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Abstract - Chronic Kidney Disease (CKD) remains a universal health issue. Learning the attributes relevant to CKD patients 

might help improve the early prediction of CKD. However, the outliers in the CKD database may affect the prediction accuracy. 

To solve this issue, a Moth Flame (MF)-based DBSCAN with Pearson Correlation (MFDBSCAN-PC) algorithm was suggested 

that adjusts the DBSCAN variables during clustering of the CKD-related attributes and creates the cleansed database without 

outliers. Also, various machine learning classifiers were performed for CKD prediction. But, the complex and implicit temporal 

relationships between local and global attributes were not learned, influencing the learning of the time-series CKD database. 

Therefore, this article proposes a Deep Clustering-based outlier removal and Convolutional Neural network with a Hierarchical 

Bi-directional Long Short-Term Memory (DC-CNN-HBLSTM) model to process the time-series database for CKD prediction. 

Primarily, the CKD information-rich dataset is pre-processed using data imputation to fill up any blanks in the rows. Then, MF 

optimization performs to select the optimal DBSCAN variables and attributes simultaneously. Based on the best variables, the 

DBSCAN is employed as a new clustering layer in the CNN structure to cluster the data points and remove the outliers from the 

database, resulting in a newly cleaned database. After that, the HBLSTM classifier is trained by learning the temporal 

correlation between the local and global attributes to create a trained model. Further, the trained classification model is used 

to classify the test instances into healthy and CKD patients. Finally, the experimental results realize the DC-CNN-HBLSTM 

model achieves 96.21% accuracy compared to the SVM, recursive ANN, and ELM classifiers, which achieved 88.69%, 90.57%, 

and 92.9% accuracy for the CKD database. 

Keywords - Attribute selection, Chronic kidney disease, Clustering, CNN, DBSCAN, Hierarchical bidirectional LSTM, Moth 

flame optimization, Outliers removal. 

1. Introduction 
Chronic kidney disease (CKD) is a medical disorder in 

which a patient gradually loses kidney function. As a result, 

their standard of living as a whole declined. One out of every 

ten persons globally suffers from CKD. The prevalence of 

CKD is increasing, and by 2040, it is expected to rank as the 

fifth leading cause of death worldwide [1]. It is a major 

contributor to excessive medical expenses. The expense of 

transplantation and dialysis amounts to 2%-3% of the yearly 

medical expenditure in high-income countries [2]. Dialysis 

and kidney transplants are the only treatment options for 

people with renal failure in low- and middle-income countries 

[3]. Unpredictably, the number of people with renal failure is 

likely to rise in developing countries like China and India [4]. 

 

Due to CKD, it becomes more difficult for the kidneys to 

filter out extra fluid from the body. High levels of fluid, 

electrolytes, and trashes in the body are potentially lethal 

consequences of severe chronic renal impairment [5]. Risks 

like excessive blood hypertension, anaemia, weak muscles, 

and sciatica are possible. CKD prediction is poor, mainly since 

the disease is frequently undetectable until it is severe [6]. 

Conversely, delayed CKD prognosis leads to less opportunity 

to avoid adverse effects. Physicians must be attentive to CKD 

to apply evidence-based therapy that can delay the course of 

renal impairment, avoid diabetic problems and improve 

cardiac mortality [7]. CKD is generally incurable, and therapy 

focuses on preventing the growth of kidney and heart 

disorders [8]. Despite existing therapies, there is still a concern 

about the potential effects and CKD development. As a result, 

early identification, diagnosis, and monitoring of CKD are 

essential. It is also important to predict the evolution of CKD 

with fair precision due to its adaptive and hidden character in 

the early phases and patient heterogeneity. The severity of 

CKD is frequently defined in terms of stages. The stage, 

whether a patient is advancing, and the rate of advancement 

all impact clinical decisions. Further, characterizing the illness 

stage is critical since it provides various indicators that help 

determine the necessary intervention and therapies. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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So, data mining may play a significant role in extracting 

confidential data from massive patient medical and clinical 

datasets that physicians regularly gather from patients to get 

insights regarding diagnostic information and execute 

accurate treatment plans [9-11]. Data mining is the technique 

of retrieving hidden data from massive datasets. Numerous 

situations and fields make use of data mining techniques. 

