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Abstract - This work aims to investigate some machinery conditions viz. (healthy, imbalance, misalignment, gear fault, inner 

bearing fault, outer bearing fault, and ball bearing fault). The machinery conditions are simulated based on real-time vibration 

data acquired from a Machinery Fault Simulator (MFS). There are three main stages for the diagnosis process, which are the 

data acquisition, pre-processing (feature extraction), and the classification of the condition based on Artificial Intelligence 

(AI) classifiers, where the Continuous Wavelet Transform (CWT) method is applied to pre-process the obtained datasets 

(signals), and extract the features based on five statistical parameters namely: RMS, Kurtosis, Peak, Impulse Factor and Shape 

Factor. Two classifiers based on Artificial Intelligence (AI) are applied and compared to classify the machinery conditions; 

namely, Support Vector Machine (SVM) using three different kernels, namely; Radial Basis Function (RBC), Linear and 

Polynomial, and Naïve Bayes classifiers, and the best number of feature inputs and the best value of some kernel parameters 

are investigated and identified. The classification accuracy and rate in SVM are evaluated through different evaluation 

metrics, and the results are compared with the classification rates from Naïve Bayes, where SVM has shown better 

performance in terms of classification. This work emphasized the novelty by integrating feature extraction methods like CWT 

with the two different AI classifiers and using different performance evaluation parameters. 

 

Keywords - Machinery Fault Simulator (MFS), Continuous Wavelet Transform (CWT), Support Vector Machine (SVM), Naïve 

Bayes and Feature Extraction.  

1. Introduction  
Rotating machinery is one of the most important 

mechanical equipment. Rolling bearings and gears are the 

main components used in rotating machines. Rolling 

bearings are used to reduce the friction between moving parts 

of the machines and play a crucial role in determining their 

performance. Bearings are vulnerable to defects such as 

cracking, pitting, and wear and faults such as inner race and 

outer race faults due to the long working periods [1]. 

Bearings are one of the most important components of 

rotating machines. One of the foremost reasons for the failure 

of rotating machines are bearing faults (40% of overall fault 

rate) and transmission gear defects [2] which may lead to 

hazardous working environments and affect the fidelity, 

safety and performance of the rotating machines. Thus, it is 

essential to detect the faults in bearings and monitor the 

health condition of the machines to prevent failures and 

shutdowns, which lead to money losses [3]. 

      Condition monitoring (CM), fault diagnosis and detection 

play a crucial role in the rotating machine's protection from 

downtime [4]. Vibration signals are widely used in condition 

monitoring of rotating machineries. The condition of the 

machines affects the stability of vibration signals obtained 

from them. Sometimes, serious faults produce vibrations and 

noise that conceal fault-related signals, making fault 

detection more complex. Decomposing the signal into a set 

of components provides useful information for fault 

diagnosis [5]. Detecting the faults that occur concurrently is 

highly challenging in rotating machines.  

      Vibration analysis using Machinery Fault Simulator 

(MFS) is widely used in health monitoring and detecting 

fault conditions like imbalance misalignment to identify 

faults in the shaft, bearing gearbox, motors, etc. [6]. Azeem, 

N et al., 2019 [7] detected the misalignment and cracks in 

shafts using vibration analysis with MFS using order 

analysis. Bastami, A R and Vahid, S., 2021 [8] analyzed the 

relationship between defect size and vibration patterns 

generated by defective rolling bearings. Defects on the outer 

bearing, inner bearing and rolling element have been 

considered individually. Vibration signals have been 

https://www.internationaljournalssrg.org/
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acquired numerically from the developed model, and their 

statistical features, such as RMS, kurtosis is calculated for 

different defect sizes.  

      The four main phases involved in automatic fault 

detection of rotating machinery are data acquisition, pre-

processing, feature extraction and selection, and fault 

diagnosis [8]. Time-based, frequency-based and time-

frequency-based techniques are used in health indicator 

analysis. Non-automatic fault detection in the time domain 

aids in studying the statistical parameters of vibration signals 

such as root mean square (RMS), kurtosis, and standard 

deviation (SD) [10]. Frequency domain-based techniques are 

Fast Fourier transform (FFT) and time-frequency-based 

techniques such as wavelet transform like Continuous 

Wavelet Transform (CWT). Wavelet Packet Transform 

(WPT), Discrete Wavelet Transform (DWT), and Kalman 

filtering are popular denoising techniques widely used to 

extract useful features from sound and noise signals [11]. 

