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Abstract - The study is aimed to understand and predict prostate lesions identification and classifications on magnetic 

resonance images (MRI) of the prostate using Radiomics based texture features analysis while applying Machine Learning 

(ML) algorithms. This study includes retrospective MR Images of patients with Prostate Cancer (PCa) from HealthCare 

Global (HCG), totalling 76 patients. From 207 prostate MRI images, 109 texture features were extracted using the python 

PyRadiomics library. Three sampling methods and various ML feature classification techniques are utilised to balance the 

dataset to develop the best diagnostic models for assessing these models' accuracy. The discriminative capability of all the 

models was evaluated by receiver operating characteristics (ROC) analysis. Eight different texture feature-based predictive 

models are developed by running the cross combination of all the dataset balancing and classification methods to identify and 

classify PCa malignancy from benign. Based on the test group's results, the majority of the models performed better with a 

larger area under the curve (AUC) (>0.80) and higher accuracy (>0.80). Support vector machine (SVM) classifier with AUC 

of 0.9744, 0.9759 accuracy and extreme gradient boosting (XGB) classifier with AUC of 0.963, accuracy with 0.9639 were the 

best model within the eight models, followed by decision trees (DT), light gradient boosting machine (LGBM) and random 

forest (RF) models. Extracting texture parameters from MRI images and combining the Radiomics approach with ML models 

can classify prostate lesions effectively 

Keywords - Prostate cancer, ROI Delineation, Feature extraction, Feature analysis, Machine learning.  

1. Introduction  
PCa is projected to be the second primary form of cancer 

among men and the world's fifth leading reason of cancer 

deaths in the year 2020, with an estimated roughly 1.4 

million PCa new cases and 375,000 mortalities [1]. 

According to estimates provided by GLOBOCAN 2018, the 

number of newly diagnosed cases of prostate cancer around 

the globe is 1,276,106, with the incidence being highest in 

developed countries like India. The GLOBOCAN 2018 

projections for the United States place the number of newly 

diagnosed cases of PCa at 191,930 and the number of deaths 

attributable to the disease at 33,330 [2]. According to India's 

national cancer registries, the number of cases is anticipated 

to be 41,532 and is estimated to be 47,068 by 2025. PCa is 

the leading cause of death among males, surpassing lung 

cancer. The very diverse nature of PCa makes clinical care of 

the disease incredibly difficult and complex. Suppose a 

prostate-specific antigen (PSA) or an abnormal digital rectal 

exam (DRE) is discovered. In that case, the conventional 

method for diagnosing PCa is based on the performance of 

regular random biopsies with the assistance of transrectal 

ultrasound (TRUS). These techniques do not provide clear 

information on PCa sensitivity and specificity, and they offer 

insufficient details regarding the aggressiveness of the 

disease and its stage. Efforts are being made to develop risk 

stratification tools that will assist in combining serum PSA 

levels, Gleason grade, and assessments of the anatomic 

extent of primary tumours. These tools will be used for 

clinical decision-making and to optimise patient 

management. 

Imaging, a non-invasive method of treating PCa, plays a 

critical part in managing diseases and determining the 

severity of the condition. Imaging techniques of all kinds and 

combinations of imaging techniques are increasingly being 

used in various clinical settings worldwide. These choices 

are made based on an evaluation of the imaging modality's 

assessment, availability, affordability, and regulatory 

restrictions. This has helped improve clinical decision-

making by allowing for earlier disease detection, resulting in 

a slower rate of growth than in the past [3]. 

 However, determining the best imaging modality to use 

is not only impossible but also contentious due to the 
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Fig. 1 Basic Pipeline of Radiomics in PCa [4] 

numerous research conducted on modalities and their 

applications. Even though PCa imaging is important for 

managing patients, it has led to increased overdiagnosis and 

overtreatment. 

1.1. Problem Statement & Challenge 

The field of medicine known as "radiomics" is a new 

challenge that focuses on the quantitative aspects (radiomic 

features) extraction from radiology images that the 

radiologists and the application of this information for 

building a medical decision support system could not view. 

Radiomic features (like shape, intensity, wavelet or texture) 

are derived from radiology images (MRI, PET or CT scans), 

using sophisticated mathematical techniques, providing 

valuable information for tailored therapy. Radiomic features 

include: 

The procedure of radiomics analysis related to detecting 

patterns to define the PCa grade group based on the Prostate 

Imaging Reporting and Data System (PI-RADS) is depicted 

in Figure 1. Firstly, a database of radiology images (MRI) is 

generated. Hence, standard images may be subjected to 

radiomics study with low bias [4]. This step is necessary to 

ensure accurate results. In most cases, the number of imaging 

characteristics should be either same as or lower than the 

sample volume. Secondly, segmenting images highlights 

portions of the image with PCa as a region of interest (ROIs). 