Researchers can try to predict, classify, filter, and cluster data 

using data mining techniques. From this perspective, many 

scientists developed and emerged various data mining 

methods involving pre-processing, attribute extraction, 

clustering, and classification algorithms for predicting CKD 

patients and providing precise diagnoses [12]. However, due 

to the vast number of patients, it is impractical to examine each 

individual, and persons at a higher risk of having CKD will be 

advised to undertake comprehensive testing. Maintaining 

clinical databases is currently a complex task in the healthcare 

business. 
 

1.1. Research Gap 

Most of the classifier models in the literature need more 

attributes to predict CKD and non-CKD patients 

appropriately. Also, they have separate pre-processing, 

clustering, and classification algorithms, resulting in high 

computation time for medium-sized and large-sized databases. 

Most studies involve machine learning classifiers, which were 

unsuitable for large-scale databases due to slow training. The 

temporal correlation between the attributes was essential to 

predict CKD patients in an earlier stage. 
 

1.2. Problem Description 

To provide high-quality service, the patient's data 

contains many aspects, and illness diagnosis must be delivered 

with exceptional care. Because the data saved in the hospital 

database may contain missing or unneeded information, 

mining the patient data becomes difficult. Thus, improved data 

processing and data reduction methodologies are required 

before applying data mining algorithms. For this reason, an 

uncertainty handling attribute selection was performed to 

solve the issue of extensive database handling, choose the 

significant attributes and predict the CKD patients.  
 

First, the CKD database was grouped by classical the 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN), which uses randomly assigned epsilon and mid-

point variables [13]. However, the clustering was not 

satisfactory when such variables were not appropriately 

assigned, i.e., with no prior data. So, a Moth Flame-based 

DBSCAN with Pearson Correlation (MFDBSCAN-PC) 

algorithm has been designed to optimize the variables based 

on the flight route characteristics of the moth flame [14]. The 

fitness value of each moth flame was determined according to 

their location, and the attribute's linear relationship among the 

class variable was measured by Pearson's linear correlation, 

which helps to group similar attributes. Also, the attributes 

which do not belong to any group were termed outliers and 

removed from the database.  

Further, the processed database was passed to the 

different machine learning classifiers for training. Later, the 

trained classifiers were utilized to predict CKD from testing 

instances. On the other hand, the isolated processes of 

clustering and classification were time-consuming for 

medium-sized and large-sized databases. Also, the complex 

and implicit correlations between local and global attributes 

were not considered. 

1.3. Research Objective 

This research focuses on designing a unified deep 

learning-based clustering and classification model, which 

supports clinicians in efficiently predicting CKD patients from 

the large-scale clinical database. 

1.4. Research Contribution 

The DC-CNN-HBLSTM framework is developed in this 

research to handle the time-series database for CKD 

prediction. The CKD database is initially gathered and pre-

processed via data imputation to manage missing data. The 

moth flame optimization is then done to find the best 

DBSCAN parameters and the most appropriate attributes. 

According to the best parameters, the DBSCAN clustering is 

implemented as an additional layer in the CNN model to 

generate the clusters and remove the outlier data from the 

CKD database. It provides a new cleansed CKD database, 

passed into the HBLSTM classifier to learn the hierarchically 

temporal correlation between the characteristics and class 

labels, i.e., CKD data in each interval. As a result, a trained 

classification model is created and used to categorize the test 

examples as healthy or CKD patients. Thus, this DC-CNN-

HBLSTM model enhances the accuracy of predicting CKD 

from time-series data. 

1.5. Organization of the Paper 

Section 2 presents the research performed on predicting 

and classifying CKD. The presented paradigm is explained in 

Section 3, and its effectiveness is depicted in Section 4. 

Conclusions and suggestions for further research are presented 

in Section 5. 

