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Abstract - Early-stage lung cancer is characterized mostly by the presence of lung nodules, a common symptom of the illness. 

It is critical to have an imaging system that can identify lung nodules automatically and accurately. In addition to reducing 

the burden on radiologists, automatic detection minimizes the incidence of misdiagnosis. Despite their outstanding 

performance, convolutional neural networks (CNNs) need certain anchor parameters, such as the size, number, and aspect 

ratio of anchors, and have limited resilience when dealing with a wide range of lung nodule sizes. The ASIAL CNN (assorted 

scale integrated alternative link model convolutional neural network) is a solution to these issues by automatically predicting 

nodule location, radius, and offset without the need for any custom nodule/anchor parameters to be designed. Three-level 

parallelism in the SIAL CNN is achieved by varying the convolution kernel size for the inputs with multi-scale properties. 

Here, the precession layer's output is coupled to its succession stage input and the succession stage input of the following 

layer. Binary classifications like benign and malignant lung nodules may be processed using this method, as shown by the 

results it achieves. It was all done using a graphics processing unit (GPU). The LIDC-IDRI dataset indicated that our 

proposed ASIAL CNN architecture outperforms current approaches for lung nodule identification with an average accuracy 

of 92.45%. 

 

Keywords - Lung cancer, lung nodule, assorted scale integrated alternate link model convolutional neural network. 

 

1. Introduction  
(In recent years, the number of people diagnosed with 

lung cancer has increased alarmingly. Detecting lung 

nodules promptly and properly is critical to the treatment of 

lung cancer since lung nodules are an early symptom of the 

disease. Particular clinical and scientific relevance rests on 

the discovery of lung nodules. Round or irregularly shaped 

lesions on the lungs are known as pulmonary nodules (PN). 

CT imaging of the lungs shows it as a thick shadow with 

obvious or ambiguous borders. There are three types of 

nodules: solid, partial, and ground-glass density, which may 

all be categorized based on the tumor's characteristics. In 

contrast to a solid nodule, a ground glass density nodule has 

a low grey value and may be distinguished from the 

surrounding tissues by its low grey value. Soft tissue with 

different densities may be found inside some solid nodules. 

Radiologists can detect whether there are any lung 

nodules by manually reviewing a large number of images. 

Some patients require as many as hundreds of lung CT 

images to acquire an accurate diagnosis. Misdiagnosis is 

more likely when physicians are fatigued, and an inefficient 

and lengthy procedure hampers their results. A computer-

aided detection strategy has been proposed by researchers 

to prevent this from happening as much as feasible. These 

two tasks are frequently done individually in CAD, although 

they may be combined. The use of second-stage screening 

prevents false positives for these potentially harmful 

lesions. Various approaches, including morphology and 

form curvature, may be used to identify potential frames. A 

popular technique for reducing false alarms combines 

location, size, shape, and density with texture, gradient cues, 

and information about upper and lower individuals. 

However, even though the standard computer-aided 

inspection method obtained good results, there are still two 

obvious flaws: A major problem with the system's overall 

efficiency: Secondly, the detection hypothesis and the real 

circumstance are vastly different, resulting in an overall 

decrease in detection accuracy. Due to the vast quantity of 

data and complete feature extraction, deep learning provides 

strong classification and recognition performance. 

According to a recent study, deep learning is now being 

used to identify lung nodules. It is one of the most widely 

used deep learning models and is particularly useful for 

image categorization. It is a well-known neural network-

based target identification technique. In order to fully detect 

the target, we include the CNN scales here. It is possible to 

get reliable test results since the detection procedure is end-

to-end and done entirely on GPU. It has advantages over 

traditional approaches in terms of data processing, network 
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http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Parveen Banu & M. Syed Mohamed / IJETT, 70(11), 353-363, 2022 

 

354 

resilience, and minimizing over-fitting risk; second, it has 

advantages in terms of the pooling operation, which further 

reduces computation and significantly improves data 

processing efficiency; and finally, it can extract extremely 

abstract feature maps depending on the depth of the feature 

extraction network. Scale depth is critical in the proposed 

structure. These are some of the findings from this research.: 

 

• In this paper, we provide an abnormal lung nodule 

prediction approach based on deep learning-based 

Assorted SIAL CNN architecture. 

• This technique is compared against state of art using 

measures from real-world datasets and shown to be 

superior. 