Segmentations can be achieved automatically (fully/semi) or 

manually. Then, extracting features stores the features of 

images (such as common features, histogram statistics, 

descriptors, in-depth features, textures and so on) in one or 

more distinct vectors for further analysis. After that, the 

radiomics feature has its predictive capability measured (i.e., 

the relative significance of various radiomics features). In 

conclusion, research models that utilise the earlier features of 

images for predicting the presence of PCa can be 

characterised by univariate analysis (such as the significance 

test, the Spearman correlation, and other similar tests) and 

multivariate analysis (such as regression and classification 

models). This final step needs to be carried out in a 

validation cohort of patients so that the newly developed 

radiomics model can be shown to have some generalizability 

[5]. 

In this work, the feature extraction and analysis of MRI 

PCa images for treatment prediction has been proposed based 

on the radiomics approach. The proposed radiomics model 

includes five stages: 1. MRI imaging (input), 2. ROI 

segmentation, 3. Extracting radiomics features from ROIs, 4. 

Data balancing, feature selection and reduction and 5. 

Analysis of the features using ML classification models 

(output). The remaining section of this article presents the 

following sections as a literature review of the related works 

on radiomics in the field of cancer diagnosis, the detailed 

representation of the proposed radiomics model, the 

experimental analysis, and the conclusions and future work. 

2. Review of Related Works 
2.1. Radiomics with ML for PCa Feature Extraction 

The application of radiomics with ML algorithms 

presents numerous opportunities and benefits. Because the 

traditional interpretation of the image is based on 

radiologists' experience, the combination can reduce inter-

individual variability while shortening the time needed for 

reporting, which could be an advantage for radiologists with 

less experience. A radiomics-based PCa feature extraction 

and analysis model was developed in [7] based on prostate 

MRI datasets. This model used various ML techniques, such 

as DT, RF, Gradient Boosted Tree, Ada Boost, k-Nearest 

Neighbor (kNN), and Naive Bayes (NB). PyRadiomics 

version 3.0 was used for image preprocessing and feature 

extraction in this scenario. The most accurate results were 

obtained using the Gradient Boosted Tree with the J48 DT 

model. The univariate statistical analysis was conducted to 

demonstrate the usefulness of the collected radiomics 

characteristics in differentiating prostate lesions. 
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A radiomics feature-based classification model was 

developed in [8] to distinguish PCa from other types of 

cancer using various ML methods. This study investigated 

the effectiveness of radiological assessment classes and the 

quantitative computer analyses of apparent diffusion 

coefficients (ADC) map. The highest Gleason Grade Group 

was used to annotate the index lesion in the MRI anatomical 

data collection (ADC) and the comparable histology slides. 

The volume of interest (VOI) and the normal-looking 

peripheral zone surrounding each lesion was assessed for 

each lesion. Radiomic analysis was utilised in the processing 

of VOIs. Principal component analysis, univariate analysis 

with sequential neural networks, SVM, and RF analysis were 

all utilised in classifying lesions according to their respective 

clinical relevance. An ML–based approach that used MR 

radiomics to detect clinically relevant PCa for improving the 

diagnostic performances of PI-RADS-v2 was proposed in 

[9]. This ML model used an SVM developed on the radial 

basis functions (RBF) kernels to distinguish between the 

present and absence of PCa optimally. It was suggested that 

the supervised ML known as RBF-SVM should be utilised 

for classification and regression analysis. Using SVM and 

recursive feature elimination (RFE), a preliminary diagnostic 

evaluation of feature selection was carried out. 

In [10], an ML model based on radiomics features was 

constructed using PI-RADS-3's T2W lesions for identifying 

clinically relevant PCa. To consider the comparatively low 

frequency of PCa, the Synthetic Minority Oversampling 

Technique, often known as SMOTE, was utilised. On the 

T2W, multi-slice VOIs were delineated in the lesions of the 

PI-RADS-3 index. 107 radiomics characteristics, including 

histograms and textures, were recovered from the segmented 

lesions. To predict clinically relevant PCa, an RF classifier 

that takes the radiomics feature as the input has been trained 

and tested. Through the use of logistic regression (LR) with 

stepwise forward feature selection, the potential utility can be 

analysed that the integration of the radiomics RF classifier 

with prostate volume or PSA density could have for the 

prediction of clinically relevant PCa. 