2. Literature Survey 
Pasadana et al. [15] presented CKD prediction depending 

on various decision tree schemes, including Random Forest 

(RF). But, it needs pre-processing methods to solve the 

missing values in the dataset. Ogunleye and Wang [16] 

discussed many machine-learning algorithms for CKD 

diagnosis and selected Extreme Gradient Boosting (XGBoost) 

as a base system, which was optimized and trained on each 

attribute related to CKD. However, feature selection schemes 

must choose the most significant attributes and reduce the 

attribute dimensionality. 

Qin et al. [17] presented an integrated model which 

combines logistic regression and RF by perceptron to 
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diagnose CKD patients. First, the CKD database was acquired 

and given to the K-Nearest Neighbour (KNN) imputation 

scheme to handle the missing values. But, the number of 

instances was limited, so the generalization efficiency of this 

framework was not satisfactory. 

Khamparia et al. [18] designed a new deep learner for 

CKD categorization based on the stacked autoencoder 

structure, which applies multimedia information with a 

SoftMax classifier. First, the CKD database was pre-processed 

to handle the outliers using the data imputation schemes. 

Then, the stacked autoencoder was used to capture the 

significant traits, and those were passed to the SoftMax 

categorizer to determine the probabilities of each class, i.e. 

predict the healthy and CKD patients. However, the 

hyperparameters were not optimized, impacting the efficiency 

of large-scale datasets. 

Ma et al. [26] developed a Heterogeneous Modified 

Artificial Neural Network (HMANN) for the early 

identification, partition, and prognosis of CKD. First, the 

ultrasound kidney scans were collected and pre-processed to 

enhance the image contrast using Gabor filtering. After that, 

the images were partitioned to differentiate essential and non-

essential pixels. Then, the Haralick, histogram, and adaptive 

characteristics were retrieved and classified by the HMANN, 

which involves the SVM, Multi-Layer Perceptron (MLP), and 

backpropagation algorithms. But the efficiency was less for a 

limited dataset and needed to analyze the efficiency of other 

CKD datasets. 

Elkholy et al. [20] presented a smart categorization and 

prediction framework, which employs a modified Deep Belief 

Network (DBN) to predict kidney-related disorders. In this 

framework, SoftMax was utilized as an activation factor, and 

the categorical cross-entropy was utilized as a loss factor. But, 

its computation cost was high during initialization. Ilyas et al. 

[21] presented decision tree algorithms for CKD prognosis. 

First, the database was created using the CKD patients' clinical 

files. Then, pre-processing was applied to manage missing 

values. Moreover, J48 and RF classifiers were performed to 

predict the CKD severity levels. However, the random forest 

classifier was challenging to apply in real-time prediction due 

to the enormous amount of trees and the slow training process. 

Peng et al. [22] designed a 2-level neural network to 

predict CKD using ultra-dimensional training databases. The 

pre-processing feature selection was conducted at the initial 

level using different algorithms. The second level used the 

single-layer neural network to learn the database and predict 

CKD patients. Nevertheless, the entire framework was not 

effective while using several redundant attributes. 

Rashed-Al-Mahfuz et al. [23] presented machine learning 

frameworks using selective major pathological types to detect 

medical analysis characteristics, which supports the precise 

early prognosis of CKD. First, the database was processed and 

converted into the desired form with missing value 

imputations. Then, the shapely additive explanations scheme 

was applied to choose the significant attributes. Further, those 

attributes were fed to the RF, gradient boosting, XGBoost, 

logistic regression, and SVM algorithms for CKD 

classification. But these classifiers were not suitable for 

processing the time-series attributes, which may need further 

increase the classification accuracy. 

Antony et al. [24] designed an intelligent system to 

categorize patients into CKD or non-CKD, which supports 

physicians in coping with several patients and rapidly offers a 

prognosis. First, data collection and regularization schemes 

were performed on the database to remove the outliers. Then, 

different attribute selection schemes like filtering, wrapper-

based, embedded-based and unsupervised schemes were 

conducted to select the most significant attributes and decrease 

the number of input parameters. Moreover, those attributes 

were fed to the K-means clustering, Isolation forest (I-forest), 

DBSCAN, and autoencoder for classification. However, it 

needs to learn the temporal attributes to enhance the 

classification efficiency. 

