
International Journal of Engineering Trends and Technology Volume 70 Issue 11, 249-257, November 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I11P227 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Android Malware Detection using Multilayer

Autoencoder and Random Forest

A. Lakshmanarao1, M. Shashi2

1,2Department of CS&SE, AU College of Engineering, Andhra University, Visakhapatnam, A.P, India

1Corresponding Author : laxman1216@gmail.com

Received: 14 August 2022 Revised: 08 November 2022 Accepted: 17 November 2022 Published: 26 November 2022

Abstract - One of the most challenging concerns in the world of operating systems and software is the presence of malicious

software. The Android operating system is also experiencing the same issues. Because of the significant increase in the

refinement of Android malware obfuscation and detection avoidance methods, a significant number of conventional malware

investigative techniques have become outdated. The malware detection approach based on earlier signatures is ineffective for

detecting unknown threats. In recent years, machine learning and deep learning techniques have proved promising for malware

detection. A framework is proposed to extract several features like permissions, opcodes, api packages, system calls, intents,

and api calls from Android malware and benign apps and to build a classifier for malware detection using the most suitable

machine learning and deep learning algorithms. Based on the performance analysis Random Forest algorithm was identified as

the suitable classifier as it produced the highest accuracy on raw input. In order to further improve the accuracy, this paper

proposes a cascade of multilayer autoencoder for feature extraction followed by the random forest classifier for Android

malware detection. A cascade of an autoencoder and random forest was applied to real-world datasets and achieved an accuracy

of 99.1%. The proposed work also individually examines the impact of the six types of features to distinguish malware and

benign apps.

Keywords - Android Malware, Random Forest, Multilayer Autoencoder.

1. Introduction
People's mobiles are becoming increasingly essential in

their day-to-day activities, such as digital payments, text

messaging, e-shopping, etc. However, the challenge of

smartphone security is becoming ever more severe as time

passes. The research community has been focusing on

developing malware detection methods by utilizing machine

learning or deep learning algorithms with various features to

protect users from newly developed malware. Because the

Android OS is open source, creating malware that exploits the

service flaws and security lapses is quite simple and

economical. This is the primary reason for the significant rise

in malware attacks on the Android platform.

Manual inspection and signature-based methods are two

conventional malware detection approaches that could reveal

some flaws but suffer from issues like slower detection speed

and less accuracy. Various ways of detecting Android

malware were developed in the previous research. They are

broadly categorized into static, dynamic, and hybrid analysis

techniques. Malware detection techniques based on static

analysis do not have to execute the given app to detect if it

contains malware. Instead, the static features are extracted and

analyzed. Malware detection techniques based on dynamic

analysis require executing the app in a virtual environment,

extracting dynamic features, and using them for malware

analysis. In the hybrid approach, both static & dynamic

features are used in the analysis. Static analysis involves less

complexity and risk.

Machine Learning and Deep Learning are emerging as

prominent AI technologies that are being used in a variety of

fields. Cybersecurity issues are also solved using ML and DL

algorithms. This paper used ML and DL techniques to classify

apks into malware and benign classes.

This research paper is structured as follows. Section 2

describes previous work. Section 3 discusses related concepts.

Section 4 presents a proposed methodology for malware

detection. The malware detection technique using ML

classifiers and a combination of an autoencoder and the

random forest is detailed in Section 5. Section 6 concludes and

provides insights into future work.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

250

 2. Related Works
M. Kumaran [1] et al. proposed ML algorithms with

manifest files for malware detection. Permissions and intents

are retrieved from mobile apps, and a feature set is created

with 182 features. After experimenting with 1000 apps, cubic

SVM was given 91.7% accuracy. A. Fatima [2] et al. proposed

a genetic algorithm for selecting the best features for malware

detection. The number of features is reduced from 99 to 40

using a genetic algorithm, and later neural networks and SVM

algorithms are applied. Sirisha. P [3] et al. proposed android

malware detection using deep learning algorithms from

permission features—a dataset with 400 apps with 331

extracted features applied with ANN and achieved 85%

accuracy. M. Gohari [23] et al. applied an ensemble of CNN

and LSTM for malware detection. The proposed model was

applied to 86 network features and achieved good results. X.

