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Abstract - The decoding of low-girth Low-Density Parity-Check code using the conventional method generates an error floor 

during decoding. Therefore, a neural network-based decoder can be used to overcome this problem to decode low-girth 

code. However, the neural network-based decoder may not be best suitable for high-girth code. In the current work, a neural 

network-based low-girth LDPC decoder is developed to decode an image sample of low as well as high-girth code. The NN 

decoder performs best for low-girth code. However, performance in comparison with a similar decoder, the decoder 

developed in the current work has improved bit error rate for the same signal-to-noise ratio. 
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1. Introduction  
The communication system consists of transmitters and 

receivers. The channel coder is one of the important 

components of an efficient and reliable communication 

system. Channel coding[1] is a technique used 

for controlling errors in data transmission over unreliable or 

noisy channels. It is widely used in deep-space 

communication, satellite communication, wireless 

communication, and data transmission [2]. On account of 

noise produced by various channels error in transmission is 

generated. This noise is removed using a channel coder. It 

is also known as an error-correcting code. This channel 

coder is broadly classified into two categories, 1) Backward 

error-correcting code and 2) Forward error-correcting code.  

The Automatic Repeat Request is an example of a 

backward error-correcting code [3]. This code requires 

returning channel in addition. When an error is detected by 

a receiver, it sends a negative acknowledgement to the 

transmitter for retransmission of the code, and the code is 

retransmitted by the transmitter. Hence, additional time is 

required every time for the retransmission of the code. Such 

a channel coder is not preferred. The forward error-

correcting code provides reliability by introducing 

redundancy in the signal. This eliminates re-transmission. It 

can be again classified as 1) convolutional codes and 2) 

linear block codes (LBCs) [4]. The Low-Density Parity-

Check code is one of the important sub-categories of Linear 

Block Code. The code was introduced by R. Gallager and is 

proven to be a suitable channel coding scheme for high 

throughput transmission. It is also considered a channel 

coding scheme for the IEEE 802.11ax system [5].  

The encoding of an LDPC code can be done either by 

Linear Time Encoding or Gauss Jorden Elimination 

Method. The decoding can be carried out by the 

conventional method of hard-decision decoding or soft-

decision decoding. The soft-decision decoding outperforms 

hard-decision decoding with the cost of computational 

complexity. Belief propagation and min-sum decoding are 

examples of soft-decision decoding [6].  

Belief propagation decoding is comparatively complex, 

as it requires hyperbolic tan, multipliers, adders, and 

comparators. One can eliminate this complexity in the 

decoder along with the cost of a reduction in coding gain by 

using a min-sum decoder [6]. This does not have multipliers 

and hyperbolic tan functions in the decoding process [7]. 
The conventional method of decoder design begins with 

parity-check matrix construction of high-girth.  This is 

followed by encoding and decoding of the code [8]. 

The girth of a code is the formation of the shortest cycle 

through the connecting edges of variable nodes and check 

nodes of low-density parity-check code [9]. The LDPC code 

can generate either a low-girth or high-girth. Low- girth will 

reduce the independence of the transmitted messages in the 

decoding process and will fail convergence to a valid 

codeword. It was observed that codes with low girth tend to 

have high error floors [10].  As the length of cycles gets 

shorter, the frequency of wrong information being recycled 

gets higher. Therefore, the difficulty of error correction 

becomes greater [9]. A variable node set is known as a 

stopping set if all its neighbors are connected to this set at 

least twice [10]. It is quite difficult to construct LDPC codes 

by means of eliminating all the stopping sets and trapping 

sets [10]. The PEG and Hill climbing algorithm are the two 

algorithms that are widely used for increasing the degree of 

variable nodes and improving the decoding performance by 

reducing the error floor [9]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://en.wikipedia.org/wiki/Error_correction_code#cite_note-4
https://en.wikipedia.org/wiki/Error_control
https://en.wikipedia.org/wiki/Data_transmission
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Neural Network has replaced a conventional system in 