Among them, CWT, DWT and WPT are widely used for 

feature extraction and in AI-based classification [12], [13], 

[14]. 

       The vibration signals obtained from rotating machines 

contain useful data and noise. Thus, pre-processing the 

obtained data using any of the abovementioned techniques 

and extracting useful information is essential [11]. In recent 

years, Machine Learning (ML) and Deep Learning (DL) 

approaches have been extensively used in feature extraction, 

fault diagnosis and detection [15]. Several techniques, such 

as wavelet analysis, wavelet transformation techniques, 

stochastic resonance, multi-segment cascaded stochastic 

resonance (MS-CSR) and Fourier spectral analysis, are 

applied to process the raw information and to extract useful 

information from vibration, sound, and temperature signals. 

      The researchers developed and used vibration and 

acoustics signal processing algorithms to classify the faults 

in gears and bearings. Altaf. M et al., 2019 [37] diagnosed 

bearing ball faults, inner faults and outer faults by capturing 

the sound signal produced by rotating machinery and 

extracted the spectral and statistical features using average 

FFT (AFFT), PSD, average PSD, RMS values of PSD, and 

STFT. Further, classified using machine learning ML 

techniques K-nearest neighbor (KNN), support vector 

machine (SVM), kernel liner discriminant analysis (KLDA), 

sparse discriminant analysis (SDA) and evidenced that AFFT 

and KLDA outperformed other feature extraction, classifier 

techniques [37]. 

      Chen Z et al., 2019 [17] carried out gearbox fault 

diagnosis by denoising the obtained raw signals using CWT, 

extracted the features using a specially built Convolutional 

Neural Network (CNN) with square-pooling and classified 

the gearbox faults using SVM. The combination of CWT, 

CNN and SVM have provided accurate results with low 

computational cost [17]. 

      In recent years, the advancements in the Internet of 

Things (IoT), intelligent sensors and diverse data collection 

techniques have led to the automation of rotating machines 

[18]. Multilayer Perceptron Neural Network (MLP-NN) and 

Deep Learning Library (DLL) methods are highly useful for 

the stator, bearings and gear fault detection in feature 

extraction and selection [19]. Several methods, such as 

Fourier spectral analysis, stochastic resonance, wavelet 

analysis, wavelet transformation techniques, and multi-

segment cascaded stochastic resonance (MS-CSR), are used 

to process and extract useful information from raw vibration, 

sound, and temperature signals [20]. 

     Regression-based models, Naïve Bayes, Statistical, 

hypothesis, SVM, ANN, Multi-Layer Perceptron (MLP), 

Hidden Markov Models, Radial Basis Function (RBF), 

Probabilistic Neural Network (PNN), Deep Neural Networks 

(DNNs), CNN, KNN, Hybrid classifier based on SVM and 

ANN are the widely used classification methods in gears, 

motors, bearings, wind turbines fault detection [21], [22]. 

      (Al Tobi et al, 2019) [12] carried out fault diagnosis to 

identify five mechanical faults of centrifugal pumps. SVM 

and MLP are used to classify the fault conditions. The 

features are extracted using CWT with three kernels, namely, 

linear, polynomial and radial basis function (RBF) 

separately, where better performance is scored using the 

polynomial. Examined the classification performance of two 

AI techniques: MLP-NN with backpropagation (MLP-BP) 

algorithm and MLP-BP with genetic algorithm (MLP-

GABP). Proved MLP-BP shows better performance than 

MLP-GABP and SVM. 

      SVM is a commonly used classification method in 

identifying mechanical faults and is more effective in 

classifying small samples and nonlinear signals Deng 

W,2019 [9]. The classification accuracy of SVM is limited 

by kernel parameters, weights between different kernel 

functions, and penalty factors [8]. Fan Y et al., 2020 [24] 

detected and classified rolling bearings faults using high-

performance SVM based on automated particle swarm 

optimization. Fan Y et al., 2020 [24] and Sun et al., 2020 

[25] proposed a novel fault diagnosis algorithm, namely; 

moth-flame optimization based on the Levy mode (LMFO) 

algorithm, to detect rolling bearing faults with high accuracy, 

efficiency and low time cost. It used ensemble empirical 

mode decomposition (EEMD) for data pre-processing and 

the Naïve Bayes method for feature extraction. 