Su [5] et al. proposed deep learning algorithms for malware

detection. More than 30,000 features are extracted from

malware, and benign apps and deep Belief Networks (DBN)

are applied. T. Kim [6] et al. proposed a multimodal with

multiple features for malware detection. Different features

like "permissions", "strings", "API calls", "opcodes", etc., are

extracted from malware, and non-malware apps and ANN are

applied. Android apps are transformed into grayscale images,

applied CNNs and ensemble learning techniques and achieved

good results [7],[8]. Omar N. Elayan [9] et al. proposed GRU

for malware detection through permission and api call

features. A dataset with 650 mobile apps (both benign and

malware) is tested with the proposed GRU and achieved good

accuracy. Tianliang Lu [10] et al. applied hybrid DL

techniques for android malware detection. The combination of

DBN and GRU was used with 351 hybrid features extracted

from 13000 apks and achieved good accuracy.

Meghna Dhalaria [26] et al. proposed feature selection-

based Malware detection with ML techniques for android

malware detection and classification. Gianni D'Angelo [12] et

al. translated api calls data into api images, and an autoencoder

was applied to api images. Later, machine learning classifiers

were applied to the features vector and achieved good results.

X. Xing [13] et al. converted android apps into android

images, and later autoencoder was applied to classify malware

and benign apps. The autoencoder structure has an external

MLP network to help in categorization and testing. H.J Zhu

[24] et al. used android permission data, system event data,

and API calls to create a feature vector. Later, the proposed

random forest classifier for android malware detection and

89.9% accuracy was achieved. Parnika Bhat [16] et al. applied

multi-layered feature selection for android apps. The features

used for malware detection are Permissions, API call data,

Intents, Network features and Hardware features. Several

feature selection techniques like Feature frequency,

discrimination and gain are used for selecting the best features.

After creating a final dataset with relevant features, five ML

classifiers were applied and achieved 96.2% accuracy with a

random forest classifier.

Weiqing Huang [25] et al. proposed a bagging classifier

for malware prediction. Opcodes, App permissions, and

android images are combined input features and bagging with

several ML classifiers applied at the training stage. Atika

Gupta [18] et al. applied shallow learning algorithms J48, NB

and random forest for the "Drebin" malware dataset and

achieved better results with the random forest classifier.

Shohel Rana [19] et al. proposed supervised ML techniques

for malware detection. Several classifiers like KNN, NB,

SVM and DT were applied and achieved good accuracy of

96% with KNN. In [20], authors extracted opcode sequences

from ag files (retrieved from CFGs) of malware and benign

apps and applied the LSTM model for malware detection.

3. Related Concepts
3.1. Classification Algorithms

 Android malware detection is a classification problem.

There are a variety of classification algorithms available, and

depending on the task being carried out, some of them will be

more suitable than others. Among the suitable classification

algorithms for a specific task, the most suitable one can be

selected based on the performance analysis of the classifiers

built for specific task-related datasets. A brief short note on

some of the classifiers involved in this research is presented

below:

3.1.1. Naive Bayes Classifier

A classification method that relies on the Bayes theorem

with a naive assumption on class conditional independence of

individual features describing an entity is known as the Naive

Bayes classifier. It makes learning easier by estimating the

likelihood of a feature vector in a class as the product of

individual conditional probabilities of the constituent features

given the class.

3.1.2. Support Vector Machine

 SVM constructs a decision boundary called the

hyperplane for distinguishing data samples of different

classes. For non-linearly separable problems, an appropriate

kernel is used to translate the input data into a high-

dimensional implicit feature space to make the dataset linearly

separable; it identifies specific training data points on the

decision boundary called support vectors and finds the

hyperplane with maximum margin from them. Thus, SVM can

also successfully classify data into complex, non-linearly

separable decision regions. Proper regularization of SVM

avoids over-fitting, even with small data.