 

The following summary of the paper's remaining 

sections: Section two summarises the related works. The 

issue statement is explained in Section 3. Section 4 explains 

the use of deep learning to discover abnormal lung nodules. 

Section 5 presents the findings. The paper comes to an end 

in Section 6. 

2. Related Works 
There are many existing methods for classifying lung 

nodules, some of which are shown below. These lung 

nodules may be detected using a Faster R-CNN method 

proposed in [1]. Using a training set of lung nodules, an R-

CNN system can quickly and accurately identify lung 

nodules. Network structure and detection accuracies may be 

improved through parameter tuning in principle. Deep 

learning-based lung nodule screening and analysis 

methodologies are examined in [2] to understand better the 

present performance, constraints, and trends in the study of 

lung nodules via an evaluation of their clinical applications. 

[3] proposes three-dimensional squeeze-and-excite 

attention modules (three-dimensional squeeze-and-excite). 

A method of dense feature extraction and integrated multi-

dilated context learning was developed [4] using dilated 

convolutions run at different rates. Using k-mean clustering 

and morphological operators, lung ROIs may be retrieved 

from CT scans instead of whole images or nodular patches. 

These ROIs might be used to create a nodule segmentation 

architecture that can handle various types of lung nodules. 

Filtering and noise reduction were used in the pre-

processing stage [5]. It is also possible to identify lung 

nodules using the adaptive thresholding approach (OTSU) 

and semantic segmentation. The features of 13 nodules were 

extracted using the principal components analysis method. 

In addition, four top features are picked based on the 

algorithm's classification performance. During the 

classification phase of the experiment, nine different 

classifiers are utilized. The author of [6] investigated the 

diagnostic utility of 64-slice spiral CT and MRI high-

resolution images based on deep convolutional neural 

networks for lung cancer detection (CNN). The random 

domain adversarial learning (RDAL) approach developed in 

[7] aims to back-propagate effective gradient signals and 

gradually reduce the gap across diverse domains. The ATM 

may be used in combination with nodule detection models 

to train the system from start to finish using a differentiable 

Fast Fourier Transform (FFT) and inverse FFT. The author 

created and assessed a set of radiomic characteristics 

dubbed "morphological dynamics features" to detect 

pulmonary nodules in [8], which were based on dynamic 

patterns of morphological change and lacked accurate lesion 

segmentation in the investigation. The author presented a 

unique deep learning approach in [9] to improve the 

classification accuracy of lung nodules on CT images. They 

present the CNN-5CL approach, which uses an 11-layer 

CNN (5 convolutional layers) for automated feature 

extraction and categorization. The regularized V-net (RFR 

V-Net) is recommended in [10] for diagnosing lung cancer 

nodules with fewer false positives. (FP). In the V-Net 

model, the convolution and deconvolution layers of the 

encoder block are receptive and regularized. A novel nodule 

classification network dubbed nodule classification network 

combines SqueezeNet and ResNet.In [11], to minimize 

picture noise, the author used the Grey Wolf Optimization 

method with a weighted filter and watershed transformation 

and dilation procedures to segment images. For early lung 

nodule identification and localization using CT images, [12] 

provides a methodology that incorporates RF optimization 

and analysis of the feature groups. In [13], a successful CAD 

system for detecting lung tumours is discussed. Nodule 

categorization, segmentation, and early processing are all 

part of this system. In their study of lung diseases, accurate 

segmentation of lung images is essential to diagnosing lung 

cancer. According to [14], a Gabor filter (GF) and an 

adaptive morphology-based operation have been suggested 

for accurate lung nodule classification. The 2-Pathway 

Morphology-based Convolutional Neural Network 

(2PMorphCNN), a new framework with two trainable 

pathways, can capture lung nodules' textural and 

morphological aspects. The ProCAN network, introduced in 

[15], makes it simpler to classify lung nodules. Using this 

technique, the issue is attacked from three different sides. 