recent times for channel coding. [11]. The Neural Network 

based approach of decoding uses a single iteration. The bit 

error rate of the decoder is close to the maximum likelihood 

decoder for high-density parity-check codes and is 

comparable with standard belief propagation [12]. Also, 

Neural networks are suitable for channel coding in 

communication systems due to their high computational 

speeds [13]. There are various neural network architectures 

available for engineering problem solutions [14]. Neural 

Network is used to improve and optimize the conventional 

methods or where mathematical formulas cannot be applied 

on account of unpredictable behaviour. Neural networks 

with multi-hidden layers known as Deep Learning methods 

have provided the best performance in many applications 

like image processing [15] and speech recognition [16]. 

Deep learning-based NN design provides comparable 

performance in High Density, Low-Density Parity-Check 

codes using a belief propagation decoding algorithm with 

fewer iterations compared to the conventional method of 

decoding [17]. The more common network used in channel 

decoding is an MLP or FFNN or DNN. In the NN-based 

decoding approach, the probabilistic matrix calculation 

between variable nodes and check nodes is eliminated. [18]. 

The summary of the literature survey state that channel 

coding is required for a reliable and efficient communication 

system. The LDPC is the most suitable channel coder due to 

its capacity-approaching performance. The conventional 

decoder of LDPC  is not able to decode low-girth code due 

to the generation of an error floor during the iterative 

decoding. This problem can be eliminated using an NN-

based decoder. 

The current work presented here is organized as 

follows; Section 2 discusses conventional and neural 

network-based decoding methodologies adopt including the 

architecture of neural networks as well as encoding and code 

construction methods. Section 3 illustrate simulations and 

results obtained for decoders and discussion the result 

obtained. The final Section concludes the paper. 

2. Methodology for Construction, Encoding, 

and Decoding of the LDPC Code and its 

Implementations 
2.1. Construction of Parity-Check Matrix 

In the present work, the decoding of an LDPC code is 

carried out by using three different types of parity-check 

matrices. The same matrices are then used for the 

construction of generator matrices for encoding. 

H1 = [

𝐼1

𝐼7

𝐼13

𝐼2

𝐼8

𝐼14

𝐼3

𝐼9

𝐼15

𝐼4

𝐼10

𝐼16

𝐼5

𝐼11

𝐼17

𝐼6

𝐼12

𝐼18

]                                       (1) 

 

H2 = [
𝐼1

𝐼7

𝐼2

 𝐼2 

 𝐼6 
 𝐼3 

𝐼3

𝐼5

𝐼4 

 𝐼4

 𝐼4

𝐼5

 𝐼5

 𝐼3

 𝐼6

 𝐼6

 𝐼2

 𝐼7

]                                            (2) 

H3 = [

𝐼9

𝐼20

𝐼11

𝐼12

𝐼1

𝐼13

𝐼15

𝐼4

𝐼16

𝐼18

𝐼7

𝐼15

𝐼21

𝐼10

𝐼18

𝐼1

𝐼12

𝐼17

]                                       (3) 

Each sub-matrix in parity-check matrices are shown in 

Equation 1, 2, and 3 respectively. These are circularly 

shifted identical matrices of size 9 x 9. Each of these sub-

matrices combines to form a final parity-check matrix of 

size 27 x 54, it is self-explanatory from parity-check 

matrices that the code length is 54 bits. Also, the rate of the 

code being half, the message length is going to be 27 bits, 

and the rest being parity bits. The matrix H2 as shown in 

Equation 2 was proposed in the earlier work of the author 

for high girth code [19]. At the same time, the matrices H1 

and H3 mentioned in Equations 1 and 3 respectively are 

used to generate low-girth code which contains many short 

cycles in it. It is to be noted that, the girth of the code 

generated by matrices H1 and H3 is 4. 