      Zhang et al., 2018 [26] applied the Naïve Bayes classifier 

to diagnose bearing fault, where the extracted statistical 

features are first pre-processed using the Decision Tree 

algorithm in which the best features only are selected. Also, 

https://www.sciencedirect.com/topics/engineering/radial-base-function
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the Selective Support Vector Machine (SSVM) is applied to 

abandon the redundant vectors. The proposed pre-processing 

methods could enhance data independence and improve 

bearing fault classification using the Naïve Bayes classifier. 

      Throughout the obtained literature review, it has been 

shown that the application of AI methods-based 

classification like SVM and Naïve Bayes needs further 

investigation with more and different machinery conditions. 

There are some gaps obtained from the literature review. The 

pre-processing phase needs other efforts in terms of the 

features extraction methods. The classifiers like SVM have 

to be tested with different kernels and using different 

evaluation metrics to illustrate its classification performance. 

As a result, this work is proposed to investigate the 

application of CWT in feature extraction and compares the 

classification performance rates of SVM with different 

kernel functions and also the Naïve Bayes classifier, which 

also, along with SVM, to be investigated with varying 

metrics of evaluation for the classification performance. 

(Figure 1) illustrates the main stages and processes which are 

proposed in this work. 

 
Fig. 1 Flow diagram of the overall process starts by the data acquisition, 

then conditions and signals verification, feature extraction, and ending 

with the conditions classification using SVM and Naïve Bayes 

 

2. Continues Wavelet Transform  
2.1. Theoretical Principles  

As opposed to sine and cosine, CWT uses wavelets 

composed of wavelet families with two parameters (scale and 

translation); therefore, a signal can be represented as a two-

dimensional time-scale plane rather than a one-dimensional 

plane, which is more accurate than the Fourier 

Transform.  [27], [12] and CWT is given by: 

 

𝑾𝒙(𝒂 + 𝒃; 𝝍) = 𝒂
−𝟐

𝟐
∫ 𝒙(𝒕)𝝍 ∗ (

𝒕−𝒃

𝒂
)𝒅𝒕                 (1)                                               

 

From Equation 1, Wx is indicated to the wavelet 

transform, denoted by the two parameters; a, which is the 

scale parameter; b is the translation parameter,  is the 

wavelet function, and x(t) is the original signal. 

 

2.2. Support Vector Machine 

In 1995, Cortes and Vapnik introduced the Support 

Vector Machine (SVM), which was used as a new approach 

for pattern recognition based on nonlinear projections of 

input features to a larger dimensional pattern space [28].  

SVM provides a globally optimal solution because it is a 

curve square optimization problem. It could also handle 

many practical problems with acceptable solutions for small 

sample sets, high dimensionality, and non-linearity [29]. 

SVM can be used with three main kernel functions: linear, 

polynomial, and RBF. RBF was selected by [30] due to its 

nonlinear mapping efficiency and ability to map features 

onto a high-dimensional space. 

The SVM is based on a mechanism separating or 

classifying two classes, class A and class B, as shown in 

(Figure 2). The optimal hyper-plane (separator) works to 

separate the two classes with a maximum width (margin) as 

the larger margin (width) between the two classes, the more 

generalization and ultimately improved linear classification. 

The support vectors specify the margins and place them 

beside the classes’ boundaries, where they have all the vital 

information of the classification. The linear classifier (hyper-

plane) is expressed as [12]: 

 
 WTX+b = 0                                    (2) 

 

When class A is indicated as the hyper-plane, then it is > 0 

and indicated as +1, which is given by: 

 

 WTX+b = +1                                   (3) 

 

And class B is < 0 as -1 and given by: 

 

 WTX+b = -1                                    (4) 

 

Where W is the weight vector, X is the input, and b is the 

bias. 

 

A decision function is used to separate two different classes 

(i.e. A and B) and given by [31]: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝑊. 𝑋) + 𝑏)                   (5) 
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Fig. 2 Working principle of SVM. The optimal hyper-plane can 

separate the two classes (A and B) with a wider margin compared to the 

non-optimal hyper-plane 
 

 Using Equation 2 and Equation 5, the decision function 

can be expressed by: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑣𝑖(𝑋. 𝑋𝑖) + 𝑏)𝑖=1                    (6) 

  

     Where L is the number of training data and 𝑣𝑖is applied 

as a weighting factor to recognize the appropriate support 

vectors from the given inputs. 