3.1.3. Logistic Regression

 The logistic regression method is a common statistical

technique that is primarily useful for classification. It uses a

logit function for classifying samples into several classes.

3.1.4. KNN Classifier

 KNN assigns an unlabeled sample to the class with the

greatest number of samples in its nearest K neighbors. The

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

251

value 'K' is an integer that the user specifies. Higher values of

K reduce the impact of noisy points. Nearest neighbors are

identified by calculating distances on the fly using measures

like Euclidean, Minkowski etc. KNN classifiers are inherently

incremental as they are not model-based classifiers.

3.1.5. Decision Tree Classifier

 A decision tree is a tree-structured classifier. In this tree-

structured classifier, internal nodes show different dataset

options, branches show selection criteria, and each leaf node

shows the output.

3.1.6. Random Forest Classifier

 Random forest is a way for machines to learn by using

many different decision trees. During the process of creating

a tree, the best way to split each node is to choose from a set

of candidate variables that are chosen at random. Random

Forests can be used to predict the results of classification and

regression analyses, but they can also be used to pick the most

important variables and groups and better understand how

variables relate to each other. The performance of classifiers

varies with the input set of features available for analysis.

Modern approaches to classification involve Deep learning

techniques like autoencoders for feature extraction, especially

dealing with high-dimensional datasets. A brief discussion on

autoencoders is given below:

3.1.7. Autoencoder

 An autoencoder adopts an unsupervised learning strategy

to learn the appropriate weights of a neural net that transforms

the set of input features into a smaller set of latent features

such that the original data can be approximated in terms of the

latent features in the reconstruction phase. Thus the

autoencoder is trained with an encoder and a decoder pair; the

encoder compresses input into latent space, and the decoder

reconstructs the essence of the input from the latent space

representation. There are several types of autoencoders. The

most widely used types are vanilla autoencoders, multilayer or

deep autoencoders, regularised autoencoders (Sparse

autoencoders, Denoising autoencoders), convolutional

autoencoders, variational autoencoders etc.

Vanilla Autoencoder (Simple Autoencoder)

 It is an unsupervised learning strategy for neural nets that

compresses input into a latent space representation. The

Vanilla autoencoder is a three-layer network with one input

layer, one output layer, and one hidden layer. This is also

called an under-complete autoencoder. Under complete

autoencoders have smaller latent spaces than input

dimensions.

Deep Autoencoder (Multilayer Autoencoder)

It is possible to implement the autoencoder's encoder and

decoder using a stack of layers rather than a single layer. These

autoencoders are called multilayer or deep autoencoders. In

this paper, the authors used a multilayer autoencoder for

android malware detection.

Regularized Autoencoder

The regularized autoencoders employ a loss function that

aids in giving the model characteristics other than duplicating

input to output. There are two different forms of regularized

autoencoders, the sparse autoencoder and the denoising

autoencoder. Sparse autoencoders provide an alternate way to

introduce an information bottleneck, and they do so without

necessitating a reduction in the number of nodes in hidden

layers. Denoising autoencoders corrupt the input by adding

noise. This prevents the autoencoders from just copying the

input and producing the output without taking into account

any of the unique properties of the data. Training a model to

reproduce with a sparsity penalty can result in it learning

valuable features. Instead of adding a penalty to the loss

function, we can get an autoencoder that learns anything

beneficial by modifying the reconstruction error term of a loss

function.

Convolutional Autoencoder

In a convolutional autoencoder, convolutions are used

instead of fully connected layers. In this model, the encoders

are convolution layers, and the decoders are deconvolution

layers.

4. Research Methodology
The authors proposed a multilayer autoencoder for

android malware detection. Malware and benign apps are

extracted to create a dataset with 1063 features. A multilayer

autoencoder is applied to get a reduced feature set. The

reduced feature set is applied with random forest and achieves

99.1% accuracy. The random forest was selected after

applying various classifiers on the original dataset with all

1063 features.