2.2. Encoding of an Image 

The generator matrices are obtained from parity-check 

matrices H1, H2, and H3 by extracting parity bits using the 

Gauss-Jorden elimination method. Followed by appending 

these parity bits with the identity matrix. Now, the obtained 

generator matrices are represented as G1, G2, and G3. These 

generator matrices can be either in the form of [I|PT] or 

[PT|I]. Where P represents parity bits and I is the identity 

matrices. These generator matrices are used to encode 

colour images of 108 x 108 pixels of 8 bits. Therefore, as 

per the present code, current work is carried out using 

10,368 frames of 54 bits code length. The encoded image is 

then transmitted through the AWGN channel after BPSK 

modulation. 

 

2.3. Decoding of an Image Carried Out in the Present 

Work 

In the current work, decoding of an image is carried out 

using conventional as well as Neural Network-based 

approaches. Further, to compare the performance and 

quality of the recovered image, the investigation is carried 

out to compare performance/quality parameters like BER 

and PSNR for each of the technic for high as well as low-

girth images. The results are discussed in the subsequent 

sections. 

2.3.1. Conventional Method of Decoding  

As discussed earlier, in the current work min-sum 

iterative decoding algorithm is used in a conventional 

decoder. 
  
To begin with iterative decoding, the message is 

collected by variable nodes of the receiver through the 

AWGN channel. It follows variable nodes and checks nodes' 

processes. This decoding process is explained by a flow 

chart as shown in Figure 1. Here yi represents the received 

message through the channel, while Rij and Lij represent the 

check node and variable node process respectively.  yfi is 

the final code word after a maximum iteration or converged 

code.  
 

Equations 4, 5, 6, 7, and 8 show the mathematical 

formulation after each step [8].  
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Fig. 1 Decoding Flow 

Initial LLR calculation 

𝐿𝐿𝑅𝑦(𝑖)  ≅  
2𝑦𝑖

𝜎2⁄                          (4) 

 

Check node calculation 

𝑅𝑖𝑗 =  (∏ 𝑠𝑖𝑔𝑛(𝐿𝑘𝑖)
𝑘∈

𝑣(𝑖)

𝑗

) min
𝑘∈

𝑣(𝑖)

𝑗

𝐿𝑘𝑖                  (5) 

 

Variable node calculation 

𝐿𝑖𝑗 =  𝐿𝐿𝑅𝑦𝑖 +  ∑ 𝑅𝑘𝑖𝑘∈
𝑐(𝑖)

𝑗

                                   (6)                 

 

Final variable node calculation after completion of an 

iteration 

𝑦𝑓𝑖 = 𝑠𝑖𝑔𝑛 (𝐿𝐿𝑅(𝑦𝑖) +  ∑ 𝑅𝑘𝑖𝑘∈
𝑐(𝑖)

𝑗

 )                (7) 

The hard decision is taken at the end of the final 

iteration and the code bits calculated are as given in 

Equation 8 

𝑐𝑖 = {
0, 𝑦𝑓𝑖 =  +1
1, 𝑦𝑓𝑖 =  −1

                                       (8) 

 

 

 

 

 

 

 

 

 

Fig. 2 Tanner Graph 

To understand iterative message passing decoding of 

LDPC code a tanner graph as shown in Figure 2 is used. 

The flow of the iterative process is explained in the 

following paragraph. 

Iteration 1: The check node C1 collects the information 

from the variable nodes V3, and V5, after that it finds the 

minimum value from both variable nodes. Then after the 

product of the sign is assigned to the obtained minimum 

value. This information is passed to the variable node V1, It 

is represented by R11. 

The variable node V1 receives information from check 

node C3. Which is added with the message received on 

variable node V1 through a channel. This information is 

then passed to check node C1. This process is represented 

by L11. 

Iterations 2, 3, 4, etc. perform both processes of variable 

nodes and check nodes till the predefined number of 

iterations or until the code converges. Conventional decoder 

proposed in the current work, the number of iterations is 

fixed at 30. The performance of the conventional decoder 

can be further improved by increasing the number of 

iterations.  

