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Abstract - The study presented in this article aims to solve the scientific problem of increasing the efficiency of using modeling 

and machine learning models in solving problems of analysis and classification of metageosystems. The article describes an 

approach aimed at improving the efficiency of machine learning models in solving the problem of classifying metageosystems, 

which makes it possible to overcome the limitations imposed on the use of convolutional neural network models. The article is 

also devoted to solving the scientific problem of multifaceted quantitative analysis of intercomponent links in metageosystems 

of different hierarchical levels based on simulation modeling. It is proved that the study of the structure and properties of 

metageosystems should be based on the analysis of complex properties and patterns of interaction of territorial systems 

distributed in space. A set of requirements for the framework for creating simulation models of spatial processes is formulated, 

and an algorithm for developing a simulation model that describes the spatio-temporal processes occurring in complex 

territorial systems is presented. The study also showed that combining models into an ensemble based on the proposed 

metaclassifier architecture makes it possible to increase the stability of the analyzing system: the accuracy of decisions made 

by the ensemble tends to tend to the accuracy of the most efficient monoclassifier of the system. Systematic analysis of territory 

descriptors integrated based on data from different sources significantly increases the accuracy of metageosystem 

classification. 

Keywords - Geosystem approach, Metageosystems, Earth remote sensing data, Classification, Machine learning, Simulation.

1. Introduction 
Geosystems act as an object of systemic spatial analysis 

in modern science in the field of spatial data analysis. The 

doctrine of geosystems is relevant both in the field of 

studying natural objects and processes and in the field of 

analyzing their interaction with social and economic systems. 

In this case, it is necessary to introduce the concept of 

"metageosystem", digital models of the territory as the main 

object of spatial analysis. The study presented in this article 

aims to solve the scientific problem of increasing the 

efficiency of using machine learning models in solving the 

problem of classifying metageosystems based on Earth 

remote sensing (ERS) data. 

The solution to the scientific problem of developing a 

multifaceted quantitative analysis of intercomponent 

relationships in metageosystems of different hierarchical 

levels should be based on the construction of digital models 

of geosystems at the levels of systems of another class. In the 

first stage, a selection of properties is made that most 

accurately reflect the object under study with the required 

level of abstraction. After that, variables that describe the 

properties with the greatest completeness are selected, and 

the parameters on which they are observed are determined 

(time, space, groups). Each variable is described according to 

its main characteristics, which are significant from a 

methodological point of view; at the level of data systems, 

variables are transformed into a set of states, displayed on a 

single parametric set; at the level of generating systems, the 

data obtained are converted into forms, based on the nature 

of the object under study and the objectives of the study.  

Models built in this way allow solving the following key 

tasks:  

1)  Assessment of the strength and nature of intercomponent 

links in metageosystems;  

2)  Determination of the number of factors describing  the 

territorial change in the properties of metageosystems;  

3)  Interpretation and justification of the physical meaning 

of the selected factors.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Corresponding%20Author%20:%20yamashkinsa@mail.ru
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The solution of the designated problem points makes it 

possible to build digital statistical models of the spatial 

structure of geosystems based on continuous and discrete 

approaches; evaluate the resulting models through a 

quantitative analysis of the quality of displaying the 

territorial variability of those landscape properties that were 

not directly introduced into the original multidimensional 

model of geosystems [1]. The solution to the scientific 

problem of analyzing the structure and properties of 

metageosystems should be based on the analysis of complex 

properties and patterns of interaction of territorial systems 

distributed in space [2, 3]. Machine learning algorithms and 

deep neural networks, in particular, are widely used in 

solving the problem of space-temporal forecasting [4]. At the 

same time, using such models is associated with several 

difficulties and threats [5, 6].  

First, because neural network models are structures built 

and trained based on the "black box" strategy, analysing their 

behavior to adjust the decision-making features becomes 

unnecessarily complicated. Secondly, training deep models 

capable of extracting complex hierarchical features about 

territorial processes and systems requires the preparation of 

huge training data banks, which, among other things, 

involves field research [7, 8]. Thirdly, the ambiguity of 

solving the problem of assessing the accuracy and error of 

machine learning models causes legitimate concerns of 

experts, expressed in high uncertainty when comparing the 

abstract mathematical assessment of the model error with the 

requirements of standards and performance criteria [9]. As a 

result, the solution to the problem of spatio-temporal 

forecasting of territorially distributed processes should be 

sought in the field of methods and algorithms that allow 

analyzing models of real-world systems based on the "white 

box" strategy, which implies the possibility of analyzing the 

functioning of each component of a complex system, which 

is an abstraction of a real territorial system and depicting 

various internal interactions and relationships in it. Spatio-

temporal quantitative analysis of the components of this 

system makes it possible to understand better-distributed 

processes and a relatively accurate prediction of the 

directions of development of natural and natural-technogenic 

phenomena. 

 

2. Research Method  
The structure of studies of metageosystems is based on 

the principles:  

1)  Territoriality - the study of the natural resource potential 

and patterns of natural differentiation that determine the 

general patterns of economic development and patterns 

of development of environmental, social and economic 

processes;  

2)  Consistency - a conjugated study of all aspects of the 

functioning of metageosystems, taking into account the 

relationship of all elements that determine the features of 

ecological, social and economic development; 

interdependent association of structural elements and 

connections of different levels of natural, social and 

production systems, mutual linkage and consistency of 

all processes and phenomena;  

3)  Environmental - optimization of the interaction of 

natural, social and production systems based on the 

observance of ecological balance. 

Based on the methodology of sequential analysis of 

geosystems of different hierarchical levels, digital models of 

geosystems of the following levels can be built: 

1) The level of source systems involves the selection of 

properties that maximally reflect the objects under study 

based on the purpose of the study and variables that 

describe the selected properties with the greatest 

completeness. 

