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Abstract - One of the most challenging concerns in the world of operating systems and software is the presence of malicious 

software. The Android operating system is also experiencing the same issues. Because of the significant increase in the 

refinement of Android malware obfuscation and detection avoidance methods, a significant number of conventional malware 

investigative techniques have become outdated. The malware detection approach based on earlier signatures is ineffective for 

detecting unknown threats. In recent years, machine learning and deep learning techniques have proved promising for malware 

detection. A framework is proposed to extract several features like permissions, opcodes, api packages, system calls, intents, 

and api calls from Android malware and benign apps and to build a classifier for malware detection using the most suitable 

machine learning and deep learning algorithms. Based on the performance analysis Random Forest algorithm was identified as 

the suitable classifier as it produced the highest accuracy on raw input. In order to further improve the accuracy, this paper 

proposes a cascade of multilayer autoencoder for feature extraction followed by the random forest classifier for Android 

malware detection. A cascade of an autoencoder and random forest was applied to real-world datasets and achieved an accuracy 

of 99.1%. The proposed work also individually examines the impact of the six types of features to distinguish malware and 

benign apps.  
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1. Introduction 
People's mobiles are becoming increasingly essential in 

their day-to-day activities, such as digital payments, text 

messaging, e-shopping, etc. However, the challenge of 

smartphone security is becoming ever more severe as time 

passes. The research community has been focusing on 

developing malware detection methods by utilizing machine 

learning or deep learning algorithms with various features to 

protect users from newly developed malware. Because the 

Android OS is open source, creating malware that exploits the 

service flaws and security lapses is quite simple and 

economical. This is the primary reason for the significant rise 

in malware attacks on the Android platform.  

Manual inspection and signature-based methods are two 

conventional malware detection approaches that could reveal 

some flaws but suffer from issues like slower detection speed 

and less accuracy. Various ways of detecting Android 

malware were developed in the previous research. They are 

broadly categorized into static, dynamic, and hybrid analysis 

techniques. Malware detection techniques based on static 

analysis do not have to execute the given app to detect if it 

contains malware. Instead, the static features are extracted and 

analyzed. Malware detection techniques based on dynamic 

analysis require executing the app in a virtual environment, 

extracting dynamic features, and using them for malware 

analysis. In the hybrid approach, both static & dynamic 

features are used in the analysis. Static analysis involves less 

complexity and risk.  

Machine Learning and Deep Learning are emerging as 

prominent AI technologies that are being used in a variety of 

fields. Cybersecurity issues are also solved using ML and DL 

algorithms. This paper used ML and DL techniques to classify 

apks into malware and benign classes.  

This research paper is structured as follows. Section 2 

describes previous work. Section 3 discusses related concepts. 

Section 4 presents a proposed methodology for malware 

detection. The malware detection technique using ML 

classifiers and a combination of an autoencoder and the 

random forest is detailed in Section 5. Section 6 concludes and 

provides insights into future work. 
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 2. Related Works 
M. Kumaran [1] et al. proposed ML algorithms with 

manifest files for malware detection. Permissions and intents 

are retrieved from mobile apps, and a feature set is created 

with 182 features. After experimenting with 1000 apps, cubic 

SVM was given 91.7% accuracy. A. Fatima [2] et al. proposed 

a genetic algorithm for selecting the best features for malware 

detection. The number of features is reduced from 99 to 40 

using a genetic algorithm, and later neural networks and SVM 

algorithms are applied. Sirisha. P [3] et al. proposed android 

malware detection using deep learning algorithms from 

permission features—a dataset with 400 apps with 331 

extracted features applied with ANN and achieved 85% 

accuracy. M. Gohari [23] et al. applied an ensemble of CNN 

and LSTM for malware detection. The proposed model was 

applied to 86 network features and achieved good results. X. 

Su [5] et al. proposed deep learning algorithms for malware 

detection. More than 30,000 features are extracted from 

malware, and benign apps and deep Belief Networks (DBN) 

are applied. T. Kim [6] et al. proposed a multimodal with 

multiple features for malware detection. Different features 

like "permissions", "strings", "API calls", "opcodes", etc., are 

extracted from malware, and non-malware apps and ANN are 

applied. Android apps are transformed into grayscale images, 

applied CNNs and ensemble learning techniques and achieved 

good results [7],[8]. Omar N. Elayan [9] et al. proposed GRU 

for malware detection through permission and api call 

features. A dataset with 650 mobile apps (both benign and 

malware) is tested with the proposed GRU and achieved good 

accuracy. Tianliang Lu [10] et al. applied hybrid DL 

techniques for android malware detection. The combination of 

DBN and GRU was used with 351 hybrid features extracted 

from 13000 apks and achieved good accuracy.  