However, the cost of a reduction in the throughput of 

the decoder and an increase in computation time has to be 

taken into account. This performance improvement will be 

applicable only for high-girth code but it is not so in the case 

of low-girth code, due to the error floor generation.    This 

can be observed very clearly in the simulation result, this 

problem can be overcome using the neural network 

approach. 

2.3.2. Neural Network-based Approach 

The network developed in the current work is FFNN or 

known as multilayer perceptron. There are many neural 

network architectures available, depending on the layer 

connections on which the network topologies. In the case of 

a feed-forward network, the connections are from the input 

layer to the output layer in a forward manner, Hence the 

network is called the feed-forward network [20]. This 

consists of an input layer, an output layer, and multiple 

Rij yi 

Lij 

yfi 

Variable node process 

Check node 

process 

Channel 

Is Code 

Converged 

Or 

Max. Itr ? 

 

C1 C2 C3 C4 

V1 V2 V3 V4 V5 V6 
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hidden layers. The architecture uses neurons in each layer 

with an activation function.  

The weights and biases apply to each neuron, which are 

also known as training or learning parameters. There are 

many activation functions available such as Linear, ReLu, 

Sigmoid, and Soft-max. Amongst these, the ReLu (Rectified 

Linear Unit) outperforms the others. In terms of layers, 

nodes, and training sets, “the more the better” [20]. 

Neural network architecture:  The Proposed 

architecture consists of 7 layers including input, output, 

dropout, and dense layers. The selection of hidden layers is 

shown elsewhere in reference [21] If ‘n’ is the sample size, 

one can choose the depth to be of order log10(n) [21]. 

Hence, for little more than10000 samples, the depth of the 

network comes out between 4 and 5. In the current work, it 

is considered as 5 to account for flexibility in the number of 

samples. The dropout layer is used between each hidden 

layer to avoid overfitting the network. 

The summary of the architecture is tabulated in table 1. 

This network is designed with Keras as the front end and 

uses the Tensor Flow library. The network needs to be 

trained, then tested and finally, it is used for the prediction 

of the received code.  

 

Training and Validation of a NN   

The parameter such as input data, output data, batch 

size, and epochs are assigned to the network. The training 

of the model is then carried out using the model-fit function. 

The training given to the network is based on, a transmitted 

message as input data and an encoded message as target data 

considering 5 epochs. The training of the network starts with 

samples of all zero code words of different SNRs. They are 

received through the AWGN channel after BPSK 

modulation.   

Table 1. Summary of network architecture 

Network Architecture 

Name of the 

Layers 

Output 

dimensions 

Activation 

function 

The input layer 

(Layer 1) 
162 ReLu 

Drop-out Layer (10 %) 

Dense Layer 

(Layer 3) 
162 ReLu 

Drop-out Layer (10 %) 

Dense Layer 

(Layer 5) 
162 ReLu 

Drop-out Layer (10 %) 

Output Layer 

(Layer 7) 
54 ReLu 

 

Once the network is trained for SNR 1dB to 4 dB, the 

code is then validated for the case of all zero code-word of 

different SNRs utilizing the model-evaluate function. The 

proposed model is now trained for all zeros as well as 

different combinations of zeros and ones. If the performance 

of the model is within the limits of acceptable accuracy, the 

final training is carried out on any image sample. 

The validated model is then used for the prediction of 

the received code using the model-predict function. After 

the prediction of code, the BER and PSNR of the NN 

decoder have been computed for comparative analysis of 

performance.   

Neural network-based is developed using Tensor-flow 

library with Keras as front-end. The sequential model is 

used in the proposed Feed Forward Neural Network 

architecture. The received code is given to the input layer of 

the FFNN. The dimension of the input layer is 54 which is 

multiplied by the weight of 54 neurons and biases are added 

to the received message then after all this information is sent 

to the next layer through the ReLu activation function. 