2) The level of data systems, focused on transforming 

initial variables into a set of states, displayed on a single 

parametric set, characterized by temporal, spatial and 

attributive coordinates. 

3) The level of generating systems involves transforming 

the obtained data into optimal representation forms 

based on the nature of the object under study and the 

study's objectives. 

4) The level of structured systems, which implements the 

identification of relationships (connections) between 

geosystem variables based on using non-parametric and 

parametric statistics methods, simulation algorithms and 

machine learning models. 
 

Structured models of geosystems make it possible to 

approach the consistent solution of problems: assessment of 

the strength and nature of intercomponent links in 

geosystems; determination of factors describing the territorial 

change (variation) of the properties of geosystems (the so-

called assessment of the dimension of space); interpretation 

and justification of the physical meaning of the selected basic 

factors. These results, in turn, become the basis for solving 

the problems of constructing digital spatial models of 

geosystems based on continuous and discrete approaches 

with the possibility of evaluating the resulting models 

through a quantitative analysis of the properties of 

landscapes and their components based on a 

multidimensional model of geosystems. 
 

The formed multifactorial hierarchical spatial models 

become the basis for forming information geoportal 

resources for solving project-oriented tasks in managing 

regional metageosystems: analyzing the structure and 

properties of lands, detecting natural and natural-technogenic 

objects, and predicting the development of emergencies and 

natural processes. In organizing research on geosystems, it is 

advisable to single out the following stages: substantiation of 

problem situations, preparation of initial data and 

development of algorithms for their merging, typological 
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systematization of information and compilation of a synthetic 

map of geosystems, ensemble analysis of the susceptibility of 

geosystems to external influences, generation of output data 

and use of the results obtained. 

2.1. Justification of Problem Situations 

The most important stages in the creation of a synthetic 

map of geosystems are the identification of problem 

situations related to the development of geoecological 

processes, the creation of a system of test polygons at the 

regional and local levels for diagnosing the structure, 

functioning, and dynamics and evolution of geosystems, the 

formation of initial data, the modeling of the spatiotemporal 

structure of geosystems, the generation of output data, 

analysis of the results and their use for making managerial 

decisions. Thus, in the scheme of physical-geographical 

zoning of the Republic of Mordovia, the system of test 

polygons focused on revealing the spatial and temporal 

organization of geosystems in the zone of interaction 

between the forest-steppe of the Volga Upland and mixed 

forests of the Oka-Don Lowland. The region's economic 

development is associated with the relevance of making 

managerial decisions in the water balance regulation and 

optimization of water supply problems, minimizing the 

development of exogeodynamic processes, and maintaining 

soil fertility and biological diversity. 

2.2. Data Preparation 

The range of problematic situations determines the 

database structure that reflects the structure of geosystems at 

the regional and local levels. Regional GIS "Mordovia" 

includes a system of electronic maps with information on the 

main analyzed elements of geosystems, Earth remote sensing 

data (ERS). The use of test polygons is relevant from the 

standpoint of solving the problem of consolidating an 

informative set of training data samples for the operation of 

automated algorithms, the accuracy of which can be 

significantly increased by calibrating the classification 

process based on the method of ground measurements during 

field studies involving direct observation of objects [10]. 

Within the framework of test polygons, the morphological 

parts of natural and anthropogenic landscapes within the 

boundaries of individual land types are considered. Test 

polygons must meet a set of quality requirements: 

1) Sufficient structural diversity, which implies the 

presence within the study area of landscapes sufficient to 

create exhaustive sets of reference samples 

characterizing landforms, soils, water bodies, vegetation 

cover, and anthropogenic objects; 

2) High quality of recorded spatially associated 

characteristics that ensure the formation of a sufficient 

set of stable radiative-reflective characteristics of 

geosystems; 

3) The location and size of the polygon sufficient for a 

representative sample of spatial data, which determines a 

statistically sufficient number of presented classes of 

objects; 

4) The correctness of the methodological, regulatory and 

technological support for the process of consolidating 

spatial data containing objective and accurate 

information about the spatial and temporal organization 

of geosystems; 

5) Information content of the meta-description, which 

provides essential information about spatial data, 

including information about the survey, description of 

meta-geosystems, and administrative characteristics. 

 

Test polygons that meet the presented quality 

requirements can be used to optimize automated 

classification models based on the use of machine learning 

technologies and can be combined into a single system to 

improve the quality of design work in the field of landscape 

mapping, farm management, precision farming, and 

exploration of natural resource deposits, monitoring of 

natural and natural-technogenic natural processes. 

2.3. Systematization of Data 

Based on the widespread use of multizone satellite 

images, the synthetic map of geosystems acts as the central 

link of the regional geographic information system. It is the 

basis for the following: 

 

1) Compilation (revision) of thematic maps that reveal the 

structure of geosystems and the development of 

geoecological processes; 

2) Identification of zones of influence of geotechnical 

systems on the state of the environment; 

3) Assessment of the negative consequences of the direct 

and indirect technogenic impact on geosystems; 

4) Predicting the dynamics of changes in the geoecological 

situation; 

5) Making managerial decisions to prevent (minimize) the 

development of destructive geoecological processes. 

 

The space-time structure of geosystems can be 

represented as a set of processes of movement, exchange and 

transformation of energy, matter and information between its 

elements and the surrounding geographical space. The 

determining factors in the formation of the structure, 

development, dynamics and functioning of geosystems are 

macroclimatic factors, tectonic landforms, features of the 

water and geochemical regime, soil-biological and 

exogeodynamic processes, and plant communities. Synthetic 

mapping of geosystems provides the following taxonomic 

units hierarchy: category, subcategory, class, subclass, type, 

subtype, genus, and subgenus of landscapes. The use of 

spatial data of varying degrees of generalization contributes 

to establishing regularities in the spatio-temporal 

organization of geosystems, increases the reliability of 

interpretation, and contributes to a more accurate 

interpretation of diagnostic features. 
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The stage "Data analysis for compiling a digital map of 

geosystems" is aimed at implementing the automated 

analysis of spatial monitoring data using computational 

algorithms. Software and mathematical models, grouped into 

ensembles, function based on identifying statistical patterns 

and reference features of spatially distributed objects. 