Meghna Dhalaria [26] et al. proposed feature selection-

based Malware detection with ML techniques for android 

malware detection and classification. Gianni D'Angelo [12] et 

al. translated api calls data into api images, and an autoencoder 

was applied to api images. Later, machine learning classifiers 

were applied to the features vector and achieved good results. 

X. Xing [13] et al. converted android apps into android 

images, and later autoencoder was applied to classify malware 

and benign apps. The autoencoder structure has an external 

MLP network to help in categorization and testing. H.J Zhu 

[24] et al. used android permission data, system event data, 

and API calls to create a feature vector. Later, the proposed 

random forest classifier for android malware detection and 

89.9% accuracy was achieved. Parnika Bhat [16] et al. applied 

multi-layered feature selection for android apps. The features 

used for malware detection are Permissions, API call data, 

Intents, Network features and Hardware features. Several 

feature selection techniques like Feature frequency, 

discrimination and gain are used for selecting the best features. 

After creating a final dataset with relevant features, five ML 

classifiers were applied and achieved 96.2% accuracy with a 

random forest classifier.   

Weiqing Huang [25] et al. proposed a bagging classifier 

for malware prediction. Opcodes, App permissions, and 

android images are combined input features and bagging with 

several ML classifiers applied at the training stage. Atika 

Gupta [18] et al. applied shallow learning algorithms J48, NB 

and random forest for the "Drebin" malware dataset and 

achieved better results with the random forest classifier. 

Shohel Rana [19] et al. proposed supervised ML techniques 

for malware detection. Several classifiers like KNN, NB, 

SVM and DT were applied and achieved good accuracy of 

96% with KNN. In [20], authors extracted opcode sequences 

from ag files (retrieved from CFGs) of malware and benign 

apps and applied the LSTM model for malware detection.  

3. Related Concepts 
3.1. Classification Algorithms 

 Android malware detection is a classification problem. 

There are a variety of classification algorithms available, and 

depending on the task being carried out, some of them will be 

more suitable than others. Among the suitable classification 

algorithms for a specific task, the most suitable one can be 

selected based on the performance analysis of the classifiers 

built for specific task-related datasets. A brief short note on 

some of the classifiers involved in this research is presented 

below: 

3.1.1. Naive Bayes Classifier 

A classification method that relies on the Bayes theorem 

with a naive assumption on class conditional independence of 

individual features describing an entity is known as the Naive 

Bayes classifier. It makes learning easier by estimating the 

likelihood of a feature vector in a class as the product of 

individual conditional probabilities of the constituent features 

given the class.  

3.1.2. Support Vector Machine 

 SVM constructs a decision boundary called the 

hyperplane for distinguishing data samples of different 

classes. For non-linearly separable problems, an appropriate 

kernel is used to translate the input data into a high-

dimensional implicit feature space to make the dataset linearly 

separable; it identifies specific training data points on the 

decision boundary called support vectors and finds the 

hyperplane with maximum margin from them. Thus, SVM can 

also successfully classify data into complex, non-linearly 

separable decision regions. Proper regularization of SVM 

avoids over-fitting, even with small data. 

3.1.3. Logistic Regression 

 The logistic regression method is a common statistical 

technique that is primarily useful for classification. It uses a 

logit function for classifying samples into several classes. 

3.1.4. KNN Classifier 

 KNN assigns an unlabeled sample to the class with the 

greatest number of samples in its nearest K neighbors. The 
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value 'K' is an integer that the user specifies. Higher values of 

K reduce the impact of noisy points. Nearest neighbors are 

identified by calculating distances on the fly using measures 

like Euclidean, Minkowski etc. KNN classifiers are inherently 

incremental as they are not model-based classifiers. 

3.1.5. Decision Tree Classifier 

 A decision tree is a tree-structured classifier. In this tree-

structured classifier, internal nodes show different dataset 

options, branches show selection criteria, and each leaf node 

shows the output. 

3.1.6. Random Forest Classifier 

 Random forest is a way for machines to learn by using 

many different decision trees. During the process of creating 

a tree, the best way to split each node is to choose from a set 

of candidate variables that are chosen at random. Random 

Forests can be used to predict the results of classification and 

regression analyses, but they can also be used to pick the most 

important variables and groups and better understand how 

variables relate to each other. The performance of classifiers 

varies with the input set of features available for analysis. 