These messages from the input layer pass to the drop-out 

layer where the 10 % connections are removed to avoid 

overfitting the network.  

Messages are further passed to the dense layer and 

drop-out layer before reaches to the output layer. The 

dimension of the output layer is 54 while the dimension of 

the inner hidden layer is 162. The weights and biases 

assigned to the messages are pre-set at the time of network 

training. The trained network predicts the code by passing 

through the various layers of the network. The performance 

of the network remains equal for matrices of high girth as 

well as low girth for decoding the code. 

3. Results and Discussion  
   The current work is done on two image samples of both 

low and high-girth code. 

 

3.1. Results 

There are various results of BER and PSNR obtained 

for conventional and NN decoders. Two images of high-

girth code are decoded on conventional and neural network-

based decoders while the other two results are obtained for 

two images used earlier but with low-girth codes 1 and 2. 

 

3.1.1.  BER and PSNR for Decoded Images of High-Girth 

Code 

The result of Table 2 shows the comparative analysis of 

BER, PSNR, and recovered images at different SNR while 

Figure 3, and 4 shows BER and PSNR plot of conventional 

and Neural Network-based decoder for the decoded color 

image 1 of high-girth code. It shows that the encoded image 

is decoded with a conventional min-sum decoder with the 

BER of 10-3 at SNR of 3 dB while the same BER is obtained 

at SNR of 6.8 dB with the current NN decoder. The value of 

PSNR for the conventional decoder obtained for 10-3 BER 

is 30.07 and for NN it was 26.92.
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Table 2. Comparative analysis of BER and PSNR of conventional and NN decoded image 1 of high-girth code 

Sr. 

No. 

SNR Decoded Image 

Conventional. 

Decoder 

Decoded Image 

NN Decoder 

BER 

Conventional 

Decoder 

BER NN 

Decoder 

PSNR 

Conventional 

Decoder 

PSNR NN 

Decoder 

1 1 dB 

  

0.016169767 0.054857181 22.159315 17.2087752 

2 2 dB 

  

0.005052940 0.037053112 26.414089 18.7284262 

3 5 dB 

  

0.000014288 0.008555526 31.261786 23.9406444 

4 8 dB 

  

0 0.000246484 31.354682 30.8160946 

 

 
Fig. 3 BER of conventional and NN decoded color image 1 of high-

girth code 

 

The result of Table 3 shows a comparative analysis of 

BER, PSNR, and recovered images at different SNR for 

image 2 of high-girth code while Figure 5 and 6 shows BER 

and PSNR plot of conventional and NN decoded image 2 of 

high-girth code. It shows that the encoded image is decoded 

with a conventional min-sum decoder with the BER of 10-3 

at SNR of 3 dB while the same BER is obtained in current 

work at SNR of 6.7 dB with NN.  

 
 Fig. 4 PSNR of conventional and NN decoded color image 1 of 

high-girth code 

 

The value of PSNR for a conventional decoder obtained 

at 10-3 BER is 26.88 and for NN it is 25.16. 

 

The result of this section shows that there is no 

improvement in BER after SNR of 6 dB in conventional 

decoder while the NN decoder BER performance is 

continuously improving as an increase in values of SNRs.  
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Table 3. Comparative analysis of BER and PSNR of conventional and NN decoder image 2 of high-girth code 

Sr. 