Singh et al. [25] designed a Deep Neural Network (DNN) 

to identify and predict CKD earlier. First, the mean of the 

related attributes utilizes to substitute each missing value in 

the dataset. Then, the best parameters of the neural network 

were set by initializing the parameters and performing many 

tests. The primary relevant attributes were chosen by 

Recursive Feature Elimination (RFE) and fed to the DNN for 

categorizing healthy and CKD patients. Nevertheless, the 

dataset was limited and needed additional attributes to 

improve the prediction efficiency. 

3. Proposed Methodology 
This section describes the DC-CNN-HBLSTM model 

briefly. A block diagram of the presented study illustrates in 

Figure 1. The significant contributions of this study are: 

• First, the CKD database is obtained from the UCI 

repository and pre-processed using the data imputation 

technique to fill in the missing values in the database. 

 

• Then, the moth flame optimization is performed to choose 

the most optimal attributes and DBSCAN's parameters 

simultaneously. 

 

• After that, unsupervised CNN clustering is performed, 

which involves the DBSCAN algorithm as an additional 

layer in the standard CNN model to cluster the database 

and identify the outliers. The identified outliers are 

discarded from the database, and the new cleansed 

database is generated for further processing. 
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Fig. 1 Block diagram of the presented study for CKD prediction 

• Moreover, the HBLSTM classifier is trained by the 

cleansed database, which learns the temporal correlation 

between the local and global attributes for the effective 

prediction of CKD. The trained classification model is 

later used to classify the test data into CKD or not-CKD. 

 

3.1. Database Description 

The CKD database is retrieved from this study's UCI 

machine learning repository. This database is acquired from 

the hospitals closely in 2 monthly intervals. In this database, 

24 variety of attributes include, namely age, blood pressure, 

specific gravity, albumin, sugar, red blood cells, pus cell, pus 

cell clumps, bacteria, blood glucose random, blood urea, 

serum creatinine, sodium, potassium, hemoglobin, packed cell 

volume, white blood cell count, hypertension, diabetes 

mellitus, coronary artery disease, appetite, pedal edema, and 

anaemia, Also, it has a single class attribute that represents 

CKD and not-CKD. 

3.2. Pre-processing and Attribute Selection 

After collecting the CKD database, a moth flame 

optimization algorithm performs to choose the most optimal 

attributes and DBSCAN's parameters for further processing. 

Figure 2 portrays the moth flame optimization algorithm [14] 

for selecting both CKD-related attributes and DBSCAN's 

parameters simultaneously. This optimization relies on the 

genetic nature of the moth-flighting flames. First, the moth 

population is created, where DBSCAN's parameters and CKD 

attributes represent each moth. The fitness value (prediction 

accuracy) of each moth is determined. If the iteration initiates, 

the flames and the moths are combined. The best combination 

is called flames; otherwise, the moths are ordered according 

to their fitness values and assigned as flames. Then, the 

position of each moth is updated. This process is continued 

until the termination criteria are achieved, i.e., until the 

maximum number of iterations. Finally, the best solution 

obtained,  such as the most relevant CKD attributes and 

optimal DBSCAN parameters, i.e., fine-tuned DBSCAN. 

Once the optimal DBSCAN parameters are obtained, the pre-

processed CKD database with the most relevant attributes is 

given to the unsupervised CNN clustering for outlier removal. 

 
Fig. 2 Flow diagram of moth-flame optimization for CKD attributes 

and DBSCAN's parameter selection 
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Fig. 3 Block diagram of the deep clustering model 

 
Fig. 4 Presented unsupervised CNN-based network structure for data clustering 

 