 The proposed method is shown in figure-1. Android apps

of malicious and benign types are collected. The collected

mobile applications are archived files with apk extensions. All

these applications are applied with a tool named "andropytool"

to extract static features. A feature vector is formed by

combining several features, namely permissions, opcodes,

intents, system commands, api calls, and api packages. Later,

a multilayer autoencoder was applied for feature reduction.

The reduced feature set is applied with the ML classifier.

Several ML classifiers were applied to the raw dataset for

selecting an ML classifier. After applying various ML

classifiers, Random Forest was identified as the best classifier

with 98.7% accuracy. Later, the random forest was applied

with a reduced feature set and achieved an accuracy of 99.1%.

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

252

Fig. 1 Proposed Method for Android Malware Detection

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

253

5. Experimentation and Results
 All the experiments are done with the Python language.

The Spyder environment was used for applying machine

learning algorithms.

5.1. Collection of Dataset

Benign apps are gathered from the play store, the unb site

[22] and the apkpure site. Malware apps are gathered from

"virus share" sites. All the apps are applied with a tool,

"andropytool", to extract static features. The dataset contains

2,511 malicious apks and 2,508 non-malware apks (Table 1).

An equal number of malware and non-malware samples were

used in the experiments to create a balance in the dataset.

5.2. Feature Extraction

 A python tool named "Andropytool" is used for

extracting static features. This utility extracts static features

from Android apps. It includes several well-known Android

app inspection utilities, including "Droid Box", "Flow Droid",

"Strace", "AndroGuard", etc. The tool can be used via docker

or individual installation. The authors used the docker

approach for using an installing tool. After installation, a path

containing a folder of android apps can be given for analysis.

It produced apk features in json format, and after extracting

json files, a python script was written to convert json files to

csv files. The algorithm for extracting features from apps is

given below.

Table 1. Dataset

Type Number

Malware 2,511

Non-Malware 2,508

Total 5,019

Algorithm for Extraction of Static Features from Android

Apps:

Input: A directory with android apks

Output: csv file

Step 1. Start

Step 2. Install andropytool using the docker approach

Step 3. For each mobile application

 Step 3.1. Apply the andropytool command to retrieve json

 file with feature files

 Step 3.1.1. for each feature file (json file)

 extract Permissions, Opcodes, API calls,

 Strings, API packages, and system commands

from

 json files and store them in a list of

 lists and convert list of lists into csv file

Step 4. Stop

 A csv file is produced after applying the above algorithm.

It consists of six columns, each for one feature out of seven.

Each row represents one Android apk. In a single cell of a csv

file, all features (for example, all permissions used by a

particular app are stored in a single cell) are nested. These are

separated by using a python script. "Permissions" is a binary

feature in the six selected features. All the remaining features

are frequency-oriented (for example, opcode represents the

number of times a particular opcode is used in an app)

features. So, all these features are separated into six datasets

for further analysis. The dataset with all combined features is

also generated as final_dataset. The number of features

collected for seven datasets is shown in Table 2.

5.3. Applying ML Classifiers

 After creating final_dataset, the authors applied several

ML classifiers. The algorithms are also applied to individual

datasets to analyze which feature is more helpful in

distinguishing malware and benign app. The accuracies

obtained after applying algorithms are shown in Table 3.

Although all ML classifiers produced accurate results,

Random Forest performed comparatively better on all

datasets. Random Forest achieved a maximum accuracy of

98.7% for malware detection.

Table 2. Information about datasets

Dataset Name Number

 permission_dataset 38

 opcodes_dataset 221

 intents_dataset 93

 apicalls_dataset 523

 api_packages_dataset 91

 system_commands_dataset 96

 final_dataset 1,062

 With random forest, the apicall dataset achieved 98.7%

accuracy. Next, api packages have more impact. Random

Forest achieved 98.6% accuracy with api packages dataset.

After these two types of features, opcodes and permissions can

also classify malware and benign apks with 98.5% and 98%

accuracy. Intents and system commands are little impactful,

with 96.5% and 95.9% accuracy. From the table-2, it is

observed that the random forest algorithm performed well for

android malware detection.