Modern approaches to classification involve Deep learning 

techniques like autoencoders for feature extraction, especially 

dealing with high-dimensional datasets. A brief discussion on 

autoencoders is given below: 

3.1.7. Autoencoder 

 An autoencoder adopts an unsupervised learning strategy 

to learn the appropriate weights of a neural net that transforms 

the set of input features into a smaller set of latent features 

such that the original data can be approximated in terms of the 

latent features in the reconstruction phase. Thus the 

autoencoder is trained with an encoder and a decoder pair; the 

encoder compresses input into latent space, and the decoder 

reconstructs the essence of the input from the latent space 

representation. There are several types of autoencoders. The 

most widely used types are vanilla autoencoders, multilayer or 

deep autoencoders, regularised autoencoders (Sparse 

autoencoders, Denoising autoencoders), convolutional 

autoencoders, variational autoencoders etc.  

 

Vanilla Autoencoder (Simple Autoencoder) 

 It is an unsupervised learning strategy for neural nets that 

compresses input into a latent space representation. The 

Vanilla autoencoder is a three-layer network with one input 

layer, one output layer, and one hidden layer. This is also 

called an under-complete autoencoder. Under complete 

autoencoders have smaller latent spaces than input 

dimensions. 

 

Deep Autoencoder (Multilayer Autoencoder) 

It is possible to implement the autoencoder's encoder and 

decoder using a stack of layers rather than a single layer. These 

autoencoders are called multilayer or deep autoencoders. In 

this paper, the authors used a multilayer autoencoder for 

android malware detection. 

 

Regularized Autoencoder  

The regularized autoencoders employ a loss function that 

aids in giving the model characteristics other than duplicating 

input to output. There are two different forms of regularized 

autoencoders, the sparse autoencoder and the denoising 

autoencoder. Sparse autoencoders provide an alternate way to 

introduce an information bottleneck, and they do so without 

necessitating a reduction in the number of nodes in hidden 

layers. Denoising autoencoders corrupt the input by adding 

noise. This prevents the autoencoders from just copying the 

input and producing the output without taking into account 

any of the unique properties of the data.  Training a model to 

reproduce with a sparsity penalty can result in it learning 

valuable features. Instead of adding a penalty to the loss 

function, we can get an autoencoder that learns anything 

beneficial by modifying the reconstruction error term of a loss 

function. 

 

Convolutional Autoencoder 

In a convolutional autoencoder, convolutions are used 

instead of fully connected layers. In this model, the encoders 

are convolution layers, and the decoders are deconvolution 

layers. 

4. Research Methodology 
The authors proposed a multilayer autoencoder for 

android malware detection. Malware and benign apps are 

extracted to create a dataset with 1063 features. A multilayer 

autoencoder is applied to get a reduced feature set. The 

reduced feature set is applied with random forest and achieves 

99.1% accuracy. The random forest was selected after 

applying various classifiers on the original dataset with all 

1063 features.  

 The proposed method is shown in figure-1. Android apps 

of malicious and benign types are collected. The collected 

mobile applications are archived files with apk extensions. All 

these applications are applied with a tool named "andropytool" 

to extract static features. A feature vector is formed by 

combining several features, namely permissions, opcodes, 

intents, system commands, api calls, and api packages.  Later, 

a multilayer autoencoder was applied for feature reduction. 

The reduced feature set is applied with the ML classifier. 

Several ML classifiers were applied to the raw dataset for 

selecting an ML classifier. After applying various ML 

classifiers, Random Forest was identified as the best classifier 

with 98.7% accuracy. Later, the random forest was applied 

with a reduced feature set and achieved an accuracy of 99.1%. 
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Fig. 1 Proposed Method for Android Malware Detection 
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5. Experimentation and Results 
 All the experiments are done with the Python language. 

The Spyder environment was used for applying machine 

learning algorithms.  

5.1. Collection of Dataset 

Benign apps are gathered from the play store, the unb site 

[22] and the apkpure site. Malware apps are gathered from 

"virus share" sites. All the apps are applied with a tool, 

"andropytool", to extract static features. The dataset contains 

2,511 malicious apks and 2,508 non-malware apks (Table 1). 

An equal number of malware and non-malware samples were 

used in the experiments to create a balance in the dataset. 

5.2. Feature Extraction 

 A python tool named "Andropytool" is used for 

extracting static features. This utility extracts static features 

from Android apps. It includes several well-known Android 

app inspection utilities, including "Droid Box", "Flow Droid", 

"Strace", "AndroGuard", etc. The tool can be used via docker 

or individual installation. The authors used the docker 

approach for using an installing tool. After installation, a path 

containing a folder of android apps can be given for analysis. 

It produced apk features in json format, and after extracting 

json files, a python script was written to convert json files to 

csv files. The algorithm for extracting features from apps is 

given below. 