First and foremost, they help the Non-Local network by 

focusing on a single channel. They use curriculum learning 

concepts for the second part, starting with easier situations 

and working their way up to more complex ones. Third, 

when the difficulty of the categorization job increases 

throughout Curriculum learning, their model grows in size 

to better handle the current challenge. "3D-CNN," 

"transferable CNN," "dense convolutional binary tree 

network," "gated dilated network," and "mask area CNN" 

are only a few of the advanced convolutional neural 

networks (CNNs) that the author used in [16]. For the 

detection and classification of GGO nodules, the author of 

[17] devised a two-stage 3D architecture. Pulmonary 

parenchyma was retrieved from the lung using the 3D U-

Net first. 3D medical images inspired the development of 

RCNNs (mask region-based convolutional neural 

networks). The 3D model was used to find and classify 

GGO nodules and lesions (benign or malignant). There were 

equal numbers of benign and malignant lesions, which was 

achieved using the class-balanced loss function. As the last 

step toward enhancing detection precision, they used a 

brand new false-positive elimination technique known as 

feature-based weighted clustering (FWC). The author 

suggests solid, semi-solid, and ground glass object texture 
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classifications in [18] for the characterization of lung 

nodules. Gray-level co-occurrence matrix and Gabor filters 

are used to extract features, and the performance is tested on 

the LNDb dataset. According to [19], an effective technique 

for deep learning for efficient usage of the completely 

linked SqueezeNet virtualization with lung pixels was 

considered through all the extraction of rigorous prediction, 

which included a beneficial or detrimental characteristic. 

Dual-energy CT (DECT) is useful in distinguishing between 

thyroid cancer-related pulmonary metastases and 

noncancerous lung nodules [20]. They present a unique 

technique to predict the malignancy of nodules that can 

examine the tumour's form and size and its density and 

structure, utilizing a global and local feature extractor, 

respectively, in [21].In [22], genetic datas were applied to 

diagnose the malignancy through particle swarm 

optimization and support vector machine algorithm. 

However, they used only 29 genetic datas, which is 

insufficient to determine its efficiency. As per [23], the 

toboggan algorithm was introduced to segment the lung 

lobes. Here, the classification was done on normal and 

diseased lungs but not on malignancy and benign tumors. In 

[24], three segmentation methods were proposed. Better 

segmentation was achieved, but the classification was not 

done. 
Table 1. Comparative analysis 

Reference Algorithm Advantage Disadvantage 

[1] R-CNN 
High 

accuracy 
High overfitting 

[2] Deep learning 
Survey 

knowledge 
- 

[3] SCPM-Net 
High 

accuracy 

More training 

time 

[4] efficient U-Net 
Less fitting 

error 
Low accuracy 

[5] 
semantic 

segmentation 

Low testing 

time 

High training 

time 

[6] Deep CNN 
Low testing 

time 

High training 

time 

[7] AFA 
Low testing 

time 
Need more data 

[8] 
radiomics 

approach 

Low testing 

time 

High-ground 

truth variation 

[9] CNN 

The 

parameter 

analysis is 

simple 

Need more data 

to train 

[10] VNET User friendly 
Need more data 

to train 

[11] CNN-GWO 
High 

accuracy 

Hardware 

dependence 

[12] Random forest User friendly Low accuracy 

[13] Review - - 

[14] CNN 
High 

accuracy 

High testing 

time 

[15] ProCAN 
High 

accuracy 
Class imbalance 

[16] Review - - 

[17] 3DNN 
High 

accuracy 

Expensive 

hardware 

support needed 

[18] 

ray-level co-

occurrence 

matrix, Gabor 

filters, and local 

binary pattern 

High 

accuracy 
expensive 

[19] SqueezeNet-Fc 
High 

accuracy 
Hard to train 

[20] 
Parametric 

method 
nil 

Mathematical 

error 

[21] 
deep local–

global networks 

Low testing 

time 
expensive 

[22] 
Machine 

learning 

Survey 

knowledge 
Less dataset 

[23] 
Toboggan 

algorithm 

High 

accuracy 

No deep 

classification 

done 

[24] 

Adaptive 

thresholding, 

Active contour 

model, Fuzzy C-

Means 

clustering 

Improved 

DSC and 

Hausdroff 

distance 

No 

classification 

done 

 

Hence in this paper, to overcome the existing issues as 

depicted in table 1, we provide an abnormal lung nodule 

prediction approach based on deep learning based on 

Assorted SIAL CNN architecture. The following is a 

summary of the paper's remaining sections: Section two 

explains the use of deep learning to discover abnormal lung 

nodules. Section 3 presents the findings. The paper comes 

to an end in Section 4. 