5.4. Applying Autoencoder for Feature Reduction

In order to further improve the generalization accuracy,

the authors investigated the impact of explicit feature

extraction from the final dataset, as there are more than a

thousand features in it. Multilayer autoencoder is used for

extracting latent features from the elaborate set of features

gathered in the final dataset.

 After applying all ML classifiers, it was found that the

random forest algorithm is the best for malware detection

among the ML classifiers. The authors applied a multilayer

autoencoder followed by random forest for malware and

benign classification. The final dataset with 1062 features is

processed with a multilayer autoencoder to get reduced

features. The impact of various autoencoder topologies on

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

254

detection accuracy is investigated and accordingly finalized an

optimal topology for better feature reduction. Table 4 shows

the experiments on six autoencoder topologies for feature

reduction. The topology-2 is found to be the best with the

highest accuracy.

5.4.1. Applying Multilayer (Deep) Autoencoder

The proposed encoder architecture is shown in figure-2.

An autoencoder comprises two sub-models, an encoder and a

decoder. The encoder reduces the input while the decoder tries

to reconstitute the input from the encoder's compact form. The

encoder prototype is saved and used as a data preparation

approach to extract features from raw data before training an

ML classifier. The architecture of the encoder contains 3

hidden layers followed by a bottleneck layer. The first hidden

layer has n*2 nodes, the second has (n*2)/2 nodes, and the

third has (n*2)/4 units. There is a bottleneck layer after these

three hidden layers. This layer has (n*2)/8 nodes (input/4).

The architecture of the decoder is in reverse order of the

encoder. It has three hidden layers with (n*2)/4, (n*2)/2, and

n*2 units, respectively. The output layer has 1,062 inputs. It

has an activation function to produce output. The "adam"

optimizer is used for the autoencoder model. The loss function

used is "mse". Later, the model is trained with 250 epochs to

reproduce inputs. Later, the encoder model was saved.

5.4.2. Applying Random Forest with Reduced Features

 The trained encoding model was used to represent input

features in compact form. The final_dataset with all features

is applied with a trained encoder model. The final_dataset has

1062 features. So, after applying the trained encoder, the 1062

features are reduced to 265 features. (Because the bottleneck

layer has n/4 features, where n is the number of input

features).

Table 3. Accuracies of ML Classifiers
 Dataset NB KNN LR SVM DT RF

permission_dataset 94.6% 96.9% 97.2% 97.6% 97.1% 98%

opcodes_dataset 94.7% 98% 95.2% 96% 98.1% 98.5%

intents_dataset 78.7% 96.5% 89.5% 90% 96.2% 96.5%

apicalls_dataset 98.6% 98.5% 96.9% 96.8% 97.9% 98.7%

api_packages_dataset 95.7% 98.4% 95.2% 96% 97.8% 98.6%

system_commands_dataset 90.1% 94.7% 88.8% 92.1% 95% 95.9%

final_dataset (with the combination of all features) 96% 97.6% 98.6% 95.1% 98.3% 98.7%

Fig. 2 Architecture of Multilayer Autoencoder

In
p
u
t

L
ay

er

Encoder

Decoder

n (1062

units)

n*2 (2124

units)

(n*2)/2

(1062

units)

(n*2)/8

 (265

units)

(n*2)/4

 (531

units)

(n*2)/4

(531

units)

O
u
tp

u
t

L
ay

er

Bottleneck

Layer

(n*2)/2

(1062

units)

(n*2)

(2124

units)

n (1062

units)

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

255

85% 90% 95% 100%

 Multimodal Deep…

 Ensemble Learning [14]

 Hybrid Approach [11]

Proposed Method

Accuracy Comparison with existing

works

Table 4. Autoencoder Architecture with a specific Topology

S.no
Autoencoder

Topology

Encoder structure

(n- input units, here n=1062)

Accuracy obtained with

Random Forest

1 Topology-1
n*2

(2124)

(n*2)/2

(1062)

(n*2)/4

(531)

(n*2)/8

(265)

(n*2)/16

(132)

(Bottleneck

layer)