 
Table 1. Dataset 

Type Number 

Malware 2,511 

Non-Malware 2,508 

Total 5,019 

Algorithm for Extraction of Static Features from Android 

Apps: 

Input: A directory with android apks 

Output: csv file 

Step 1. Start 

Step 2. Install andropytool using the docker approach 

Step 3. For each mobile application 

     Step 3.1. Apply the andropytool command to retrieve json   

                   file with feature files 

    Step 3.1.1. for each feature file (json file) 

         extract Permissions, Opcodes, API calls,   

                      Strings, API packages, and system commands 

from   

                      json files and store them in a list of  

                     lists and convert list of lists into csv file 

Step 4. Stop  

 

 A csv file is produced after applying the above algorithm. 

It consists of six columns, each for one feature out of seven. 

Each row represents one Android apk. In a single cell of a csv 

file, all features (for example, all permissions used by a 

particular app are stored in a single cell) are nested. These are 

separated by using a python script.  "Permissions" is a binary 

feature in the six selected features. All the remaining features 

are frequency-oriented (for example, opcode represents the 

number of times a particular opcode is used in an app) 

features. So, all these features are separated into six datasets 

for further analysis. The dataset with all combined features is 

also generated as final_dataset. The number of features 

collected for seven datasets is shown in Table 2.  

 

5.3. Applying ML Classifiers 

 After creating final_dataset, the authors applied several 

ML classifiers. The algorithms are also applied to individual 

datasets to analyze which feature is more helpful in 

distinguishing malware and benign app. The accuracies 

obtained after applying algorithms are shown in Table 3. 

Although all ML classifiers produced accurate results, 

Random Forest performed comparatively better on all 

datasets. Random Forest achieved a maximum accuracy of 

98.7% for malware detection. 
 

Table 2. Information about datasets 

Dataset Name Number 

 permission_dataset 38 

 opcodes_dataset 221 

 intents_dataset 93 

 apicalls_dataset 523 

 api_packages_dataset 91 

 system_commands_dataset 96 

 final_dataset 1,062 

 

 With random forest, the apicall dataset achieved 98.7% 

accuracy. Next, api packages have more impact. Random 

Forest achieved 98.6% accuracy with api packages dataset. 

After these two types of features, opcodes and permissions can 

also classify malware and benign apks with 98.5% and 98% 

accuracy. Intents and system commands are little impactful, 

with 96.5% and 95.9% accuracy. From the table-2, it is 

observed that the random forest algorithm performed well for 

android malware detection. 
 

5.4. Applying Autoencoder for Feature Reduction 

In order to further improve the generalization accuracy, 

the authors investigated the impact of explicit feature 

extraction from the final dataset, as there are more than a 

thousand features in it. Multilayer autoencoder is used for 

extracting latent features from the elaborate set of features 

gathered in the final dataset.  
 

 After applying all ML classifiers, it was found that the 

random forest algorithm is the best for malware detection 

among the ML classifiers. The authors applied a multilayer 

autoencoder followed by random forest for malware and 

benign classification. The final dataset with 1062 features is 

processed with a multilayer autoencoder to get reduced 

features. The impact of various autoencoder topologies on 
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detection accuracy is investigated and accordingly finalized an 

optimal topology for better feature reduction. Table 4 shows 

the experiments on six autoencoder topologies for feature 

reduction. The topology-2 is found to be the best with the 

highest accuracy. 
  
5.4.1. Applying Multilayer (Deep) Autoencoder  

The proposed encoder architecture is shown in figure-2. 

An autoencoder comprises two sub-models, an encoder and a 

decoder. The encoder reduces the input while the decoder tries 

to reconstitute the input from the encoder's compact form. The 

encoder prototype is saved and used as a data preparation 

approach to extract features from raw data before training an 

ML classifier. The architecture of the encoder contains 3 

hidden layers followed by a bottleneck layer. The first hidden 

layer has n*2 nodes, the second has (n*2)/2 nodes, and the 

third has (n*2)/4 units. There is a bottleneck layer after these 

three hidden layers. This layer has (n*2)/8 nodes (input/4). 

The architecture of the decoder is in reverse order of the 

encoder. It has three hidden layers with (n*2)/4, (n*2)/2, and 

n*2 units, respectively. The output layer has 1,062 inputs. It 

has an activation function to produce output. The "adam" 

optimizer is used for the autoencoder model. The loss function 

used is "mse". Later, the model is trained with 250 epochs to 

reproduce inputs. Later, the encoder model was saved.  
 

