensemble 

model achieved the best 

area under the precision-

recall curve with a value 

of 0.836. 
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D. Ji, et al., [46] 

(2020) 

Developing a scoring 

model named CALL 

to help clinicians make 

better decisions on 

therapeutic strategies. 

The dataset containing 

208 records from Fuyang 

Second People's Hospital 

or the Fifth Medical 

Center of Chinese 

People's Liberation 

Army General Hospital 

were collected between 

Jan-Feb 2020. 

Multivariate Cox 

regression model 

The model achieved an 

AUC value of 0.91. 

A. Karthikeyan, 

et al., [47] 

(2021) 

Predicting COVID-19 

mortality risk based on 

blood tests. 

The dataset contains 

2,779 records from 

Tongji Hospital in 

Wuhan. 

Neural networks, LR, 

XGBoost, RF, SVM, 

and D.T. models 

The neural network model 

achieved the best accuracy 

value of 96.53% and an F1 

score value of 0.969. 

K. Wang, et al., 

[48] (2020) 

Developing a 

mortality prediction 

model for patients 

with COVID-19. 

The dataset containing 

296 records from the 

First People's Hospital of 

Jiangxia District in 

Wuhan was collected 

between Jan-Feb 2020. 

L.R. and XGBoost 

models 

The model achieved an 

AUC value of 0.88, a 

sensitivity value of 

92.31%, and a specificity 

value of 77.44%. 

 

5. Overview of Machine Learning's Impact on 

COVID-19 Vaccines' Efficacy 
In this section, we present a comparison between 

available COVID-19 vaccines. The development of 

immunizations against the virus responsible for SARS-CoV-2 

began as soon as the viral genome sequence was disclosed. 

This development has progressed at an unprecedented pace, 

with the first clinical trial conducted shortly after the disease 

spread in March 2020. A year later, emergency processes were 

used to approve a dozen vaccines based on various concepts, 

some of which had not been tested beyond clinical trials. The 

rapid development of vaccines in response to the pandemic of 

COVID-19 has been an unprecedented success. Observations 

made following natural infections or vaccinations have shown 

that neutralizing antibodies is essential for protection against 

the disease. The level of anti-virus antibodies necessary for 

optimal protection is not yet clearly defined, and the 

persistence over time of these antibodies is not yet known. The 

messenger ribonucleic acid (mRNA), which represents a first 

in the design of new vaccines, is effective against symptomatic 

SARS-CoV-2 infection, as shown by phase III clinical trials 

and real-life observations. Recent studies show that it also 

protects against asymptomatic infection and, more generally, 

against infection. Vaccines' impact on the pandemic depends 

on the vaccinated population and their effectiveness at 

providing protection (according to comorbidities, age, 

pregnancy, or lactation) [50]. 

In Figure 5, we present the total number of vaccinated 

people worldwide. At the beginning of vaccinations, the 

worldwide population was not confident regarding the 

efficiency of vaccinations. Figure 5 shows that the number of 

people vaccinated increased after June 2021. It means that 

people have become more confident about vaccines and their 

efficiencies in fighting COVID-19 [51]. 

Several studies have examined the effectiveness of 

various vaccinations on the transmission and fatality rates of 

COVID-19 strains. At the beginning of the COVID-19 crisis, 

vaccinations, BNT162b (Pfizer), mRNA-1273 (Moderna), 

and ChAdOx1 (AstraZeneca) vaccines were very effective in 

fighting COVID-19 [69] and reduced the transmission of the 

virus as well as the number of deaths. The susceptible, infected 

recovered vaccination1 vaccination2 death (SIRVVD) model 

was used in the study to establish the target vaccination rate 

(𝑃2
𝑜𝑏𝑗.

) for reducing Japan's COVID-19 Delta variant 

(B.1.617) infection levels.  

Figure 6 illustrates the total number of fully vaccinated 

people in the United Kingdom, India, Brazil, and South 

Africa. As illustrated in this figure, the number of fully 

vaccinated people in India is unstable. The maximum number 

of fully vaccinated people in India was obtained in September 

2021. Overall, vaccination reduced the number of deaths and 

mortality rates in several countries. 

Efficacy and safety are two significant success factors of 

COVID-19 vaccines that have been studied. For example, [53] 

analyzed 123 datasets, including 58,889 individuals receiving 

a SARS-CoV-2 vaccine and 46,638 receiving a placebo. A 

placebo, as defined by [54], is an inert material resembling the 

studied medicine or treatment. A total of 34,041 cases were 

included in the study's phase II/III randomized clinical trials 

(RCTs), and the results showed that the mRNA-based 

COVID-19 vaccines had an efficacy rate of 94.6%. 
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Fig. 5 Total number of vaccinated people worldwide 

 
Fig. 6 Total number of fully vaccinated people in the United Kingdom, India, Brazil, and South Africa 

It also concluded that except for diarrhea and arthralgia, 

the mRNA-based vaccinations exhibited the highest level of 

reported adverse effects (A.E.s). Efficacy and safety were also 

discussed by [55], in which the authors analyzed both clinical 

trials and real-world data managed by the CDC in the United 

States. According to the study, mRNA-based vaccinations had 

the most remarkable efficacy at 94.29%. It also identified 36 

types of adverse drug reactions (e.g., pain, swelling, fever, 

fatigue, and headache) in clinical trials and real-world data.  