3. Problem Statement 
Survival times for people with lung cancer have been 

largely lowered because of late diagnosis and a lack of 

symptoms. Compared to other imaging modalities, CT 

provides better resolution, quicker acquisition, and lower 

cost than other imaging techniques. If the nodule is less than 

3 millimetres across, CT can detect it. This condition makes 

preventing the illness from progressing to an advanced stage 

easier. Nevertheless, in present practice, radiologists review 

hundreds of thin-section CT pictures produced by each 

patient and use axial mode to analyze each image. The 

radiologists tasked with deciphering the massive amounts of 

data generated by a single CT scan may soon succumb to 

information overload due to the scan's massive data output. 

Consequently, malignancy may be missed if tiny or 

non-solid nodules are not detected. It is difficult to properly 

model lung nodules if the nodule diameter is tiny, the slices 

are thick, the noise is high, the image resolution is poor, and 

the density of the nodule varies. Interreader variability is the 

difference between two or more people's interpretations of 

the same event, as described by their observations. Within-

reader variability may be characterized as a disagreement in 

observations made by a single person, leading to various 

interpretations of the same event across time. Identification 
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of nodules is inherently subjective, as shown by the inter- 

and intra-reader variability even among seasoned 

radiologists. A large percentage of nodules may go 

unnoticed on the first scan and only be discovered on 

subsequent scans in hindsight. A lung nodule may be more 

effectively treated and more likely to survive if it is 

discovered early. For this, the radiologist uses a computer-

aided diagnostic (CAD) system to assist find nodules by 

flagging questionable spots. Radiologists use CAD systems 

as a smart tool that expresses a second viewpoint. As a 

result, CAD for identifying nodules is becoming 

increasingly popular. Computer-aided diagnosis (CAD) 

tools help radiologists better understand medical pictures. 

According to studies, radiologists may enhance their 

detection accuracy using CAD systems, reducing the 

number of nodules missed owing to tiredness and enhancing 

inter and intra-reader consistency. As an additional benefit, 

it may assist in minimizing the number of biopsies 

necessary. An automated computerized system for detecting 

lung nodules on CT images will be evaluated in this research 

to see whether it may assist in identifying lung nodules that 

could otherwise go unnoticed during visual interpretation. 

4. Proposed Work 
Pulmonary nodules are described as round opacities, 

well (solid) or poorly defined (part solid, non-solid), 

measuring 3-30mm in diameter. An automatic CAD system 

for lung nodule categorization utilizing Assorted SIAL 

CNNs from CT images is the primary goal of our proposed 

study. One of the most critical steps in identifying lung 

nodules is the categorization of the nodule and non-nodule 

patterns in CT. This aids in the early detection of the 

condition, which lowers the death rate. 

4.1. Dataset 

LIDC-IDRI is a worldwide public database that 

provides training data. A total of 1,018 patients were 

included in the data set, which was compiled in partnership 

with seven academic institutions and eight imaging firms. 

The patient's medical records include CT scans, on which 

four board-certified radiologists meticulously identified the 

lesion area using two distinct techniques. Each CT scan was 

evaluated by four radiologists blindly, who identified which 

lesions belonged to which of three distinct kinds. In the 

second step, each radiologist independently verified the 

other three experts' anonymous markings to offer a 

comprehensive result. The overall approach aims to enable 

each radiologist to detect as many full non-nodules as 

feasible in each CT picture without imposing uniformity. A 

total of 3,042 nodules considered big by at least one 

radiologist are included in the data utilized in this article. 

They may be categorized into three groups: the single lung 

nodule, the vascular nodule, and the lung wall adhesion 

nodule. 
 

4.1.1. Data Source 

https://wiki.cancerimagingarchive.net/display/Public/

LIDCIDRI#:~:text=The%20Lung%20Image%20Database

%20Consortium,with%20marked%2Dup%20annotated%2

0lesions. 

4.2. Network Training 

The training pace was substantially enhanced before 

beginning the procedure, which trains a weighted network. 

As soon as the network model parameters have been 

established, transmit the proposed region output to the 

Assorted SIAL CNN for further classification training. The 

Assorted SIAL CNN parameters learned in the first step are 

utilized to fine-tune the classifier. For the second round of 

training, the Assorted SIAL CNN network receives 

recommendations from the output area. This approach is 

repeated to guide the network toward convergence. 
 

Multi-task loss functions are described in Equation 1 of 

the Assorted SIAL CNN model. 