 Nevertheless, a linear boundary is not always guaranteed 

that able to classify the two different classes. Consequently, 

to organise the two classes with better margin, SVM can map 

the nonlinear training data into a higher dimensional level 

which is known as the feature space s using a transformation 

Φ (X) and s is given by [32]: 

 

s = Φ (X)                       (7) 

 

 Where 𝑋 ∈ 𝑅𝑁and 𝑠 ∈ 𝑅𝑄. Then by substituting 

Equation 8 in Equation 7, the decision function can be given 

by [32]: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑣𝑖(𝜑(𝑋). 𝜑(𝑋𝑖)) + 𝑏)𝑖=1                       (8) 

 

 Moreover, to provide such transformation into nonlinear 

classification, a kernel function is used K(X.Y), which is 

defined as [31]: 

 

𝑘(𝑋. 𝑌) = 𝜑(𝑋). 𝜑(𝑌)                      (9) 

 

Where k points out the kernel. 

 
  By substituting Equation 9 in Equation 10, the decision 

function for the nonlinear classification can be given by [31]: 

(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑣𝑖𝐿
𝑖=1 𝑘(𝑋. 𝑋𝑖) + 𝑏)                (10)     

 

  There are different kernel functions which can be used 

with SVM for the purpose of nonlinear classification, such as 

the Polynomial kernel function and given by [31]: 

 

𝑘(𝑋. 𝑌) = 𝑘(𝑋. 𝑌)𝑎                      (11) 

 

Where d indicates the dimension. RBF and given by [31]: 

 

𝑘(𝑋. 𝑌) = 𝑒𝑥𝑝( −
‖𝑋−𝑌‖

2𝜎2

2
)                   (12) 

 

  Where 𝜎 is the width parameter of RBF kernel function. 

Sigmoid and given by [31]: 

 

𝑘(𝑋. 𝑌) = 𝑡𝑎𝑛ℎ( 𝑘(𝑋. 𝑌) + 𝛩)                      (13) 

 

  Where  is known as the gain parameter and 𝛩is the 

offset parameter of the sigmoid kernel function 

 

2.3. Naïve Bayes  

Naïve Bayes is known as one of the probabilistic 

classifiers like SVM, and it is derived from Bayes’ theorem, 

which Reverend Thomas Bayes initially introduced in the 

1760’s. The Bayes is integrated with Naïve in which the 

classifier offers independence to the input features, where 

each single input feature is assumed independent from the 

other input features. Bayes rule is based on the probability 

calculation and indicated by [33]: 

 

𝑃(𝐻|𝐸) = (𝑃(𝐸|𝐻) ∗ 𝑃(𝐻))/𝑃(𝐸)                        (14) 

 

Where H is a hypothesis, and E is the evidence 

 

  And applying the Bayes rule with Naïve, as a number of 

independent input features are introduced (Xi1, Xi2,……, 

Xin), then output Y can be predicted accordingly by: 

 

𝑃(𝑌 = 𝑦𝑖|𝑋𝑖1. . . . 𝑋𝑖𝑛) = (𝑃(𝑋𝑖1|𝑌 = 𝑦𝑖) ∗ 𝑃(𝑋𝑖2|𝑌 = 𝑦𝑖) 
∗ 𝑃(𝑋𝑖𝑛|𝑌 = 𝑦𝑖) ∗ 𝑃(𝑦𝑖)/𝑃(𝑋𝑖1) ∗ 𝑃(𝑋𝑖2) ∗ 𝑃(𝑋𝑖𝑛)      (15) 

 

3. Experimental Work 
The experimental work is implemented using A Spectra 

Quest’s Machinery Fault Simulator (MFS), where various 

mechanical conditions can be simulated and studied based on 

the vibration signals acquired from the MFS. An AC motor 

of 3 phases and 1 HP is used to run the MFS. The MFS 

consists of many parts used for the fault simulation, as 

illustrated in (Figure 3). The signals (vibration data) are 

acquired by an accelerometer and also processed using a data 

acquisition system (DAQ), which are both from National 

Instruments (NI). The DAQ system comprises of NI-9234 

model comprises 4 input channels and is linked to the NI 
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cDAQ-9174. The accelerometer model IMI 621B40 has a 

sensitivity of 10 mV/g and a frequency range from 3.4 to 18 

kHz for (±10%) and 1.6 to 30 kHz for (±3 dB). 