A study conducted by [56] used two programs based on 

ML, OptiVax and EvalVax, that worked in tandem. OptiVax 

is an open-source implementation of the proposed model, and 

EvalVax is the vaccine evaluation tool. The OptiVax results 

suggest that the SRAS-CoV-2 spike protein alone may not be 

sufficient to provide complete immunization to all racially 

distinct ethnic groups. According to the research, adding 

specific peptides to the immune system can improve its 

response. 

In another study's [57] RCT, the Moderna vaccine was 

reported to have a 94.1% efficacy in avoiding COVID-19 

symptomatic infection caused by "wild-type" variants. The 

genuine effectiveness of this vaccination against the SRAS-

CoV-2 pre-infectious variants B.1.1.7 (Alpha) and B.1.351 

(Beta) was examined by authors in Qatar, a country with a 

large working-age population. They found that the vaccine's 

efficacy was negligible in the first two weeks following 

delivery but significantly increased in the third and fourth 

weeks before the delivery of a second dose. Fourteen days 
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after the first dose but before the second dose, the 

effectiveness against B.1.1.7 infection was 88.1% (95% CI: 

83,7% to 91,5%), and fourteen days after the second dose, it 

was 100% (95% CI: 91.8% to 100.0%). To confirm the main 

findings, they provided additional sensitivity analyses, 

including 1) matching by nationality, sex, age, and PCR 

testing date, 2) L.R. adjusting for a calendar week, and 3) L.R. 

adjusting for matching factors, i.e., nationality, sex, age, and 

reason for PCR testing. 

Participants in clinical trials of the 2-dose mRNA 

vaccinations reported local and systemic responses called 

reactogenicity. Reactions more frequently reported include 

injection site pain, headache, and fatigue [58]. The study by 

[59] employed a machine learning-fitted penalized linear 

regression model to correlate A.E.s with antibody levels. The 

dataset had 80 subjects, 25 males and 55 females. The study's 

analytical findings indicate that headache, malaise, and nausea 

A.E.s demonstrate the highest variable importance and have 

the most favorable impact on SARS-CoV-2 antibody levels. 

[60] highlighted different ML models to predict vaccines' 

immunogenicity, efficacy, or reactogenicity to fight 

pandemics such as tuberculosis, malaria, and more recent ones 

like Zika and SARS-CoV-2. Different metrics, such as 

accuracy, AUC, or RMSE, for regressions were used to assess 

the quality of the discussed ML models. However, the study 

did not focus on ML prediction models for SARS-CoV-2 

vaccines. 

[61] and [62] also applied linear regression ML to predict 

vaccine immunogenicity. While [61] discussed the role of 

innate responses in vaccine immunogenicity in general, the 

authors in [62] focused on SARS-CoV-2 vaccination in Seoul 

National University Hospital between March and April 2021, 

including 42 adults vaccinated with AstraZeneca and 93 adults 

vaccinated with Pfizer. The multivariate linear regression 

model was deployed to evaluate the correlation between the 

anti-S1 IgG O.D. ratio in a post-vaccination serum and local 

(e.g., injection site discomfort and edema) or systemic (e.g., 

headache, muscle pain, weariness, and fever) reactogenicity. 

The study concluded no association between reactogenicity 

and immunogenicity. 

In COVID-19 pharmacology, ML-based algorithms are 

helpful since they offer a set of tools that enhance the drug 

research and development process for particular conditions 

with the use of reliable and high-quality data currently 

available.  

Algorithms such as SVM, ANNs, and DL are employed 

to develop vaccines. For instance, [63] created automated drug 

development pipelines for drug discovery, testing, and 

repurposing. The study focused on sequential learning 

algorithms and recommender systems and discussed the 

relativeness of datasets and ML applicability for drug 

development. Data availability, data quality, and feature 

selection are key roles in ML model success. The other study's 

[64] main goal was to identify prospective vaccine candidates.  

Several techniques were used, such as reverse 

vaccinology, immunoinformatics, and DL, specifically 

LSTM. The labeled dataset, consisting of 100 proteins, was 

extracted using data mining techniques, and the output of the 

study was a framework for identifying possible vaccine 

candidates and producing an epitope-based vaccine against 

SARS-CoV-2. The authors of [65] described how they applied 

an "In Silico" analysis to develop an effective multi-epitope 

peptide vaccination against SARS-CoV-2.  