As the final step, the stage "Visualization, dissemination 

and practical use of the results obtained" is singled out. For 

its implementation, it is necessary to ensure the formation of 

a multimodel geoportal spatial database. The solution to the 

spatial data visualization problem is achieved through digital 

maps that function within the framework of geoportal web 

interfaces and attain the goal of dissemination and practical 

use of data on regional metageosystems. 

Machine learning methods and algorithms can 

effectively interpret geospatial data characterized by spatial 

dependence, spatial heterogeneity and scalability [11]. At the 

same time, applying methods and algorithms of deep 

machine learning to geospatial data analysis faces many open 

problems that require a scientifically based solution. Machine 

learning models used to solve the geosystem classification 

problem can have different architectures (artificial neural 

networks, decision trees, support vector machines) and 

hyperparameters. Moreover, they are able to successfully 

train on different interpretive territory datasets, which can be 

multivariate and multimodel. 

Types of geosystems reflect the structure of habitats and 

plant communities. An analysis of the hierarchical structure 

of geosystems shows revealing the features of the interaction 

between the forest-steppe and forest geosystems of the Volga 

Upland and the Oka-Don Lowland to develop methods and 

algorithms for analyzing and integrating information in 

spatial data infrastructures at the Mordovia test site (located 

between 53°38' and 55°11' N, 42°11' and 46° 45' E), it is 

advisable to single out 6 polygons for high-precision 

mapping at the topological level. 

1) The Nuya polygon (center coordinates: 54°28' N, 45°54' 

E) reflects the interaction of geosystems of the elevated 

erosion-denudation and erosion-accumulation plains of 

the Pliocene-Pleistocene age. The key aspects of the 

development of synthetic mapping methods are 

diagnostics of the state and interaction of forest and 

meadow-steppe geosystems for landscape planning of 

agricultural, forestry and mining systems; substantiation 

of the zone of the ecological balance of republican 

significance, which ensures the stabilization of the water 

balance and minimization of the development of planar 

and linear erosion. 

2) The Moksha-Temnikov polygon (center coordinates: 

54°42′ N, 43°24′ E) is organized in the geosystems of 

forest landscapes of water-glacial and ancient alluvial 

plains. The primary vectors for the development of 

methods for diagnosing the state of metageosystems to 

justify a set of measures for the organization of the 

Sanaksar-Temnikov pilgrimage and tourism cluster 

while maintaining the sustainable functioning of the 

feeding area of the Carboniferous-Permian aquifer 

complex, the unique ecosystems of the "Reserved 

Mordovia". 

3) The Alatyr-Smolny polygon (center coordinates: 54°48′ 

N, 45°29′ E) was created in an ancient hollow of glacial 

water runoff with coniferous and coniferous-broad-

leaved forests; the main objects of research are the 

mapping of exogeodynamic processes in the zones of 

linear tectonic faults; planning of recreational systems. 

4) The Saransk polygon (center coordinates: 54°11′ N, 

45°11′ E) was organized for a comprehensive study of 

metageosystems to diagnose the development of 

geoecological processes and landscape planning for 

urban development of geosystems. 

5) The Moksha polygon (center coordinates: 54°13′ N, 

44°02′ E) was created for a comprehensive study of 

slope and floodplain exogeodynamic processes in the 

zones of geotechnical systems. 

6) The Inerka Polygon (center coordinates: 54°03′ N, 

45°53′ E) reflects the interaction of paragenetic systems 

of forest-steppe geosystems of the erosion-denudation 

plain and intrazonal forest landscapes of the valley of the 

river. Sura. The priority geoecological problem is the 

optimization of tourist and recreational development of 

the natural monument of republican significance, "Lake 

Inerka". 

The database "System of thematic maps for test sites of 

the Republic of Mordovia" is based on thematic layers, the 

register of which forms the following data categories:  

• geology (primary sections, Quaternary deposits, 

lithological composition of surface deposits),  

• groundwater (depth of groundwater, aquifers, water 

class and type, content of fluorides, iron chlorides, 

sulfates),  

• relief (digital elevation model, lineaments and ring 

structures),  

• soils (spatial distribution of soils, ecological and 

geochemical stability),  

• metageosystems and landscapes (landscape map, 

vegetation distribution, geobotanical map, specialization 

in agriculture).  

The generated database "System of thematic maps for 

test sites of the Republic of Mordovia" is a digital 

characteristic of the system of test sites in the zone of contact 

between the forest-steppe of the layer-tier Volga Upland and 

forest landscapes of the Oka-Don Lowland.  
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Consolidated data can be used to develop and test 

automatic and automated methods for mapping 

metageosystems, modeling geoecological processes, and 

monitoring the state of development of geoecological 

situations using remote sensing data. 

3. Results and Discussion 
Spatio-temporal data models should simulate spatially 

distributed processes in three-dimensional or four-

dimensional space. In the first case, each spatial object is 

described by such coordinates as latitude, longitude and time; 

relative or absolute height can also be considered in the 

second case. Both natural (hydrological, geological, plant) 

and technogenic (economic, social) systems can be subjected 

to simulation [12]. The organization of a methodological, 

architectural and software framework that allows 

transforming fuzzy boundaries and multifactorial 

characteristics of natural phenomena into a strictly 

formalized framework of spatio-temporal abstractions is of 

current importance [13]. The system properties of natural and 

natural-technogenic phenomena dynamically change when 

moving in space and time; accordingly, the display of these 

internal structural, including hierarchical, characteristics 

should be included in the spatio-temporal structure of the 

model at a given level of assumptions and abstraction. 