An ML model was developed in [11] to evaluate the 

effectiveness of the multiparametric MRI-based radiomics 

signatures to differentiate between medically significant PCa 

and insignificant PCa. For each patient, 819 radiomics 

attributes were collected from the mp-MRI scan. The 

SMOTE approach was used to ensure equitable 

representation of the small set in the training cohorts. A 

feature selection and radiomics signature-building approach 

using a minimum-redundancy maximum-relevance (mRMR) 

selection and the least absolute shrinkage and selection 

operator (LASSO) technique. The LR model was chosen for 

feature selection in the next step. Features from the candidate 

set with coefficients To create a radiomics signature that was 

not zero were chosen, and those features were then linearly 

merged. 

A systematic and accurate ML-based model that 

included classification, statistical analysis and cross-

validation was designed in [12] to identify the better-

performing classification model for PCa risk stratifications 

using mpMRI-derived radiomics features acquired from a 

large set. A total of 110 radiomic features were extracted 

using the Gray-Level Difference, Co-occurrence Matrices 

(GLDM and GLCM), histogram analysis, and Fast Fourier 

transform (FFT)-based features of frequency. Using a 

Quadratic kernel-SVM (QSVM), 110 radiomic 

characteristics were analysed and interpreted. LR, linear, 

quadratic, cubic, and Gaussian kernel-based SVM, linear 

discriminant analysis (LDA), and RF models were used for 

classification. Radiomics analysis using ML models was 

performed on dynamic contrast-enhanced MRI images [13]. 

The variance threshold approach, the chosen k-best method, 

and the LASSO algorithm were utilised to lessen the number 

of feature dimensions. As the ML models were employed for 

evaluation, SVMs based on linear kernels and LR, RF, DT, 

and kNN models were used. This analysis concluded that the 

LR acquired better classification results when compared 

against various models. This model integrated the first 

enhanced phase of dynamic contrast-enhanced MRI with the 

most substantial enhanced phase and was found to be the 

most effective classification method. 

2.2. Analysis of Research Gap 

The analysis of radiomics features can provide 

information that can be used for diagnosis, clinical risk 

assessment, and treatment. Images produced from available 

imaging technologies do not require any further 

investigations, and with comparison to a biopsy, the entire 

tumour can be defined. The applications of AI, along with 

ongoing research into clinical interpretation of various 

computational models in medicine and PCa, will improve the 

detection of PCa tumours and the possible grades of those 

cancers and their classification. Radiomics, in conjunction 

with ML techniques, is being used to investigate the prospect 

of distinguishing between low and high-grade PCas, as well 

as to characterize tumours, evaluate risks, and plan 

treatments. This research was proposed to analyze and 

predict MRI prostate lesions identification and classifications 

using Radiomics-based texture features analysis while 

applying ML algorithms. 

3. Proposed Model 
This research proposes a feature analysis model for 

classifying Radiomics features based on PCa MR Images. 

These MRI images comprise 76 patients of about 207 from 

the HCG, Bangalore. Onco-Radiologists from HCG 

Bangalore were involved in identifying the ROI that is by 

marking prostate lesions on the Original MR Image. The 

image masks were created based on the marking provided on 

the Original Images. These image masks and the original 

images were used to extract features. Figure 2 represents the 

proposed model's workflow based on the Radiomics 
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Fig. 2 Architecture of Research Model 

technique. The proposed model's workflow includes the 

following stages: image acquisition, ROI delineation, feature 

extraction, data balancing, selection of features, and analysis 

of features. The research model works on the following 

steps.  

MR Image Acquisition and Image Dataset Creation: A 

retrospective study of 76 patients with PCa summing to 207 

prostate MRI images from HCG were included. 

3.1. ROI Delineation 

HCG Radiologists marked the Lesions' contour and 

provided if the lesion contoured was Benign or Malignant. 

Figure 3 shows the Original MR Image having lesions along 

with the image having lesions and the image mask. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 a) Original MR Image having lesions, b) Lesions in MR Image 

being marked for study, c) Image Mask 

3.2. Feature Extraction and Feature Dataset Creation and 

Feature Normalization 

Totally, 109 texture features are extracted using the 

python PyRadiomics Library which provides below 8 

classes. 

1. First-order statistics- The primary focuses are the pixel 

intensities distribution and the utilisation of elementary 

metrics for geometrical computing features. 