The screening of potential epitopes was done by an online 

server called CLP Pred that combined quantitative matrix 

(Q.M.), ANN, and SVM models. According to the authors, 

combining prediction techniques was more precise and 

sensitive than utilizing ANN and SVM alone. Works related 

to COVID-19 vaccines' efficacy are summarized in Table 5. 

6. Discussion 
This study has potential limitations. It is difficult to try to 

compare the severity of different COVID-19 variants due to 

differences in transmissibility between strains, as well as 

variables such as screening practices, time of year when the 

different variants peaked, public health measures in place, 

adherence to public health measures at different times during 

the pandemic, and changes in vaccine coverage and 

effectiveness.  

From studying techniques to predict severity, mortality, 

and efficacy, we found that the main problem with the Delta 

variant was its transmissibility, not its mortality rate. For the 

Gamma variant, which appeared in November 2020, the 

mortality rate for the United Kingdom was 3.58%, 2.73% for 

Brazil and South Africa, and 1.45% for India.  

It is also important to mention that this rate could be 

significant in terms of numbers since the population in India 

(1.38 billion in 2020) is very big compared to the population 

in Brazil (212.6 million), the U.K. (67.22 million), and South 

Africa (59.31 million).  

The decrease in the mortality rate could also be explained 

by the fact that several countries adopted many strategies 

when fighting COVID-19. As of October 11, 2021, 6.56 

billion people have received at least one vaccine dosage, and 

2.79 billion were fully immunized, making up 35.8% of the 

global population [68]. 
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Table 5. Summary of works on machine learning methods related to COVID-19 vaccines' efficacy 

Study Objective/s Data Methodology Results 

A. 

Pormohammad, 

et al., [53] 

(2021) 

A systematic review 

to estimate vaccine 

efficacy, side effects, 

and immunogenicity. 

Clinical trial data contain 

58,889 cases collected from 

25 publications (123 datasets) 

as of March 12, 2021. 

Analysis was 

performed using 

Comprehensive 

Meta-Analysis 

Software Version 

2.0 

The mRNA-based 

COVID-19 vaccines had 

94.6% efficacy in a total 

of 34,041 cases, and 

except for diarrhea and 

arthralgia, the mRNA-

based vaccinations 

exhibited the highest 

level of reported A.E.s. 

C. Cai, et al., 

[55] (2021) 

Analyzing the 

efficacy and safety of 

COVID-19 vaccines. 

Clinical trial data (194,015 

cases) and real-world data 

(11,936 cases) were managed 

by the CDC and Food and 

Drug Administration. 

GraphPad Prism 

was utilized for 

statistical analyses, 

and the R 

Statistical Software 

was utilized for 

meta-analysis 

mRNA-based vaccines 

had the highest efficacy 

of 94.29%. 

G. Liu, et al., 

[56] (2020) 

Evaluating vaccine 

formulations for 

SARS-CoV-2. 

29,403 candidate peptides for 

MHC class I, and 125,593 

candidate peptides for MHC 

class II. 

OptiVax and 

EvalVax ML 

models 

Adding specific peptides 

to the immune system 

improved its response. 

H. Chemaitelly 

et al., [57] 

(2021) 

Evaluating the real-

world effectiveness 

of the mRNA-1273 

vaccine (Moderna) 

against B.1.1.7 

(Alpha) and B.1.351 

(Beta). 

256,037 individuals received 

at least 1 dose, and 181,304 

individuals completed 2 doses 

between Dec 2020 and May 

2021. 

Test-negative, 

case-control study 

design 

The Moderna vaccine 

had a 94.1% efficacy in 

preventing symptomatic 

COVID-19 infection due 

to infection by "wild-

type" variations. 

J. Held, et al., 

[59] (2021) 

Examining the 

relationship between 

the severity of A.E.s 

and the anti-SARS-

CoV-2 spike protein 

antibody response. 

The dataset contains 80 

employees from the Institute 

for Clinical Microbiology, 

Immunology and Hygiene of 

the University Hospital in 

Erlangen, Germany.  

Linear regression 

model 

Results showed that 

headache, malaise, and 

nausea A.E.s 

demonstrate the highest 

variable importance and 

positively influence the 

SARS-CoV-2 antibody 

levels. 

W. Burny, et al., 

[61] (2017) 

Analyzing the role of 

innate responses in 

vaccine 

immunogenicity in 

general. 

A randomized, controlled 

phase II trial was performed 

at 14 study centers with 375 

participants. 

Linear regression 

model and R 

Statistical Software 

Results revealed 

correlations between 

adaptive responses and 

specific traits of the 

innate response post-

dose 2. 