3.1. Designing a Hierarchical Model of Geosystems 

The development of models that represent and 

characterize complex dynamic distributed systems is based 

on object-oriented, domain-oriented, event-based, multi-

agent, and graph approaches [14, 15]. Graph-based modeling 

strategies are used for the spatiotemporal representation of 

processes and phenomena in the form of events. One of the 

advantages of graph modeling is the possibility of flexible 

integration of the semantic constraints of modeling and the 

organization of a formalized approach to quantitative 

assessment, taking into account both the spatial and temporal 

organization of territorial systems. 

Let us formulate a set of requirements for the framework 

for creating simulation models of spatial processes. 

3.1.1. Versatility 

The modeling framework should allow the formation of 

simulation models of a wide class of natural and natural-

technogenic territorial systems with sufficient abstraction and 

representativeness.  

 

3.1.2. Interpretability 

Models formed based on the framework should allow for 

a transparent assessment of the features of the functioning of 

its individual components and identify cause-and-effect 

relationships between changes in the system characteristics 

of the model and its specific constituent elements.  

 

3.1.3. Reliability 

Models deployed based on the proposed framework 

should ensure sufficient minimization of discrepancies 

between the actual characteristics of the state of the 

simulated territorial system and the parameters of its abstract 

representation, calculated based on the algorithms introduced 

into the system. 

 

3.1.4. Configurability and Extensibility 

The modeling framework should allow the formation of 

flexible models of complex territorial systems that are easily 

refined and modified when new knowledge about the 

analyzed objects and processes appears. 

  

3.1.5. Optimization 

The simulation framework should allow the processing 

of large data on territorial systems with minimal computing 

power. 

 

From the point of view of the set-theoretic approach, the 

system of simulation modeling of spatial processes is 

described by a tuple of sets: 𝑀𝑂𝐷𝐸𝐿 =
〈𝐺𝑅𝐴𝑃𝐻, 𝐴𝐺𝐸𝑁𝑇𝑆, 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐼𝑂𝑁〉, where 𝐺𝑅𝐴𝑃𝐻 is a 

graph model of territorial systems, described by a set of 

spatially distributed components; 𝐴𝐺𝐸𝑁𝑇𝑆 - a set of model 

agents that simulate the movement of matter and energy 

between the components of territorial systems; 

𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐼𝑂𝑁 is a set that defines the parametric and 

algorithmic features of the simulation subsystem. The 

𝐺𝑅𝐴𝑃𝐻 describes the structural organization of a territorial 

system with a given level of abstraction (Figure 1). 

 
Fig. 1 Generalized graph structure of the model 

 

The set of graph vertices (𝑁) determines the selected 

territorial components of the system. Each vertex is 

characterized by a coordinate reference in Cartesian 

(relative) and geographic (absolute) coordinates. Refining the 

model leads to adding associated attributes and methods to 

each vertex. Graph vertices can be internal (accepting flows 

of objects from other model vertices) and boundary 

(modeling external connections of the considered 

geosystem). 

The set of graph arcs (𝐸) describes the existing 

connections between territorial objects and channels within 

which the transfer of matter and energy is carried out. It is 
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advisable to use elements of the theory of queuing systems 

To describe the capacitive characteristics of connections 

(queues). Each arc 𝐸𝑖 and vertex 𝑁𝑗 of the 𝐺𝑅𝐴𝑃𝐻 graph is 

described by a set of static (invariant) and dynamic 

parameters. The routeing model 𝑅𝑇𝑘 is described by the 

characteristic of length (length𝑘), initial (source𝑘) and final 

(target𝑘) vertices, sets of vertices (N𝑘) and arcs (E𝑘) 

included in it. 

{

𝐸𝑖 = 〈𝐸𝑃𝑖,𝑠𝑡𝑎𝑡𝑖𝑐, 𝐸𝑃𝑖,𝑑𝑦𝑛𝑎𝑚𝑖𝑐〉, 𝑖 = 1, 𝑒̅̅ ̅̅

𝑁𝑗 = 〈𝐸𝑃𝑗,𝑠𝑡𝑎𝑡𝑖𝑐 , 𝐸𝑃𝑗,𝑑𝑦𝑛𝑎𝑚𝑖𝑐〉, 𝑗 = 1, 𝑛̅̅ ̅̅̅

𝑅𝑇𝑘 = 〈length𝑘,  source𝑘, target𝑘, N𝑘, E𝑘〉, 𝑘 = 1, 𝑟̅̅ ̅̅  
     

(1) 

 
The 𝐺𝑅𝐴𝑃𝐻 graph model is divided into many 𝐺𝑆 

segments to increase the flexibility of the territorial system 

model. Through segments, patterns of centralized cascading 

control over the properties of a set of model vertices can be 

defined. For example, the membership of a set of vertices in 

𝑁 to segment 𝐺𝑆𝑖 can determine the appearance of a set of 

attributes with given values and methods for these vertices 

that describe specific behaviors. Finally, graph segments can 

be organized into a multilevel structure to model the 

hierarchical organization of subordinate geosystems. 

Model agents (A). The energy exchange between 

territorial components is the most important component of 

functioning natural and natural-technogenic spatial systems. 

Connections between territorial systems are also realized 

through the transfer of matter (flows of air, water, solid 

masses, and living organisms). This aspect can be 

implemented through agent-based modeling, in which 

decentralized abstract system objects described by a set of 

attributes and methods are moved and transformed within the 

model based on their state, as well as the state of the system 

as a whole and its individual components. Thanks to the 

agent component, the modeling of the system's uplinks are 

implemented. 

A separate agent of the model 𝐴𝑖 within each discrete 

stage of simulation is transformed and moved within the 

graph structure of the model based on the following 

provisions (aspects): 

1) A set of admissible solutions is embedded in a set of 

algorithms and strategies for choosing behavior. This 

aspect determines the degree of freedom in the agent's 

behaviour. It may include such actions as changing the 

route of movement, stopping, starting the movement, 

and changing its own state parameters. 