98.9%

2 Topology -2
n*2

(2124)

(n*2)/2

(1062)

(n*2)/4

(531)

(n*2)/8

(265)

(Bottleneck

layer)

-------------- 99.1%

3 Topology -3
n*2

(2124)

(n*2)/2

(1062)

(n*2)/4

(531)

(Bottleneck

layer)

-------------- -------------- 99%

4 Topology -4 n n/2 n/4

n/8

(Bottleneck

layer)

-------------- 98.8%

5 Topology -5 (n*3) (n*3)/3 (n*3)/9

(n*3)/27

(Bottleneck

layer)

-------------- 98.8%

6 Topology -6 n n/2 n/3 n/4

n/5

(Bottleneck

layer)

98.9%

In this paper, the authors used the random forest as an ML

classifier because it has the best accuracy with the raw dataset

(Table 3). The encoded input data is used for training with

random forest. After applying random forest, the authors

achieved 99.1% accuracy.

5.5. Comparison with Previous Work

The proposed model's performance was compared to

prior studies. (Table 5 and figure-3). The authors in [6] applied

deep learning ANN with multiple static features and achieved

98% accuracy. The authors in [14] applied ensemble learning

algorithms and achieved 89.9% accuracy. In [26], hybrid

features are used for malware detection and achieve an

accuracy of 98%.

Table 5. Performance Evaluation

Model Accuracy

Multimodal Deep Learning [6] 98%

Ensemble Learning [14] 89.9%

Hybrid Approach [26] 98%

Proposed Method 99.1%

 In this paper, the authors extracted multiple features from

android apps and proposed several classifiers. Among all

classifiers, the random forest was given the best accuracy of

98.7%. Later the authors applied an autoencoder to encode

input features in compressed form. Later, the random forest

was applied to the compressed form of input obtained using

an autoencoder and achieved an accuracy of 99.1%.

Fig. 3 Accuracy Comparison

6. Conclusion
 In this paper, the authors proposed a multilayer

autoencoder with a random forest classifier for android

malware detection. Several android apk features are extracted

using 'andropytool'. The extracted features are created as six

datasets with permissions, opcodes, api calls, api packages,

system commands, and intents. All these datasets are applied

with ML classifiers and achieved 98.7% accuracy with

random forest. It is also observed that api calls, api packages,

and opcodes are beneficial for detecting malware apps among

extracted features. A multilayer autoencoder is applied to the

final_dataset with all features. The trained encoder was used

to compress the input features, and the compressed dataset was

applied with random forest and achieved 99.1% accuracy. The

generalization performance of the proposed model was also

good. The achieved accuracy values show that the proposed

work outperforms traditional ML and DL classifiers for

android malware detection.

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

256

References
[1] M. Kumaran and W. Li, "Lightweight Malware Detection Based on Machine Learning Algorithms and the Android Manifest File," IEEE

MIT Undergraduate Research Technology Conference (URTC), pp. 1-3, 2016. Crossref, https://doi.org/10.1109/URTC.2016.8284090

[2] A. Fatima, R. Maurya, M. K. Dutta, R. Burget and J. Masek, "Android Malware Detection Using Genetic Algorithm-based Optimized

Feature Selection and Machine Learning," 2019 42nd International Conference on Telecommunications and Signal Processing (TSP),

pp. 220-223, 2019. Crossref, https://doi.org/10.1109/TSP.2019.8769039

[3] Sirisha.P, K. P. B., A. K. K. and A. T, "Detection of Permission Driven Malware in Android Using Deep Learning Techniques," 2019

3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 941-945, 2019. Crossref,

https://doi.org/10.1109/ICECA.2019.8821811

[4] Dr.S.Masood Ahamed and Dr.V.N.Sharma, "Malware Detection using Optimized Random Forest Classifier within Mobile

Devices," SSRG International Journal of Computer Science and Engineering, vol. 3, no. 5, pp. 90-99, 2016. Crossref,

https://doi.org/10.14445/23488387/IJCSE-V3I5P118

[5] X. Su, D. Zhang, W. Li and K. Zhao, "A Deep Learning Approach to Android Malware Feature Learning and Detection," 2016 IEEE