K({qj}, {sj}) =  
1

Mcls
∑Kcls(qj, qj

∗) +

                              v
1

Mreg
∑ jqj

∗Kreg(sj, sj
∗)    (1)                                               

 

Target bounding box category values are predicted 

as qj and sjWhile the actual values are qj
∗ and sj

∗; the 

normalization parameters of classification and regression 

items areMcls and Mreg, respectively; the loss of 

classification items and the loss of regression items are Kcls 

and Kreg, respectively; and the balance weight is w. The 

classification loss function  Kcls is represented 

mathematically in Equation 2.  
 

Kcls(qj, qj
∗) = − log (qjqj

∗ + (1 − qj
∗)(1 − qj))  (2) 

 

The regression loss function's expression Kreg  is 

illustrated in Equation 3. 

               Kreg(sj, sj
∗) = T(sj − sj

∗)   (3) 

           

In Equation 4, T is the robust, smooth K1 loss. 
 

 smoothK1
(sj, sj

∗) = {
0.5(s − s∗) if|s − s∗| < 1
|s − s∗| − 0.5, otherwise

   (4)       

4.3. Classification 

It is a deep learning algorithm to uses the Assorted 

SIAL CNN model. Figure 1 depicts the model's structure. 

Convolutions, concatenate, average pooling, and softmax 

layers are all part of an assorted SAIL convolutional neural 

network. 

4.3.1. Convolution Layer 

The convolutional layer is used to extract features. 

Multi-convolution kernels, parameter sharing, and local 

perception differentiate this network layer. In contrast to 

distant pixels, local pixels are tightly interconnected. As 

additional neurons are linked to each other, the network's 

complexity will increase. Since each convolutional layer 

neuron sees only a little piece of the picture, this information 

is then integrated with other information at a more advanced 

level. In order to further reduce the network parameters, 

each layer of neurons has its own set of settings. Neuronal 

local characteristics may be used to extract features 

regardless of where they are situated or how many there are. 

This is because certain statistical aspects of the image are 

also adapted to other parts of the image. 
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Fig. 1 Schematic representation of the suggested methodology 

 

Figure 1 shows a convolution procedure schematically. 

Convolution kernels with 3x3, 11x11, and 7x7 pixel sizes 

will be used to extract multi-scale features. For 

classification tasks, a convolution kernel size of 3x3 is the 

norm. Because of the high size of the few lung nodules 

employed in this proposal, it may not be appropriate for all 

patients. For this reason, a big filter should be used to 

transport nodules of this size. To ensure the network's 

ability and competence, we use a variety of filters at the 

input. A picture of 32x32 pixels is used in this piece. A q-

size convolution kernel and an s-stride filter are used to 

process an n-dimensional feature map. As a result, the final 

output maps are, 
 

                [𝑂𝑢𝑡𝑚𝑎𝑝] =
𝑛−𝑞+𝑠

𝑠
∙
𝑏−𝑞+𝑠

𝑠
         (5)                                                                                                                                                                              

 

The number of convolution kernels determines the 

number of feature maps. 

 

4.3.2. Drop out Layer  

Immediately after the convolution layer, there is a 

dropout layer and a max-pooling layer with a dropout 

maintenance rate of 0.1 in the odd layer structure. The term 

"dropout" has been repurposed in an effort to provide 

uniformity to the educational process. Using this value, the 

best outcomes may be achieved. Layers may be added 

element by element since they have comparable dimensions 

(each layer's output from the one below and the layer above 

it). An attribute's distinctive potential is boosted by sharing 

data across all three blocks. It is a good way to increase 

accuracy. Finally, after the fifth layer, the entire attributes 

of three levels, f1(x), f2(x), and f3(x), are integrated using the 

concatenate layer. 

 

𝑧𝑗
(𝑘+1)

= 𝑓 ((𝑙𝑗𝑖)𝑧𝑗
𝑘) + 𝑎𝑗                                            (6) 

 

4.3.3. Down-sampling Layer 

It is estimated that the term "pooling layer" refers to the 

layer employed for down-sampling purposes. Averaging 

statistics from the convolutional layer's feature maps is the 

function of this layer. Combining the best features and 

reducing feature size and network parameters may alleviate 

network overfitting. In addition, the pooling may retain a 

non-deformational feature (rotation, translation, expansion, 

etc.). These include mean, max, and stochastic pooling as 

the most used sampling techniques. Mean sampling is used 

here, which implies that the average value in each sub-

region is utilized as the sample result for each area...  

 

4.3.4. Output Layer 

Features derived from convolution layers may be 

synthesized in a fully connected layer for classification or 

regression investigations. Global training is performed on 

the network by reducing its loss function using the features 

retrieved by the Assorted SIAL CNN. 