Y. H. Hwang, et 

al., [62] (2021) 

Evaluating the 

correlation between 

local or systemic 

reactogenicity and 

the anti-S1 IgG O.D. 

ratio in a post-

vaccination serum. 

42 vaccinated adults from 

Seoul National University 

Hospital and Seoul National 

University Bundang Hospital 

between Mar-Apr 2021 

Linear regression 

model 

Results revealed no 

association between 

reactogenicity and 

immunogenicity. 

C. Réda, et al., 

[63] (2020) 

A survey of drug 

development data 

and ML methods. 

19 datasets related to drug 

development and grouped 

into 5 types of genomic data, 

interaction data, drug-disease 

associations, clinical trials, 

and chemical and drug data. 

Sequential learning 

algorithms and 

recommender 

systems 

The data availability, 

data quality, and feature 

selection played key 

roles in the ML model's 

success. 
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B. A. Abbasi, et 

al., [64] (2020) 

Identifying 

prospective vaccine 

candidates against 

SARS-CoV-2 

coronavirus. 

Dataset collected from 

database resources of the 

National Center for 

Biotechnology 

Information 

(NCBI) and crystal structures 

of human alleles 

collected from the Protein 

Data Bank (PDB). 

LSTM as a DL 

algorithm 

The output of the study 

was a framework for the 

identification of possible 

vaccine candidates and 

the production of an 

epitope-based vaccine 

against SARS-CoV-2 

Z. Yazdani, et 

al., [65] (2020) 

Creating a multi-

epitope peptide 

vaccine against 

SARS-CoV-2 

coronavirus using an 

"In Silico" analysis. 

The protein sequences were 

managed by using the NCBI. 

The epitopes major 

histocompatibility complex 

class I (MHC-I), cytotoxic T 

lymphocytes (CTL), human 

leukocyte antigen (HLA)-II, 

and linear B-cell were 

collected by using the IEDB 

database [66] and the 

RANKPEP online server [67]. 

Combined Q.M., 

ANN, and SVM 

models 

Predicting vaccine 

candidates was possible 

by applying reverse 

vaccinology. However, 

the "In Silico" analysis 

required verification.  

Within the scope of this survey, A.I. and ML 

contributions to this research were inspired by their 

relativeness and originality. First, the adaptation of ML 

algorithms for measuring COVID-19 severity and controlling 

the spread of this disease is discussed.  

Diagnosing COVID-19 cases based on a prediction score 

was essential since resources at the pandemic's peak were 

scarce. Most research focused on determining the seriousness 

of the case, i.e., whether it required immediate response by 

hospital admission, ICU, and MV. 

Second, ML algorithms related to predicting the mortality 

rate of patients with COVID-19 were explored. Most works in 

this part resorted to XGBoost because it is one of the most 

popular techniques used in gradient boosting frameworks.  

In most studies, it is fast, scalable, and performs better 

than other ML algorithms, i.e., SVM, L.R., or R.F. The 

literature also varied in selecting features, e.g., C.T. scan 

images, biomarkers, demographics, blood tests, or a 

combination. The methodology of selecting features to train 

the model also varied. 

Last, the investigation was conducted to study different 

ML proposals to solve vaccine effectiveness and development 

problems. The primary concern of most studies were side 

effects (or so-called A.E.s) and immunogenicity.  

On the other hand, few works focused on the automation 

of the drug development process to accelerate the production 

of vaccine candidates. The datasets in these studies were either 

clinical trial data, real-world data, or both. 

7. Conclusion 
This review aimed to monitor COVID-19 variants' impact 

on transmissibility, disease severity, and vaccine 

effectiveness. In addition, it presented an overview of the 

related works on disease severity, mortality predictions, and 

COVID-19 variant vaccines. In summary, this research aimed 

to highlight existing models and approaches in handling the 

COVID-19 pandemic using ML and DL technologies. 

Distinct approaches were developed and tested to forecast 

the mortality or severity of COVID-19. The use of each 

approach primarily depended on the dataset. For example, a 

linguistic approach was applied when having an excellent 

lexicon to rely on it. ML and DL approaches were utilized 

because they provide more precise results and present a better 

performance. 

Finally, we presented a comparison between different 

COVID-19 vaccines and concluded by providing a summary 

of approaches that address the issue of whether vaccines made 

by Moderna, Pfizer, Novavax, Johnson & Johnson, and 

AstraZeneca increase immunization rates and decrease 

COVID-19 variations. 

In the future, the following tasks will be conducted. We 

will present a comparative analysis and evaluation of each 

variant's impact among the selected countries, and we will 

detect and compare the phases of spread for each variant 

among the selected countries. Finally, the obtained results will 

be used later to avoid the spread in other countries. 
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