Trustcom/BigDataSE/ISPA, pp. 244-251, 2016. Crossref, https://doi.org/10.1109/TrustCom.2016.0070

[6] T. Kim, B. Kang, M. Rho, S. Sezer and E. G. Im, "A Multimodal Deep Learning Method for Android Malware Detection Using Various

Features," in IEEE Transactions on Information Forensics and Security, vol. 14, no. 3, pp. 773-788, 2019. Crossref,

https://doi.org/10.1109/TIFS.2018.2866319

[7] A. Lakshmanarao and M.Shashi, "Android Malware Detection Using Convolutional Neural Networks," In Data Engineering and

Intelligent Computing Advances in Intelligent Systems and Computing, vol. 1407, pp. 151-162, 2021. Crossref,

https://doi.org/10.1007/978-981-16-0171-2_15

[8] Lakshmanarao. A and Shashi. M, "An Efficient Android Malware Detection Framework with Stacking Ensemble Model," International

Journal of Engineering Trends and Technology, vol. 70, no. 4, pp. 294-302, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-

V70I4P226

[9] Omar N. Elayan and Ahmad M. Mustafa, "Android Malware Detection Using Deep Learning," Procedia Computer Science, vol. 184,

pp. 847-852, 2021. https://doi.org/10.1016/j.procs.2021.03.106

[10] Tianliang Lu, Yanhui Du, Li Ouyang, Qiuyu Chen and Xirui Wang, "Android Malware Detection Based on a Hybrid Deep Learning

Model," Security and Communication Networks, vol. 2020, pp. 11, 2020. Crossref, https://doi.org/10.1155/2020/8863617

[11] Syeda Sara Samreen and Hakeem Aejaz Aslam, "Hyperspectral Image Classification using Deep Learning Techniques: A

Review," SSRG International Journal of Electronics and Communication Engineering, vol. 9, no. 6, pp. 1-4, 2022. Crossref,

https://doi.org/10.14445/23488549/IJECE-V9I6P101

[12] Gianni D'Angelo, Massimo Ficco and Francesco Palmieri, "Malware Detection in Mobile Environments Based on Autoencoders and

API-Images," Journal of Parallel and Distributed Computing, vol. 137, pp. 26-33, 2020. Crossref,

https://doi.org/10.1016/j.jpdc.2019.11.001

[13] X. Xing, X. Jin, H. Elahi, H. Jiang and G. Wang, "A Malware Detection Approach Using Autoencoder in Deep Learning," IEEE Access,

vol. 10, pp. 25696-25706, 2022. Crossref, https://doi.org/10.1109/ACCESS.2022.3155695

[14] K.Aishwarya and C.Selvi, "Predicting Fraud Apps using Hybrid Learning Approach," SSRG International Journal of Computer Science

and Engineering, vol. 5, no. 6, pp. 1-5, 2018. Crossref, https://doi.org/10.14445/23488387/IJCSE-V5I6P103

[15] Nektaria Potha, V. Kouliaridis and G. Kambourakis, "An Extrinsic Random-Based Ensemble Approach for Android Malware Detection,"

Connection Science, vol. 33, no. 4, pp. 1077-1093, 2021. Crossref, https://doi.org/10.1080/09540091.2020.1853056

[16] Parnika Bhat and Kamlesh Dutta, "A Multi-Tiered Feature Selection Model for Android Malware Detection Based on Feature

Discrimination and Information Gain," Journal of King Saud University - Computer and Information Sciences, 2021. Crossref,

https://doi.org/10.1016/j.jksuci.2021.11.004

[17] Immadi Murali Krishna, Pendem Durga Bhavani, Tiriveedhi M S Madhuvani and Vajja Poojitha, "An Effective Segmentation and

modified Ada Boost CNN based classification model for Fabric Fault Detection system," SSRG International Journal of Computer

Science and Engineering, vol. 7, no. 7, pp. 34-40, 2020. Crossref, https://doi.org/10.14445/23488387/IJCSE-V7I7P106

[18] Atika Gupta, Sudhanshu Maurya, Divya Kapil, Nidhi Mehra and Harendra Singh Negi, "Android Malware Detection using Machine

Learning," International Journal of Recent Technology and Engineering, vol. 8, no. 2S12, 2019.