2) The current and predicted state of the agent. By means 

of a set of state properties (current and historical), an 

abstraction level is achieved to describe spatial objects 

of different natures: aggregate state of substances, 

dynamic characteristics of objects, and motivation of 

traffic participants.  

 

3) The current and predicted state of the observed 

components of the model or the system as a whole. This 

group of decision-making parameters determines the 

possibility of responding to changes in external 

conditions, including the presence of external influences 

(merger and separation of hydrological flows, interaction 

of road traffic systems, and development of 

exogeodynamic processes).  

4) Experience in interacting with agents and elements of 

the model. This group of provisions is transformed over 

time based on the accumulated experience, allowing you 

to model the interactions of smart learning systems. It 

can be implemented based on reinforcement learning 

through the transformation of an agent based on the 

assessment of the influence of the environment in 

response to certain decisions. 

The 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝐼𝑂𝑁 simulation subsystem is defined by a 

set of control algorithms 𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝐸𝑅𝑆 and system 

parameters (𝑃𝐴𝑅𝐴𝑀𝐸𝑇𝐸𝑅𝑆). Within the framework of the 

register of control algorithms, there is an algorithm for 

generating model agents, calculating routes for moving 

system agents, modeling and analyzing the laws of model 

transformation, and visualizing simulation results. Static 

parameters also represent system parameters 𝑀𝑃𝑠𝑡𝑎𝑡𝑖𝑐 (time-

invariant characteristics that have spatial and attribute 

properties) and dynamic 𝑀𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 characteristics (values 

that change over time). 

Simulation modeling makes it possible to analyze 

complex traffic processes with the necessary approximation, 

to evaluate the effectiveness and consequences of some 

regions of transformation of the infrastructure of technogenic 

metageosystems.  

The algorithm for developing a simulation model that 

describes the spatio-temporal processes occurring in complex 

territorial systems should include the following sequence of 

steps:  

1) Definition of the task and scenarios for using the system. 

During this project stage, a list of problems is 

determined that the developed simulation model aims to 

solve, and a register of key precedents is determined to 

form the designed solution's functionality space.  

2) Designing and detailing the model. At this stage, the 

decomposition and refinement of the basic framework of 

the simulation model for solving specific problems are 

carried out; numerical data are collected, the statistical 

characteristics of the system are evaluated, and 

hypotheses are put forward to determine the level of 

abstraction of the model, which ensures acceptable 

modeling accuracy and achievement of target effects. 

3) Algorithmic concretization of the model. As part of this 

stage, the necessary list of algorithms is being developed 
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that determines the functioning of a specific 

implementation of a system for simulating spatial 

processes aimed at solving particular problems of 

analyzing natural and natural-technogenic processes.  

4) Implementation of the graphical interface and 

visualization subsystem. At this stage, the interface 

component of the system is proposed and developed, 

which should determine the ways of interaction with the 

model, methods and tools for analyzing its functioning, 

optimization and refinement.  

5) Iterative approbation of the simulation system allows not 

only to model specific spatio-temporal processes but 

also to calibrate the model, refine the register of data 

used, and optimize the resulting quality. 

 

Two development directions of the framework for 

simulation modeling spatial processes should be singled out. 

On the one hand, it is necessary to adhere to a deductive 

strategy, in which the model-building system should be 

initially designed to achieve the possibility of covering 

solutions to the maximum number of problems.  

On the other hand, it is necessary to implement the 

inductive strategy as efficiently as possible, within which the 

positively proven improvements of particular specific models 

become the basis for the development of the simulation 

framework. The combined use of deductive and inductive 

strategies will provide an evolutionary improvement in the 

modeling framework and optimization of particular solutions 

developed on its basis. 

3.2. Analysis of Spatial Data with the Construction of a 

Synthetic Map of Geosystems 

In the past few years, the concept of deep machine 

learning has taken an important place in the field of spatial 

data analysis [16]. Still, the use of capacious models 

encounters a number of obstacles that significantly 

complicate their implementation: they can be effectively 

trained only on large sets of labeled spatial data, be subject to 

the problem of overfitting, poor generalization of information 

and poor interpretability, the process of training deep models 

places high demands on hardware [17]. The solution to the 

indicated problems is possible with the use of ensembles of 

classifiers built on the Ensemble Learning methodology, 

combining various models into a system and making it likely 

to increase the accuracy and stability of machine learning 

models [18]. 

Data on territorial systems can be multidimensional, 

including information about the spectral properties of the 

earth's surface, the features of its spatial organization, and 

other information of attributive, spatial and temporal nature. 

A set of features of a local territorial object (including 

spatial, spectral, and radiometric characteristics) can be 

formed based on satellite imagery or other sources. In 

contrast, a spatial area can be classified based on a pixel-by-

pixel analysis or by extracting features from fragments of an 

area of different sizes. The set of features of a local object, 

which themselves can be represented in the form of tensors, 

determines the base level of the created geospatial terrain 

model. 

Under the territory's geosystem model, we mean the data 

characterizing the enclosing hierarchical geosystems. In 

accordance with the geosystem approach, the enclosing 

geosystem significantly impacts the properties of 

hierarchically subordinate formations. Earth remote sensing 

data are a useful source of information about it [28]. The 

process of obtaining data at various levels of the hierarchy is 

potentially subject to automation through integration with 

spatial data infrastructure services and third-party providers 

of spatial information. 