 
Fig. 5 Structure of HBLSTM 

3.3. Unsupervised CNN Clustering based on Fine-tuned 

DBSCAN Algorithm 

To improve the efficiency of the clustering process, 

unsupervised CNN  integrates with the DBSCAN algorithm in 

this study, which is illustrated in Figure 3. In the learning 

phase, the clusters are updated by the fine-tuned DBSCAN 

algorithm. Figure 4 depicts the network structure of this 

unsupervised CNN, which has multi-convolution with a single 

clustering layer. In this study, the unsupervised CNN clusters 

comprise 5 convolutional layers obtained from the primary 5 

convolutional layers (Conv1 – Conv5) of AlexNet, followed 

by 3 adaptation layers (Conv6, Conv7, and CConv) with 

channel numbers 6144, 2048 and 𝑐, correspondingly, that 

swap the Fully Connected (FC) layer in AlexNet. The 

adaptation layers engage 2 convolutional layers (Conv6 – 

Conv7) and single Clustering Convolutional layer (CConv) 

with 𝑐 clusters, each with 3 × 3 kernels followed by global 

max-pooling. The highest range for all channels of the CConv 

is the result of the max-pooling; thus, the dimension 1 × 𝑐. At 

last, the FC layer is added to obtain the number of clusters. 

If the database comprises 𝑛𝑖 instances 𝐷 =

{𝑥1, 𝑥2, … , 𝑥𝑛𝑖
}. The primary goal is to cluster 𝑛𝑖 instances into 

𝑐 clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑐}. Consider 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛𝑖
} 

is the database without outliers from the FC layer of 

unsupervised CNN using filters ℎ𝑖 = 𝑓 (
𝑊𝐹𝐶

𝐷𝑛
⁄ ), where 𝑊𝐹𝐶 

is the group of variables (weights) of the FC layer. The fine-

tuned DBSCAN algorithm is utilized to obtain the clusters. 

During the training phase, the weight 𝑊𝐹𝐶 and other DBSCAN 

parameters are adjusted simultaneously by the moth flame 

optimization algorithm. 
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3.4. Hierarchical Bi-directional Long Short-Term memory 

Classification 

After clustering the database, the data instances at a 

specific time 𝑡 ∈ 𝑇 are fed to the HBLSTM, which involves 

both local and global BLSTM layers. As illustrated in Figure 

5, global BLSTM has 4 units: input unit, local BLSTM, global 

BLSTM, and time-shared output unit. The input unit forwards 

all attributes among the CKD-fixed window into a 1 × 24 

matrix and then passes it into the local BLSTM unit. The 

dimension of the CKD-fixed window for global BLSTM is 

assigned to 7. Local BLSTM aims to analyze the matrices for 

time-variant attributes and capture the temporal correlations. 

As depicted in Figure 6, the local BLSTM has a many-to-

single BLSTM model. The local BLSTM for each CKD-fixed 

window has BLSTM layers; all LSTM layers comprise 𝑡 

memory blocks related to instances at 𝑡 in all CKD-fixed 

windows. In this model, local BLSTM only provides the 

hidden layer state of the final time step in all directions. After 

that, forward and backward hidden states merge, and the local 

BLSTM can produce a single hidden state to define all CKD-

fixed windows. 

The state created by the local BLSTM unit can be passed 

to the global BLSTM for further analysis. The global BLSTM 

unit is arranged above the local BLSTM unit (see Figure 7), 

which has a many-to-many BLSTM model. Each time step 

incorporates the hidden states generated by the local BLSTM 

unit and uses the arrays of such hidden states to enhance the 

training process. 

At last, the time-shared output unit provides results for 

each temporal node in the global BLSTM unit. Every node in 

the output layer can produce a binary vector to define the 

probabilities of the given instance being CKD or not-CKD. 

The output with a higher probability can be chosen as the final 

prediction, which depends on the hidden state of the 

corresponding global BLSTM time step. Thus, this HBLSTM 

can predict CKD and healthy patients according to the 2 

probability values. 

 
Fig. 6 Structure of local-BLSTM unit 

 
Fig. 7 Structure of global-BLSTM unit 

4. Results and Discussion 

In this section, the efficacy of the DC-CNN-HBLSTM 

was assessed by implementing it in Python using the CKD 

database (discussed in Section 3.1).  

Also, a comparison between the presented and existing 

prediction models is conducted based on the below metrics: 

• Accuracy: It is the fraction of precise prediction over 

the total instances validated. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 (1) 

 

In Eq. (1), TP is the number of instances related to healthy 

people precisely predicted as themselves, whereas TN is the 

number of instances related to CKD patients precisely 

predicted as themselves.  