No 

SNR Decoded Image 

Conventional 

Decoder 

Decoded Image 

NN Decoder 

BER 

Conventional 

Decoder 

BER NN 

Decoder 

PSNR 

Conventional 

Decoder 

PSNR NN 

Decoder 

 

 

1 

 

 

1 dB 

  

 

 

0.01632694 

 

 

0.05577346 

 

 

21.37041304 

 

 

16.43879920 

 

 

2 

 

 

2 dB 

  

 

 

0.00498149 

 

 

0.03826946 

 

 

24.54868200 

 

 

18.62560713 

 

 

3 

 

 

5 dB 

  

 

 

0.00001428 

 

 

0.00596743 

 

 

27.62694813 

 

 

24.19125764 

 

 

4 

 

 

8 dB 

  

 

 

0 

 

 

0.00020897 

 

 

27.62669174 

 

 

27.43929721 

  

 
 Fig. 5 BER of decoded color image 2 of high-girth code 

  

It is also observed that the obtained PSNR of the 

decoded image remains constant due to constant BER. The 

obtained BER of image 1 and image 2 shows no error floor 

in the NN decoder. It is observed that the performance of the 

current decoder is better than the performance obtained by 

the author [20] which is shown in Figure 11. These results 

are obtained by the use of the ReLu activation function. 

 

3.1.2. BER and PSNR for the Decoded Image of Low-Girth 

Code 

The result of Table 4 and 5 shows the comparative 

analysis of BER, PSNR, and recovered images at different  

 
 Fig. 6 PSNR of conv and NN decoder for color image 2 of high-

girth code 

 

SNR respectively while Figure 7, 8, 9, and 10 shows BER 

and PSNR plot of conventional and Neural Network 

decoded color image 1 and image 2 of low-girth code 1 and 

2 respectively. It is shown that a conventional min-sum 

decoder never gives BER performance of 10-3 even at SNR 

of 10 dB and higher. while the BER of 10-3 was obtained at 

SNR of 6 dB with NN and will further increase with SNR. 

The value of PSNR for a conventional decoder remains 

around 11 dB at SNR of 10 dB and never improves while for 

NN it is at 41 dB at SNR of 8 dB and further improves with 

an increase in  SNR, at SNR of 10 dB it is 51 dB.  
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Table 4. Comparative analysis of BER and PSNR of conventional and NN decoded image 1 of low-girth code 1 

Sr. 

No. 

SNR Decoded Image 

Conventional 

Decoder 

Decoded Image 

NN Decoder 

BER 

Conventional 

Decoder 

BER NN 

Decoder 

PSNR 

Conventional 

Decoder 

PSNR NN 

Decoder 

1 1 dB 

  

0.12209 0.057109 12.81230961 16.90659057 

2 2 dB  

  

0.11151 0.03978 13.00740303 18.82947776 

3 5 dB 

  

0.10081411 0.0102148 12.83015083 24.06662655 

4 8 dB 

  

0.124205175 0.0003215 11.87358569 39.91967546 

5 10 dB 

  

0.16088320 
8.9306127114

7691E-06 
11.05294479 51.65961573 

 
Fig. 7 BER of decoded color image 1 of low-girth code 1 

 

3.2 Discussion 

     The BER performance of a conventional decoder is at its 

peak for a high-girth code and there is no error floor. This 

can be observed in Figures 3 and 5. However, decoding of 

low-girth code through such a conventional decoder fails as 

it generates a high error floor.   

 
Fig. 8 PSNR of conv and NN decoded color image 1 of low-girth 

code 1 

This can be attributed to the presence of a short cycle. 

On account of this the information when passed between 

variable nodes the iteration process fails to converge and 

falls into an infinite loop. The BER of a conventional 

decoder for low-girth code is limited to 10-1 only for any 

value of SNR. This is shown in Figures 7 and 9. 
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Table 5. Comparative analysis of BER and PSNR of conventional and NN decoded image 2 of low-girth code 

Sr. 

no 

SNR Decoded Image 

Conventional 

Decoder 

Decoded Image 

NN Decoder 

BER 

Conventional 

Decoder 

BER NN 

Decoder 

PSNR 

Conventional 

Decoder 

PSNR NN 

Decoder 

 

 

1 

 

 

1 dB 

  

 

 

0.10485205 

 

 

0.06663665 

 

 

14.37557594 

 

 