The optimization algorithm for constructing a 

metageosystem classification model includes the following 

sequence of steps: 

1) Development of a system of requirements for a data 

analysis model, definition of a register of analyzed data, 

qualitative and quantitative requirements for the result of 

functioning; 

2) Designing the basic architecture of the model with the 

decomposition of top-level components into linear and 

branching structures, determining the form of input and 

output signals, and acceptable system quality indicators; 

3) Iterative optimization of the model in accordance with 

the rule "less is better than more" to achieve the effect of 

reducing the requirements for computing resources and 

creating prerequisites for solving the problem of  

overfitting; 

4) Heuristic configuration of the hyperparameters of the 

model with the design of accuracy metrics, optimization 

algorithms, loss functions and the number of training 

epochs; 

5) Analysis of the probabilistically conditioned learning 

process of the model by monitoring the dependence of 

the mathematical expectation and the standard deviation 

of the classification efficiency measure on the learning 

epoch; 

6) Assessing the quality of the model based on 

experimentally built error matrices and calculating 

accuracy and error metrics to conclude that the result 

meets the requirements for the first stage. The proposed 

chain of actions leads to obtaining an instance of the 

model. The entire process of searching for the most 

effective result is formalized in the form of a tree, the 

terminal nodes of which correspond to the generated 

spatial data analysis models. 

A systematic analysis of territorial descriptors gives a 

significant increase in the accuracy of metageosystem 

classification (Table 1): taking into account the descriptors  
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Table 1. Comparison of classification accuracy and training time of models within the experiment 
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CNN 88.7 97.0 77.7 65.2 91.2 89.5 76.8 98.3 76.8 99.0 88.5 3.6102 8.3103 

CNN, with a lack of data 78.9 93.2 65.5 44.0 86.7 86.2 67.5 91.7 59.9 95.2 77.5 1.8102 4.8103 

SNN (DERS) 81.6 94.5 63.9 39.7 90.7 67.0 64.4 94.2 58.6 94.0 76.1 2.7102 1.6102 

SNN (DERS + DDEM) 84.4 94.8 80.5 42.0 90.8 73.1 67.7 93.9 58.9 96.5 79.4 2.7102 1.6102 

SNN (DERS + DLK) 90.2 83.1 83.1 75.5 94.0 80.6 81.2 96.6 74.5 97.1 87.6 2.7102 1.6102 

SNN (DERS + DDEM + DLM) 90.5 96.7 88.7 77.6 93.8 86.5 83.6 96.9 77.8 97.8 89.2 2.7102 1.6102 

 

calculated based on satellite imagery data of the territory 

(DERS group) made it possible to achieve an accuracy of 

76%. Involvement of terrain descriptors (DDEM group) 

increases the accuracy by 3%, and metrics calculated based 

on landscape maps (DLM group) by 11%. Simultaneous 

consideration of descriptors of all categories leads to an 

increase in classification accuracy by almost 12%. 

Thus, when solving specific problems, low-capacity 

shallow neural network models (SNN), provided that 

territorial descriptors are taken into account, show accuracy 

characteristics comparable to those of convolutional models 

trained on multidimensional spatial data.  

It should also be noted that using deeper neural network 

architectures will improve classification accuracy due to the 

possibility of extracting complex hierarchical features. 

However, this will increase the requirements for the 

hardware on which the calculations are carried out, or it will 

take a lot of time to conduct experimental studies [21, 22]. 

Thus, with all the advantages, using deep convolutional 

neural network models leads to contradictions that need to be 

resolved. First, their sustainable training requires expert 

labeling of important training data, which is time-consuming 

and resource-consuming [23, 24]. Secondly, deep 

convolutional models are very demanding on computational 

resources, which are not always available [25, 26]. 

The combination of neural networks into an ensemble 

according to the described method, followed by the 

calculation of the F1 metric and other performance 

parameters, showed that an increase in the capacity of the 

models does not lead to a clear improvement in the result, 

since more powerful models may be more unstable to 

overfitting, and also require more labeled data for training. 

When the models were combined into an ensemble, the 

resulting hypothesis began to be applied based on weighted 

voting based on the measure of efficiency, which made it 

possible to avoid gross errors in the classification inherent in 

each classifier separately. At the same time, the ensemble 

only slightly loses accuracy to individual classifiers of the 

system while maintaining overall resistance to errors when 

determining objects of a particular class of territory. 

While a classification system trained from satellite 

imagery fragments does not allow accurate pixel-by-pixel 

segmentation, it does provide the ability to automate land 

cover analysis and land-use systems (including change 

detection). It can contribute to the updating of digital 

geographic maps. Under the condition of fine-tuning the 

algorithm for calculating territorial descriptors and training 

the classifier based on remote monitoring data of a specific 

satellite scanning the earth's surface for a long time, the 

generated models can be used to solve the problem of 

automated monitoring of changes in the structure of land use 

and the geophysical envelope (including those caused by 

technogenic transformation), exogeodynamic processes, 

deforestation processes, as well as natural processes: fires 

and floods). To classify land and spatial data on the study 

area (RS data, digital elevation models, digital maps) on the 

study area, it is necessary to impose a spatial grid with a step 

Δgrid, which determines the detail and degree of 

generalization of the result 

The conducted discretization compares the analyzed 

territory with the matrix:  
 

𝑀𝐴𝑃 = (𝑐𝑒𝑙𝑙𝑖,𝑗)𝑖=1,𝑗=1
𝑚,𝑛 = (𝑐𝑒𝑙𝑙𝑖,𝑗)

𝑖=1,𝑗=1

ℎ𝑒𝑖𝑔ℎ𝑡

Δ𝑔𝑟𝑖𝑑
,
𝑤𝑖𝑑𝑡ℎ

Δ𝑔𝑟𝑖𝑑 
, (2) 

where 𝑀𝐴𝑃 – test polygon matrix; 𝑚, 𝑛 – number of 

rows and columns of the matrix 𝑀𝐴𝑃; 𝑐𝑒𝑙𝑙𝑖,𝑗 – cell of the 

𝑀𝐴𝑃 matrix located at the intersection of the i-th row and j-

th column and containing data on a fragment of the territory; 

ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ – test polygon height and width; Δ𝑔𝑟𝑖𝑑 – grid 

step size. 