 

For multi-classification purposes, Softmax classifiers 

are an extension of logistic regression models. A training set 

may be described as follows: let the input feature be s ((u)) 

and the sample tag be a((u)). 

  A={ (s(1),a(1)) (s(2),a(2)) … (s(n),a(n)) }       (7)                                                                            

 

Probability 𝑔𝜃(𝑧) and the logistic regression cost h(𝜃)a 

prediction functions, 

   𝑔𝜃(𝑧) = 
1

∑ 𝑒
𝜃ℎ
𝑅𝑠(𝑢)𝑗

ℎ=1

 

[
 
 
 
 𝑒

𝜃1
𝑅𝑠(𝑢)

𝑒𝜃2
𝑅𝑠(𝑢)

⋮

𝑒𝜃𝑗
𝑅𝑠(𝑢)

]
 
 
 
 

                    (8)                                                                       

 

ℎ(𝜃) = 
1

𝑛
[∑ ∑ 1 {𝑎(𝑢) = ℎ}𝐼𝑛 

𝑒𝜃ℎ
𝑅𝑠(𝑢)

∑ 𝑒𝜃𝑢
𝑅𝑠(𝑢)𝑗

𝑈=1

 
𝑗
ℎ=1

𝑛
𝑢=1 ],  (9)    

                                                      

In this case, A is the total number of sample tags, and 

B is the total number of parameters in the network model. 

Indicative functions, like 1, are defined as follows 

1{∙}. Depending on whether the value in parentheses is true 

or false, the function may return one of two potential 
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outcomes: one or 0. The stochastic gradient descent 

technique is often used to solve the Softmax cost function 

(SGD). These two pieces of rules determined the output. 

 

Case 1: Even Block 

In this instance, the first level output is integrated with 

the final level output, or the matching level output is 

integrated with its prior level output. This method is less 

expensive than previous procedures since no residual 

connections exist. Finally, this even block's result may be 

expressed as follows. 

 

𝑂𝑒1   = 𝑓1( 𝑥𝑖𝑒 ) + 𝑓𝐿( 𝑥𝐿𝑒 ) , 𝑖 = 1      (10)                              

  

𝑂𝑒𝑖   = 𝑓𝑖( 𝑥𝑖𝑒 ) + 𝑓𝐿𝑖−1( 𝑥(𝑖−1)𝑒 ) , 𝑖 ∈ 2,3, … . . 𝐿         (11)              

  

Where the inputs to that blocks are x1e, x2e, ..... xLe, 

assuming the even module has L total parallel levels. Their 

corresponding yields are described as f1(x1e), 

f2(x2e),.....fL(xLe), respectively. The i stands for the ith level, 

while Oie stands for the output of the even block's ith level. 

 

Case:2 Odd Block 

There are two stages in this process: final and matching. 

The word "final" refers to this combination of final and 

matching outputs. The eventual result of this odd block 

might be shown as, 

 

𝑂𝑜𝑖   = 𝑓𝑖( 𝑥𝑖𝑜 ) + 𝑓𝑖+1( 𝑥(𝑖+1)𝑜 ) , 𝑖 ∈ 1,2,3, … . . 𝐿 − 1) (12) 

 

𝑂𝑜𝐿   = 𝑓𝐿( 𝑥𝐿𝑜 ) + 𝑓1( 𝑥1𝑜 ) , 𝑖 = 𝐿  (13) 

  

The odd module has the input in the form of x1o, x2o, ..... 

xLo, respectively. Each of their related yields is referred to 

as f1(x1o), f2(x2o),.....fL(xLo), and so on. The i stands for the 

ith level, while Oio stands for the odd block's ith level output. 

Each stage of convolution has a kernel size of ki. In light of 

the applications, we may choose the kernel size and the 

number of layers for each level convolution kernel. 