15.80831055 

 

 

2 

 

 

2 dB 

  

 

 

0.09215856 

 

 

0.03764789 

 

 

15.01301799 

 

 

18.64785066 

 

 

3 

 

 

5  dB 

  

 

 

0.06554891 

 

 

0.00690514 

 

 

16.37822994 

 

 

24.31663077 

 

 

4 

 

 

8 dB 

  

 

 

0.05045974 

 

 

0.00018575 

 

 

17.40473647 

 

 

28.15745147 

 

 
Fig. 9 BER of decoded color image 2 of low-girth code 2 

 

This problem of decoding is overcome by using NN. The 

NN decoding developed in the current work decodes the 

high-girth code to obtain a colour image after decoding. It is 

also observed that the BER performance improves with an 

increase in SNR for such a high-girth code. Also, there is no 

error floor in the BER. The decoded image shows that the 

PSNR also increases with increasing BER. This is shown in 

Figures 4 and 6. 
 

There is no effect of the short cycle on the performance 

of the decoder. The current work shows the decoding of two 

different images on two different low-girth codes. In both, 

decoded images similar BER and PSNR performance is 

observed. 

Fig. 10 PSNR of conv and NN decoded color image 2 of low-girth 

code 2 
 

The NN decoder mentioned by the author [20] shown 

in Figure 11 has a BER of 10-2 at SNR of 4.5 dB which is 

achieved through the ReLu activation function while the 

same BER is obtained with a developed NN decoder at SNR 

of 4 dB through ReLU activation function.  

Another plot shown in Figure 12 of [20] is a BER plot 

of a 4-layer polar decoder which gives BER of 10-3 at SNR 

of 5.5 dB using 4 dense layers of DNN while the same BER 

is obtained in the current NN decoder work at SNR of 6.5 

dB using two dense layers and three dropout layers. 

Performance can further improve by increasing no. of dense 

layers.  
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Fig. 11 Polar decoder BER using ReLu function [20] 

 

Fig. 12 Polar decoder using 4 layers of DNN [20] 

 

The current work shows the decoder proposed here is 

better than the decoder proposed by the author in [20] in 

terms of BER for the same activation function and number 

of layers. 

The current work shows the values of PSNR for high-

girth NN decoder is 31 dB for image 1 while 28 dB for 

image 2 at SNR of 8 dB. The value obtained for low-girth 

code 1 is 39 dB and for low-girth code 2, it is 28 by the NN 

decoder and will increase further with an increase in SNR. 

The conventional decoder PSNR values lie around 17 and 

11 dB for low-girth code 1 and 2 for the image samples 1 

and 2 respectively. This observation shows that the 

performance of the NN decoder is better than the 

conventional decoder for low-girth code. 

The PSNR is widely used to measure the quality of 

reconstruction of lossy compression codecs. Hence, the 

PSNR is also one of the factors to measure the performance 

of the decoder [22]. Typical values for the PSNR in the 

lossy image and video compression are between 30 and 

50 dB, provided the bit depth is 8 bits. For 16-bit data 

typical values for the PSNR are between 60 and 80 dB 

[23][24]. Acceptable values of PSNR for wireless 

communication are between 20 dB to 25 dB [25][26].  
 

4. Conclusion  
 Based on the results obtained in the current work using 

the NN decoder the noise introduced by the channel is 

removed to the highest possible extent. Also, this type of 

decoder is free of any constraints from the design point of 

view. Along with this one of the advantages of such a NN 

decoder is that it can decode low as well as high-girth code 

without any error floor which shows the good performance 

of the decoder. This makes the decoder more versatile as 

compared to a conventional one. The value of PSNR 

obtained for the decoded image is better which indicates the 

recovered images are of good quality. The current work also 

eliminates the iterative method of decoding which is 

required in conventional decoders. It is also verified that the 

performance of NN in terms of BER and PSNR will increase 

with the increase in SNR.  
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