A DAQ is used to acquire the vibration signals from the 

MSF, as the signals are amplified and noise filtered out 

before digitization and filtering are used with a bandwidth of 

2.5 kHz; then transmitted to a computer equipped with A 

LABVIEW software to capture and display the signals. Data 

are acquired for a period of 2.4 s at a sampling rate of 25 

kHz, resulting in the acquisition of 25.6 samples. Averaging 

over periods of 10 samples is applied.  

The seven different machinery conditions (healthy, 

imbalance as shown in (Figure 4), misalignment, gear fault 

as shown in (Figure 5), inner bearing fault, outer bearing 

fault, and ball bearing fault) are classified using Orange 

simulator-based Python as shown in (Figure 6). All data on 

the machinery conditions are acquired at a motor speed of 20 

Hz (1200 RPM). 

 

 
Fig. 3 The Machinery Fault Simulator Setup 

 

 
Fig. 4 The imbalance condition is simulated by installing two pieces of 

¼-20 socket head cap screws 

 
Fig. 5 A defective straight teeth bevel gear with one of its teeth damaged 

is installed in the gearbox. 

 

4. Results 
4.1. CWT-Based Feature Extraction 

Continuous Wavelet Transform (CWT) has been 

utilized for this work, where Morlet is selected as a 

mother wavelet function in CWT. In this work, due to 

the good adaption of the shape of Morlet with the 

rotating machine fault signals [12] [34], [35]. Seven 

conditions are acquired from the machinery fault 

simulator representing the vibration signals. In each 

condition, a signal of a length of 25,600 samples is 

recorded. These signals are each divided into 10 

segments of a length of 2560 samples [36]. 
 

 
Fig. 6 SVM and Naïve Bayes Classifiers using Orange Simulator. 

 

From each of the 10 segments, the wavelet transforms 

produced 40 features (the wavelet scale). From these 400 

features, 5 parameters (Kurtosis, RMS, Peak, Shape Factor 

and Impulse Factor) are computed for the signal from each 

condition. For the classification using SVM and Naïve 

Bayes, 200 features are selected from each parameters Peak 

and RMS due to their good effectiveness [12], where Peak 

and RMS have almost similar effects against the machinery 

conditions, and they illustrate better distribution compared to 

the other parameters. The effectiveness (sensitivity) of the 

peak and RMS parameters against all conditions are plotted 

in (Figure. 7) by selecting the first 40 features from each 

parameter. Normally, when healthy is the lowest, it indicates 

good effectiveness of the parameter [36]. 

https://www.sciencedirect.com/topics/engineering/root-mean-square
https://www.sciencedirect.com/science/article/pii/S2215098618302593#f0025


Maamar Ali Saud AL Tobi et al. / IJETT, 70(12), 26-34, 2022 

 

31 

 

 
(a) 

 

 
(b) 

Fig. 7 The effectiveness (sensitivity) of the (a) peak and (b) RMS parameters against all conditions. 

4.2. SVM and Naïve Bayes Classifiers 

In SVM, three different kernels are applied; namely, 

linear, polynomial, and radial basis function (RBF), and five 

different evaluation metrics for the classification rates are 

used, which are Area Under Curve (AUC), Classification 

Accuracy (AC), F1 score, Precision, and Recall. All obtained 

performance rates represent the overall performance rates of 

training and testing, where 85% of the dataset is considered 

for the training and the remaining 15% for the test. 

Table 1. Overall classification performance rates using SVM 

(Polynomial kernel) with a different number of features. 

Number of features Performance (%) 

40 13 

100 41 

200 81 

240 98 

 
Different input features are investigated with SVM to 

identify the best number of features, as shown in Table 1. It 

is remarked that with more number of features, then better 

performance. Therefore, selecting 400 features as inputs to 

both SVM and Naïve Bayes is considered. 
 