 

Similarly, FP is the number of instances related to CKD 

patients imprecisely predicted as healthy, and FN is the 

number of instances related to healthy people imprecisely 

predicted as CKD patients. 

 

• Precision: It is determined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 

 

• Recall: It is determined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

 

• F-score: It is determined as: 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 

In this experiment, the DC-CNN-HBLSTM model 

compares with various existing models such as RF [15], 

XGBoost [16], integrated model [17], HMANN [26], DBN 

[20], J48 [21], and DNN [25], which are implemented on the 

CKD database for CKD prediction. 

The comparative analysis of proposed and existing CKD 

prediction models in terms of various performance metrics is 

provided in Table 1. 
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Table 1. Performance analysis of existing and proposed CKD prediction models 

Models 
Precision Recall F-measure Accuracy 

(%) 

XGBoost 86.14 86.37 86.26 86.49 

J48 88.35 88.52 88.44 88.69 

RF 90.10 90.44 90.27 90.57 

Integrated model 91.56 91.71 91.64 91.84 

HMANN 92.45 92.63 92.54 92.90 

DNN 93.50 93.78 93.64 94.00 

DBN 93.80 94.22 94.01 94.40 

DC-CNN-HBLSTM 95.86 96.18 96.02 96.21 

 
Fig. 8 Precision, recall, and f-measure for various CKD prediction 

models on the CKD database 

Figure 8 illustrates the efficiency of various models 

developed for CKD prediction.  

The precision of the DC-CNN-HBLSTM model is 

11.28%, 8.5%, 6.39%, 4.7%, 3.69%, 2.52%, and 2.2% 

improved than the XGBoost, J48, RF, integrated model, 

HMANN, DNN, and DBN models, correspondingly.  

The recall of the DC-CNN-HBLSTM model is 11.36%, 

8.65%, 6.35%, 4.87%, 3.83%, 2.56%, and 2.08% greater than 

the XGBoost, J48, RF, integrated model, HMANN, DNN, and 

DBN models, respectively. 

Likewise, the f-measure of the DC-CNN-HBLSTM is 

11.32%, 8.58%, 6.37%, 4.79%, 3.76%, 2.54%, and 2.14% 

higher than the XGBoost, J48, RF, integrated model, 

HMANN, DNN, and DBN, correspondingly. 

Figure 9 depicts the accuracy of various models applied 

to the CKD database.  

It declares that the accuracy of the DC-CNN-HBLSTM is 

11.24% larger than the XGBoost, 8.48% larger than the J48, 

6.23% larger than the RF, 4.76% larger than the integrated 

model, 3.56% larger than the HMANN, 2.35% larger than the 

DNN and 1.92% larger than the DBN models. 

 
Fig. 9 Accuracy for various CKD prediction models on the CKD 

database 

Thus, it realizes that the DC-CNN-HBLSTM increases 

the accuracy of predicting CKD patients compared to the other 

prediction models. It is because of selecting the most relevant 

attributes and removing the outliers from the database using 

the deep clustering model. Also, the HBLSTM considers the 

data attributes associated with each time step to learn the 

temporal correlation between them and predict the CKD 

patients efficiently. 

5. Conclusion 
 This paper presents the DC-CNN-HBLSTM model for 

predicting CKD from time-series data. First, the CKD corpus 

was acquired and pre-processed. Then, the MF optimization 

was employed to concurrently choose the best DBSCAN 

variables and the traits related to CKD. Using the best 

variables, the DBSCAN clustering algorithm was 

implemented as an additional layer in the standard CNN 

model for clustering the data points and removing the outliers. 

Moreover, the cleansed database was fed to the HBLSTM 

classifier, which learns the temporal correlation between the 

local and global attributes for each time step to create a trained 

model. Later, the trained model was applied to classify the 

unknown data into healthy and CKD patients. At last, the 

investigational outcomes proved that the DC-CNN-HBLSTM 

model realizes an accuracy of 96.21% contrasted with the 

other prediction models applied to the CKD database. 
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