[19] Rana, M. S., Sung and A. H, "Malware Analysis on Android Using Supervised Machine Learning Techniques," International Journal of

Computer and Communication Engineering, vol. 7, no. 4, pp. 178-188, 2018.

[20] Lakshmanarao A, and Shashi M, "Android Malware Detection with Deep Learning using RNN from Opcode Sequences," International

Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 1, pp. 145–157, 2022. Crossref,

https://doi.org/10.3991/ijim.v16i01.26433

https://doi.org/10.1109/URTC.2016.8284090
https://doi.org/10.1109/TSP.2019.8769039
https://doi.org/10.14445/23488387/IJCSE-V3I5P118
https://doi.org/10.1109/TrustCom.2016.0070
https://doi.org/10.1109/TIFS.2018.2866319
https://doi.org/10.1007/978-981-16-0171-2_15
https://doi.org/10.14445/22315381/IJETT-V70I4P226
https://doi.org/10.14445/22315381/IJETT-V70I4P226
https://doi.org/10.1016/j.procs.2021.03.106
https://doi.org/10.1155/2020/8863617
https://doi.org/10.14445/23488549/IJECE-V9I6P101
https://doi.org/10.1016/j.jpdc.2019.11.001
https://doi.org/10.1109/ACCESS.2022.3155695
https://doi.org/10.14445/23488387/IJCSE-V5I6P103
https://doi.org/10.1080/09540091.2020.1853056
https://doi.org/10.1016/j.jksuci.2021.11.004
https://doi.org/10.14445/23488387/IJCSE-V7I7P106
https://doi.org/10.3991/ijim.v16i01.26433

A. Lakshmanarao & M. Shashi / IJETT, 70(11), 249-257, 2022

257

[21] Oyinloye Oghenerukevwe Elohor, Olatomide Awoyomi, "Modelling A Data Sniffing Malware Detector For Apks," International

Journal of Computer and Organization Trends, vol. 9, no. 6, pp. 1-8, 2019. Crossref, https://doi.org/10.14445/22492593/IJCOT-

V9I6P301

[22] [Online]. Available: unb.ca/cic/datasets/andmal2017.html

[23] M. Gohari, S. Hashemi and L. Abdi, "Android Malware Detection and Classification Based on Network Traffic Using Deep Learning,"

2021 7th International Conference on Web Research(ICWR), pp. 71-77, 2021. Crossref,

https://doi.org/10.1109/ICWR51868.2021.9443025

[24] Hui-Juan Zhu, Tong-Hai Jiang, Bo Ma, Zhu-Hong You, Wei-Lei Shi and Li Cheng, "HEMD: A Highly Efficient Random Forest-Based

Malware Detection Framework For Android," Neural Comput & Application, vol. 30, pp. 3353–3361, 2018. Crossref,

https://doi.org/10.1007/s00521-017-2914-y

[25] Weiqing Huang, Erhang Hou, Liang Zheng and Weimiao Feng, "MixDroid: A Multi-Features and Multiclassifiers Bagging System for

Android Malware Detection," AIP Conference Proceedings, vol. 1967, pp. 020015, 2018. Crossref, https://doi.org/10.1063/1.5038987

[26] Meghna Dhalaria and Ekta Gandotra, "A Hybrid Approach for Android Malware Detectionand Family Classification," International

Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 6, 2020. Crossref, https://doi.org/10.9781/ijimai.2020.09.001

https://doi.org/10.14445/22492593/IJCOT-V9I6P301
https://doi.org/10.14445/22492593/IJCOT-V9I6P301
https://doi.org/10.1109/ICWR51868.2021.9443025
https://doi.org/10.1007/s00521-017-2914-y
https://doi.org/10.1063/1.5038987