Each cell 𝑐𝑒𝑙𝑙𝑖,𝑗 of the 𝑀𝐴𝑃 matrix can be associated 

with a set of territorial descriptors, the characteristics and 

calculation algorithm of which are presented in this section 

of the article. The classification system under consideration 
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can be used for automated validation of digital maps of 

significant territorial coverage based on the search and 

visualization of territories that require manual expert 

verification for the relevance of the displayed information 

and to identify the need for detailed segmentation. 

Figure 2 shows images that characterize the thematic 

layers of the spatial database. Solving the problem of 

choosing informative territorial features is essential for 

analyzing the state of metageosystems from the standpoint of 

identifying and predicting specific properties of spatial 

objects and requires the selection of an optimal set of 

thematic layers of digital maps.  

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Digital maps of regional GIS: a) Quaternary deposits, b) aquifers, 

c) spatial distribution of soils 

The algorithm for selecting thematic layers for analysis 

should make it possible to effectively eliminate redundant 

features and select subsets of parameters most suitable for 

building data analysis models when solving design problems 

aimed at functional zoning of territories. The efficient design 

of sets of factors makes it possible to reduce the complexity 

of the analyzed data system, increase the stability of 

algorithms, and reduce the time of information processing. 

 

𝑤𝑖 = 𝑃((𝑓𝑖
Miss ≠ 𝑓𝑖)|Miss) − 𝑃((𝑓𝑖

Hit ≠ 𝑓𝑖)|Hit) 

 

In the case of solving a binary classification problem, 

within the framework of the Relief algorithm, an instance of 

the object x is selected at each iteration. Then two nearest 

neighbors are found, one from the same class (the closest hit 

Hit) and the other from a different class (the closest miss 

Miss). The search for nearest neighbors, characterized by a 

set of N features, can be carried out based on the calculation 

of the Euclidean distance for the values of features of 

objects, followed by taking instances for which the 

maximum and minimum values of this distance are 

characteristic: 

d(𝑥𝑝, 𝑥𝑞) = √∑ (𝑥𝑝
𝑓

− 𝑥𝑞
𝑓

)2𝑁
𝑓=1 , 

The search for nearest neighbors can be based on other 

principles, including calculating the Manhattan (L1) distance 

or the Chebyshev distance. After this stage, it is possible to 

update the weights of each i-th factor by the value ∆𝑖: 

𝑤𝑖
𝑖𝑡𝑒𝑟+1 = 𝑤𝑖

𝑖𝑡𝑒𝑟 + ∆𝑖 

The modification parameter ∆𝑖 can be increased as the 

difference in the value of the attribute for objects of different 

classes increases and decreases by the difference in the value 

of the attribute for objects of the same class:  

 

∆𝑖= Δ𝑖
𝑚𝑖𝑠𝑠 − Δ𝑖

ℎ𝑖𝑡 = |𝑥𝑖 − Miss𝑖(𝑥)| − |𝑥𝑖 − Hit𝑖(𝑥)| 

In the event that categorical values characterize the i-th 

factor, the weight coefficients can be modified by the 

following principle: 

∆𝑖= Δ𝑖
𝑚𝑖𝑠𝑠 − Δ𝑖

ℎ𝑖𝑡 = ((𝑥𝑖 = Miss𝑖(𝑥)) ? 0: 1)

− ((𝑥𝑖 = Hit𝑖(𝑥)) ? 0: 1) 

The indicated weight transformation technique can be 

extended for the case of multiclass analysis in which the task 

is to distribute objects within the class space 𝑌 = {1, … , 𝐶}, 

which characterizes by the probability distribution 𝑝𝑐, which 

determines the frequency of occurrence of objects of each 

class. At the same time, based on the Euclidean distance, the 

nearest neighbors Miss𝑐
𝑖 (𝑥) and Hit𝑐

𝑖 (𝑥) are searched from 

the point of view of belonging to the object class 𝐶. 
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∆𝑖= ∑
𝑝𝑐

1 − 𝑝𝑐
(|𝑥𝑖 − Miss𝑐

𝑖 (𝑥)| − |𝑥𝑖 − Hit𝑐
𝑖 (𝑥)|)

𝑐∈𝑌,𝑐≠𝑦(𝑥)
, 

 

In regression problems, the predicted value of 𝑦𝑝𝑟𝑒𝑑 is 

continuous, which makes it impossible to select the nearest 

neighboring objects (Near) belonging to different classes. In 

this context, it is advisable to introduce a criterion for 

distinguishing the predicted continuous values of two 

instances. This value can be modeled based on calculating 

the relative distance between the predicted values of the two 

instances.  

 

Based on the Bayes theorem, the calculation of weight 

coefficients can be represented as: 
 

𝑤𝑖 =
𝑃Near

𝑦|𝑓𝑖 𝑃Near
𝑓𝑖

𝑃Near
𝑦 −

(1 − 𝑃Near
𝑦|𝑓𝑖 )𝑃Near

𝑓𝑖

1 − 𝑃Near
𝑦  

where 𝑃Near
𝑦|𝑓𝑖  is the probability of a different predicted 

value for neighboring objects with different values of the i-th 

factor; 𝑃Near
𝑓𝑖  – the probability of different values of the i-th 

factor for neighboring objects; 𝑃Near
𝑦

 is the probability of a 

different predicted value for neighboring features. The 

presented probabilistic parameters can be estimated based on 

a series of statistical measurements, and the estimate of the 

distance between objects can be determined as follows: 
 

d(𝑥𝑝, 𝑥𝑞) =
f(𝑦𝑝, 𝑦𝑞 , α)

∑ f(𝑦𝑝, 𝑦𝑖 , α)𝑁
𝑖=1

 

where f(∙) is a function for determining the distance of 

the discrete distance between the predicted values based on 

the scaling parameter α and a set of linear or non-linear 

transformations; 𝑁 is an adjustable coefficient that 

determines the power of the analyzed objects. Before 

performing the stage of estimating the weights of the 

analyzed factors, their values should be normalized to solve 

the problem of excessive data scatter. This problem can be 

approached based on Z-normalization, which involves the 

transformation of the factor values based on the calculation 

of the mathematical expectation �̅� and the variance 𝜎𝑥. 