 

Algorithm: ASAIL CNN 

 

Input: Processed image  

Output: Lung nodule classification 

  Update 𝑙𝑘 

  Forward Pass:  

for (1=0;1<K;1++){ 

      for (n=0;n<N ;n++){ 

         for (b+0;b<B;b++){ 

               Sum = bias[1] 

          for (j=0;j<J;j++){ 

                  for (a1=0;a1<A1;a1++){ 

                        for (a2=0;a2<A2;a2++){ 

              Sum+=weight[J][1][a1][a2] × input [j] [n +a1] 

[b = a2]; 

         }}} 

       output [1] [n] [b] = operative_func(sum) 

 

 Extract Features 𝑧𝑗 ← 𝑔(𝑦; 𝑎) 

 Convolve network 𝑧𝑖
𝑚 = ∑ (𝑙𝑗𝑖

𝑚 ∗ 𝑦𝑗
𝑚)𝑗  

 Compute Drop Layer 𝑧𝑗
(𝑘+1)

= 𝑓 ((𝑙𝑗𝑖)𝑧𝑗
𝑘) + 𝑎𝑗 

                           for 𝑑𝑢 be the total number of features 

sample matrix u 

                               for h in u do 

 𝑐ℎ ← vectorize(h,q) 

 append ch to du 

 append du to d 

 Dtrain, dtest, 1train, 1test, ←  break total numbers of 

features and subset of the train into the labels and subset of 

test  

 N ← ASAIL-CNN (dtrain, 1train) 

score ←  evaluate (u, 1test, N)   

 return score   

 Calculate 𝑙𝑚𝑎𝑝 

 Calculate 𝑙𝑚𝑎𝑝 = 𝑙𝑚𝑎𝑝 ∗ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑇𝑗 

 Choose Pooling 𝑙𝑘 = 𝑚𝑎𝑥(𝑙𝑡𝑜𝑝, 𝑙𝑚𝑎𝑝) 

 Backward pass: 

 Compute the gradient 𝛿𝑘/(𝛿𝑙𝑗𝑘
𝑚) = (𝛿𝑘/(𝛿𝑙𝑖

𝑚)) ∗

(𝑦𝑗
𝑚) 

 Compute Loss Function 𝐼(𝜃) =

−
1

𝑆𝑛𝑎
∑ ∑ 𝛿𝑧𝑠

𝑔𝐸𝑀−1
𝑔=0

𝑆𝑛𝑎−1
𝑆=0 ln 𝑓𝑔

(𝑠)
 

𝐾𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥; 𝑙) = − log 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑙(𝑥)  

   Kreg(sj, sj
∗) = T(sj − sj

∗)  

End 

End 

 

5. Performance Analysis 

Assorted SAIL CNN is used to classify binary 

classification of lung nodules in our experiment, using 

70:30 training to test the data ratio. A learning rate of 0.001 

was used, together with weight decay parameters of 5*10-4 

and a momentum of 0.9, throughout the training stage. 

Using Adam optimizer is the best option here. It took us 50 

epochs to complete the training phase with a batch size of 

16. It was used as a loss function. It is also worth noting that 

there are 256 neurons in the fully connected layer, and the 

dropout value is set at 0.1. 

 

Moreover, ten-fold cross-validation is used. Tensor 

flow and tensor layer deep learning structures are employed 

in our research, which is coded in Python 3.6. We ran our 

test on a server running Windows 10 and equipped with a 

Ryzen 7 CPU, 8 GB of RAM, and a 512 GB SSD. The 

Assorted SAIL CNN model converges in around 12 hours 

while using the NVIDIA Geforce GTX-1650 GPU for 

acceleration during model training. A variety of 

performance criteria are used in a statistical study to assess 

the number of times the recommended model is effective in 

diagnosing abnormal lung nodules. In order to evaluate the 

efficiency of the implementation approaches, we had to 

standardize critical parameters in all experiments. 

 

Figure 2 depicts the coding process. As shown in the 

segmentation context, the sigmoid function is a good 

alternative since it just standardizes the limits and enables 

extra data to the stream. 
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Fig. 2 Process implementation over python 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 3 Lung nodule classifications 



S. Parveen Banu & M. Syed Mohamed / IJETT, 70(11), 353-363, 2022 

 

360 

Figure 3(a) shows 2D axial views of lung nodule 

pictures from the dataset. These illustrations show nodules 

that are both benign (3 (b)) and malignant (3(c)). Even 

experienced radiologists have difficulty distinguishing 

between benign and malignant nodules because of the 

diagnostic criteria and comparable visual features they 

share. Our proposed technique makes it possible to 

distinguish between malignant and benign nodules. 

Based on substantial performance measures, the 

notion is compared to existing algorithms and approaches 

for identification. The Assorted SAIL CNN was chosen for 

the anomaly detection task because of its better success rate 

than other available approaches [21]. 