5.4.2. Applying Random Forest with Reduced Features 

 The trained encoding model was used to represent input 

features in compact form. The final_dataset with all features 

is applied with a trained encoder model. The final_dataset has 

1062 features. So, after applying the trained encoder, the 1062 

features are reduced to 265 features. (Because the bottleneck 

layer has n/4 features, where n is the number of input 

features).  

Table 3. Accuracies of ML Classifiers 
 Dataset NB KNN LR SVM DT RF 

permission_dataset 94.6% 96.9% 97.2% 97.6% 97.1% 98% 

opcodes_dataset 94.7% 98% 95.2% 96% 98.1% 98.5% 

intents_dataset 78.7% 96.5% 89.5% 90% 96.2% 96.5% 

apicalls_dataset 98.6% 98.5% 96.9% 96.8% 97.9% 98.7% 

api_packages_dataset 95.7% 98.4% 95.2% 96% 97.8% 98.6% 

system_commands_dataset 90.1% 94.7% 88.8% 92.1% 95% 95.9% 

final_dataset (with the combination of all features) 96% 97.6% 98.6% 95.1% 98.3% 98.7% 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Architecture of Multilayer Autoencoder 
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85% 90% 95% 100%

 Multimodal Deep…

 Ensemble Learning [14]

 Hybrid Approach [11]

Proposed Method

Accuracy Comparison with existing 

works

Table 4. Autoencoder Architecture with a specific Topology 

S.no 
Autoencoder 

Topology 

Encoder structure 

(n- input units, here n=1062) 

Accuracy obtained with 

Random Forest 

1 Topology-1 
n*2 

(2124) 

(n*2)/2 

(1062) 

(n*2)/4 

(531) 

(n*2)/8 

(265) 

(n*2)/16 

(132) 

(Bottleneck 

layer) 

98.9% 

2 Topology -2 
n*2 

(2124) 

(n*2)/2 

(1062) 

(n*2)/4 

(531) 

(n*2)/8 

(265) 

(Bottleneck 

layer) 

-------------- 99.1% 

3 Topology -3 
n*2 

(2124) 

(n*2)/2 

(1062) 

(n*2)/4 

(531) 

(Bottleneck 

layer) 

-------------- -------------- 99% 

4 Topology -4 n n/2 n/4 

n/8 

(Bottleneck 

layer) 

-------------- 98.8% 

5 Topology -5 (n*3) (n*3)/3 (n*3)/9 

(n*3)/27 

(Bottleneck 

layer) 

-------------- 98.8% 

6 Topology -6 n n/2 n/3 n/4 

n/5 

(Bottleneck 

layer) 

98.9% 

 

In this paper, the authors used the random forest as an ML 

classifier because it has the best accuracy with the raw dataset 

(Table 3). The encoded input data is used for training with 

random forest. After applying random forest, the authors 

achieved 99.1% accuracy. 

 

5.5. Comparison with Previous Work 

The proposed model's performance was compared to 

prior studies. (Table 5 and figure-3). The authors in [6] applied 

deep learning ANN with multiple static features and achieved 

98% accuracy. The authors in [14] applied ensemble learning 

algorithms and achieved 89.9% accuracy. In [26], hybrid 

features are used for malware detection and achieve an 

accuracy of 98%.  
 

Table 5. Performance Evaluation 

Model Accuracy 

Multimodal Deep Learning [6] 98% 

Ensemble Learning [14] 89.9% 

Hybrid Approach [26] 98% 

Proposed Method 99.1% 

 

 In this paper, the authors extracted multiple features from 

android apps and proposed several classifiers. Among all 

classifiers, the random forest was given the best accuracy of 

98.7%. Later the authors applied an autoencoder to encode 

input features in compressed form. Later, the random forest 

was applied to the compressed form of input obtained using 

an autoencoder and achieved an accuracy of 99.1%. 

 

 

 

 

 

 

Fig. 3 Accuracy Comparison 

6. Conclusion  
 In this paper, the authors proposed a multilayer 

autoencoder with a random forest classifier for android 

malware detection. Several android apk features are extracted 

using 'andropytool'. The extracted features are created as six 

datasets with permissions, opcodes, api calls, api packages, 

system commands, and intents. All these datasets are applied 

with ML classifiers and achieved 98.7% accuracy with 

random forest. It is also observed that api calls, api packages, 

and opcodes are beneficial for detecting malware apps among 

extracted features. A multilayer autoencoder is applied to the 

final_dataset with all features. The trained encoder was used 

to compress the input features, and the compressed dataset was 

applied with random forest and achieved 99.1% accuracy. The 

generalization performance of the proposed model was also 

good. The achieved accuracy values show that the proposed 

work outperforms traditional ML and DL classifiers for 

android malware detection. 
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