𝑥�̃� =
𝑥𝑖 − �̅�

𝜎𝑥
 

It is possible to develop the presented algorithm and 

ensure this stability when working with unbalanced and 

noisy data by adding iteration. The correctness of this 

provision is confirmed by the fact that the algorithm's 

performance for calculating the weight coefficients 

deteriorates as the number of irrelevant features becomes 

significant.  

The recursive approach to the successive elimination of 

irrelevant features allows each iteration to cut off the 

territorial features with the lowest estimates from 

consideration so that they do not participate in searching for 

nearest neighbors and updating the weight coefficients. It is 

important to note that the choice of the number of iterations 

and the number of features discarded at each stage is a 

parameterizable side of the iterative algorithm. At the same 

time, these characteristics may not be strictly specified: at 

each stage, it is possible to cut off any number of features 

with certain statistical characteristics. 

On the other hand, the algorithm for estimating the 

importance of spatial features, having a quadratic time 

complexity, may not be optimal in terms of performance 

when working with high-dimensional training datasets. The 

principle that is the key to optimization when working with 

large datasets is that evaluating the importance of features is 

faster within a smaller data dimension. The modified 

algorithm then applies the assessment of the importance of 

territorial features to a certain number of random or expertly 

determined subsets of features. After that, the partial results 

can be integrated by setting the global feature weight to equal 

the maximum local weight of that feature across all analyzed 

subsets. The effectiveness of the presented approach depends 

to a large extent on the representativeness of correlated 

features within the selected subsets. 

Thus, the presented algorithm makes it possible to assess 

the influence of data from specific thematic layers of a digital 

map on the target indicator (discrete or continuous) to solve 

the problem of determining the optimal set of spatially 

associated information used in decision-making. Improving 

the algorithm's stability when working with unbalanced and 

noisy data is possible based on a recursive approach, which 

involves the sequential application of the algorithm for 

assessing the importance of data by cutting off a reasonable 

number of layers at each stage of the algorithm execution. 

The solution to the problem of increasing the algorithm's 

speed when working with big data is possible based on 

assessing the importance of territorial features for subsets of 

thematic layers, followed by integrating the results into a 

single set. 

4. Conclusion  
The solution to the scientific problem of quantitative 

analysis of intercomponent links in metageosystems of 

different hierarchical levels is possible based on simulation 

modeling. The article formulates a set of requirements for the 

framework of simulation models of spatial processes. It 

presents an algorithm for developing a model that describes 

the spatio-temporal processes occurring in territorial systems.  

 

The implemented software package for simulating the 

traffic flows of urban metageosystems can be used to create 

dynamic transport models with the ability to predict the 

nature of the traffic flow depending on the current traffic 

situation. It integrates the components of the system into a 
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single model, which subsequently serves as a tool for making 

strategic decisions regarding the development of the 

transport structure of a city or region. Provided that the 

problems of analyzing space-time systems are formalized 

within the framework of the presented model, the proposed 

methodology can be used to analyze other natural and 

natural-technogenic processes, including natural phenomena. 

The developed system consists of eight modules: a map 

editor, a component for working with a database, a 

subsystem for visualizing interactive graphical web 

interfaces, an auxiliary module for performing the necessary 

mathematical calculations, a subsystem for modeling urban 

traffic, and a recommender subsystem for generating 

recommendations to improve the structure of the road 

network. When interacting with each other, the system 

modules ensure the reliable and uninterrupted operation of 

the simulation system as a whole.  

Two development directions of the framework for 

simulation modeling spatial processes should be singled out. 

On the one hand, it is necessary to adhere to a deductive 

strategy. The model building system should be initially 

designed to achieve the possibility of covering solutions to 

the maximum number of problems. On the other hand, it is 

necessary to implement the inductive strategy as efficiently 

as possible, within which the positively proven 

improvements of particular specific models become the basis 

for developing the simulation framework. The combined use 

of deductive and inductive strategies will provide an 

evolutionary improvement in the modeling framework and 

optimization of particular solutions developed on its basis. 

The hierarchical structuring of geosystems optimizes the 

diagnostics of the leading factors of the interaction of 

physical and geographical factors, the regularities of the 

spatio-temporal change of their states, the direction of the 

development of metabolic processes and the transformation 

of matter and energy. The general scheme for compiling a 

digital map of metageosystems in a regional GIS is 

implemented based on solving the problems of integrating 

spatial data and their systematization based on the 

construction of a hierarchy of geosystems and the project-

oriented use of automated computing. 

The cumulative analysis of territory descriptors 

integrated based on data from different sources significantly 

increases the accuracy of metageosystem classification. In 

the framework of the experiment presented in the article, 

taking into account the proposed system of descriptors 

calculated based on satellite imagery data, a digital elevation 

model and an electronic landscape map, made it possible to 

achieve an accuracy of 89%, which is much more than this 

parameter for a convolutional neural network model. At the 

same time, the analysis of terrain descriptors increases the 

accuracy by 3% and the metrics calculated based on 

landscape maps - by 11%. Specialists will interpret the 

cartograms of the presented descriptors in the field of data 

analysis in geosciences. 

The result of the operation of the algorithm for the 

automated selection of thematic layers allows the formation 

of reasonable structured models of geosystems that reflect 

the strength and nature of intercomponent connections, will 

enable you to determine the factors that describe the 

territorial variation of properties, interpret and justify their 

physical meaning. 
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