 

5.1. Accuracy  

Data quality is the percentage of correct results 

obtained by the total amount of data points. The accuracy 

and precision of the recall are shown in percentage. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴)  =  (𝑇𝑃 + 𝑇𝑁)/ (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +
 𝐹𝑁)              (14) 
 

5.2. Precision 

Precision, which represents random errors, is used to 

quantify algebraic variability. 

 

Precision= [a/(a+d)] (15)                                                  

5.3. Recall   

The percentage of positive information that can be 

accurately recognized is referred to as the "true optimistic 

rate," "warning rate," or "probability of identification.". 

 

               Recall= [a/(a+d)]×100Specificity     (16) 

                  

Here a represents true positive, and d represents true 

negative. 

 

5.4. F1 score 

Several terms may describe the percentage of positive 

information that can be correctly recognized. 

 

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                           (17) 

 

 

Table 1. Comparative performance analysis 

Techniques 
Parameters 

Accuracy AUC Precision Recall f1score 

Resnet50 77.62% 86.82% 80.16% 70.69% 75.13% 

AllAtnBig 77.97% 85.89% 81.00% 70.00% 75.10% 

Resnet18 78.21% 86.41% 79.00% 75.00% 76.95% 

Densenet21 84.57% 92.50% 87.00% 80.00% 83.35% 

MLxResnet 89.15% 94.21% 89.55% 90.16% 89.86% 

Assorted SAIL CNN 92.45% 95.44% 92.45% 93.21% 92.83% 

 
Fig. 4 Methodology Vs. Accuracy 

 

There is a technique for assessing how many 

malignant nodules can be correctly classified. It determines 

how close the results are to the predicted outcome by 

dividing the total of actual positives and negative outcomes 

by the number of expected positives and negative 

outcomes. On the other hand, the proposed method's 

accuracy (92.45 percent) is higher than that of the current 

techniques (see Figure 4). 

 
Fig. 5 Methodology Vs. AUC 

Figure AUC, which is 95.44 %, means that the 

classifier accurately identified the abnormal class, as 

shown in Fig.5. The sensitivity/specificity pairs presented 

at each position on the AUC curve may be used to define 

decision thresholds. The area under the AUC curve is used 

to test how successfully a parameter distinguishes between 

various crops. 
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Fig. 6 Methodology Vs. F1Score 

 

 
Fig. 7 Methodology Vs. Recall 

 

The F1 score reflects a classifier's ability to correctly 

identify all nodes that do not have a malignant condition; 

here, from figure 6, the suggested methods have a high 

range of the F1 score (92.83%), which was very high when 

compared to other existing mechanisms. 

 

To correctly determine all nodules with the malignant 

condition or, if 100% accurate, identify all codes with a 

faulty condition using HEESO_BA-ZFCNN. Figure 7 

shows that the sensitivity of the proposed approaches 

(93.21%) was quite high compared to other existing 

mechanisms. 

As of figure 8, the precision rate was high (92.45%)  

for the suggested methodology compared to other existing 

mechanisms. The result obtained revealed that the 

suggested methodology outperforms well over malignant 

nodule classification compared to other existing 

mechanisms. 

 
Fig. 8 Methodology Vs. Precision 

6. Conclusion 
When interpreting chest LIDC-IDRI images, 

radiologists must distinguish between malignant and 

benign pulmonary nodules. Inter/intra-observer variability 

may be exacerbated by this laborious, subjective, time-

consuming, and time-consuming manual process. Image 

processing, classical machine learning, and sophisticated 

CNN models have been used to develop a variety of 

computer-aided instruments. However, the classification 

results derived from nodule lesions cannot be guaranteed 

in black-box models with little supervision using CNN-

based features.  

Furthermore, earlier research has demonstrated that 

greater classification accuracy may be achieved by 

separating image characteristics taken from the nodule 

from the area immediately around the nodule. Using 

disentangled image properties, we describe an ASAIL 

CNN for classifying benign and malignant lung nodules. 

To do this, several convolutional pathways are supplied 

with images of the nodule target and the backdrop. 

According to our empirical data, CNN-based features have 

more discriminating power than unsupervised extracted 

features. The architecture performs better than typical 

CNNs. As a result of our experiments, we gathered and 

identified the nodule's complicated attributes with a broad 

range of prediction accuracy (92.45 percent). In the future, 

nodules of size between 3 -30 mm were considered. It 

provides useful information for determining whether or not 

a nodule is present. Other feature reduction and selection 

methods might be used to find the traits that will be used to 

characterize the lung tumor.  
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