The different parameters used in SVM kernels are 

considered and investigated to identify the best values for the 

best classification performance. Gamma parameter (G) is 

used to determine the nonlinear hyperplanes, and it’s 

commonly used in RBF kernel. The selected values to 

investigate the best gamma variable value are 1, 2, and 2.5. C 

value, also known as the penalty parameter, is useful in 

guiding the trade-off between smooth decision boundaries 

and provides the proper training classification.  
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Table 2. The overall performance rates of all tested parameters. 

Evaluation 

Metrics  

Polynomial RBF 

G= 1.00 

C=0.5 

Poly-degree= 1 

G= 1.50 

C=1.00 

Poly-degree= 2 

G= 2.00 

C=1.50 

Poly-degree= 2.5 

G= 2.5 

C=2.0 

Poly-degree= 3.00 

G= 1.00 G= 2.00 G= 2.5 

AUC 90.2% 90.10% 86.67% 93.36% 97.5% 98.6% 99.3% 

CA 77.7% 90.15% 87.77% 76.2% 93.5% 95.55% 96.3% 

F1-Score 76.66% 91.15% 87.77% 75.8% 93.5% 95.55 96.2% 

Precision 84.6% 92.3% 88.6% 78.2% 93.7% 95.8% 96.5% 

Recall 77.77% 91.5% 87.77% 76.2% 93.5% 95.5% 96.3% 
 

Table 3. Overall classification performance rates using SVM and Naïve Bayes. 

Evaluation 

Metrics AUC CA F1 Precision Recall 

Kernel 

SVM Linear 95.76 93.67 93.63 93.97 93.68 

SVM Polynomial 96.80 95.56 96.53 96.16 95.49 

SVM RBF 96.36 95.09 94.99 95.63 95.05 

Naïve Bayes 95.32 90.66 90.62 90.72 90.66 

 

The values 0.5, 1, 1.5 and 2 are selected to investigate 

the best value for the C variable. Then the polynomial degree 

parameter (Poly-degree) is only applied in the polynomial 

kernel, and its selected values for the investigation are 1, 2, 

2.5, and 3. 

It is significantly remarked that the polynomial degree 

value is proper to be 2, where below than 2 causes less 

classification performance, and above 2 can also lead to less 

performance due to over-fitting. The Gamma variable shows 

better classification performance with higher values (i.e., 2.5 

compared to 1 and 2), and the penalty parameter can be with 

value (1) for proper classification performance. Table 2 

illustrates the overall performance rates of all tested 

parameters investigated with a dataset of 400 features 

representing healthy and misalignment conditions.  

The performance rates show that SVM slightly 

outperformed the Naïve Bayes, and comparing the three 

different SVM kernel functions, the polynomial kernel 

scored the highest rates with 96.8%, as shown in Table 3.   

5. Conclusion 
  This work emphasized the experimental work by 

acquiring a number of mechanical conditions from a 

machinery fault simulator, and the application of the 

frequency domain in revealing and detecting the 

corresponding frequencies (signatures) of each condition has 

been conducted successfully in which, remarking the vital 

role of frequency domain for the faults detection.  

  Moreover, it is observed that using CWT in extracting 

the features has been done successfully, where five 

parameters have been considered for the feature extraction, 

and two parameters are selected for the classifiers, namely, 

peak and RMS. 200 features from each of the two parameters 

are selected as inputs to the classifiers, in which a total of 

400 features are chosen. The number of features has been 

tested with various numbers to identify the best number of 

features, and it found that more features have better 

performance. 

The obtained results of the SVM and Naïve Bayes 

performance classification rates illustrate significant 

outperformance of the SVM with Polynomial kernel 

compared to the other SVM kernel functions and Naïve 

Bayes classifier in which the best performance rates are 

scored at 96.8%. Further future investigations with more 

advanced methods like optimization and feature selection 

methods are planned for this work to enhance and approach 

the best machinery diagnosis procedures.   

  The novelty of this work is reflected by introducing 

CWT in the pre-processing stage, where the features are 

extracted using the time-frequency domain with CWT, which 

showed a significant impact of CWT and promoted the good 

ability of CWT in extracting the relevant features. Moreover, 

testing SVM with different kernels and different evaluation 

metrics has illustrated the performance of SVM throughout 

different parameters. Comparing the classification 

performance of SVM with the Naïve Bayes is considered a 

good contribution in terms of novelty, as a few previous 

published research works approached such comparison of the 

two classifiers with the machinery fault diagnosis. 
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