2. Shape-based (2D) quantifies the region's or volume's 

overall geometric shape using a two-dimensional data 

representation. The subcategories are ROI size, 

compactness, sphericity, total volume, diameter, surface 

area, surface-to-volume ratio and flatness. 

3. Gray Level Run Length Matrix- It is a matrix that 

displays the size of the sequential pixel with similar 

intensities. The subcategories under the GLRLMs were 

long and short run emphasis; grey level non-uniformity; 

run length non-uniformity; run percentage; high and less 

grey level run emphasis. 

4. Shape-based (3D)- The shape and size descriptors of 

ROI in three dimensions are included in this category of 

characteristics, referred to as the "3D Shape Features." 

Consequently, these features were unaffected by the 

gray-level intensities distributions in ROI, the only way 

to compute them is by using the image that has not been 

produced from it and the mask. 

5. Gray Level Cooccurrence Matrix- GLCM is a matrix 

that displays how often two intensity levels have 

happened in the two pixels separated by a particular 

distance. Autocorrelation; Correlation; Contrast; 

Homogeneity; Energy; Variance; Sum of Average; 

Inverse Difference Moment; Sum of Variance; 

Information Measures of Correlations; Difference of 

Variances; Dissimilarity; Cluster Prominences, Cluster 

Shade, Maximum Probability and Cluster Tendency are 

the subcategories of GLCM. 

6. Neighboring Gray Tone Differences Matrix- NGTDM is 

implicated not with the pixel itself but rather with the 

intensities of the adjacent pixels. The NGTDM can 

break down into the subcategories of Contrast, 

Coarseness, Complexity, Busyness, and Strength. 

7. Gray Level Size Zones Matrix- GLSZM is a tool for 

measuring areas of grey level in images. This type of 

configuration is meant to as a gray-level zone whenever 

there is a predetermined number of linked voxels that all 
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have the same intensity levels for the grey level. In 

contrast to GLCM and GLRLM, the GLSZM is not 

dependent on the rotation of the data and requires the 

construction of a single matrix to consider all the 

directions present in the ROI. 

8. Gray Level Dependence Matrix- GLDM analyses the 

image's gray-level dependencies. This dependency was 

the total linked voxels within a certain distance of the 

central voxel and is dependent. 

 

3.3. Feature Normalisation 

The normalisation of features was done before selecting 

the features. Feature selection was made to choose the 

features most closely associated with the biopsy outcome to 

develop prediction models despite the related limited sample 

size of the patient and the higher-dimensional nature of the 

features. A feature normalising procedure was carried out to 

ensure that the features of radiomic collected from various 

locations fall within a range of values compared to one 

another [14]. Each feature vector �̅�𝑖(𝑘) is given a normalised 

value based on each site's 𝑆𝑘 equation (1). 

𝐹𝑖(𝑘) =
�̅�𝑖(𝑘)−𝜇𝑖(𝑘)

𝜎𝑖(𝑘)
    (1) 

 

In this case, the mean denotes the symbol 𝜇𝑖(𝑘), 
whereas the mean absolute deviation �̅�𝑖(𝑘) is denoted by the 

symbol 𝜎𝑖(𝑘) (considering all the samples c in site 𝑆𝑘). This 

procedure was carried out repeatedly for each unique site 

𝑆1,…,4 so that all of the features contained within site would 

have a mean value of 0 and a mean absolute deviation value 

of 1. 

3.4. Dataset Balancing 

A procedure utilised to deal with uneven data is known 

as data balancing. Before applying a classifier to the dataset, 

the data must go through a process that balances the data. In 

brief, the following are the actions that this method takes on 

the data set: 

• Under-sampling comprised sampling from a majority of 

classes to hold only a part of these points. 

• The practice of duplicating some points from minority 

classes to extend the cardinality of the sample is known 

as oversampling. 

• Developing synthetic points from the minority classes to 

improve their cardinality is known as the generation of 

synthetic data. 

3.4.1. Random Oversampling 

It consists of choosing samples randomly from a 

minority class with replacements and providing the training 

data samples with several copies of this sample. Because of 

this, it is feasible that a single sample could be chosen many 

times. 

3.4.2. SMOTE 

It is an over-sampling approach developed in 2002. 

Instead of replacing the already present samples, samples for 

the minority class are generated synthetically. It contributes 

to the problem of over-fitting. The SMOTE algorithm is 

utilised so that the overfitting problem can be resolved and 

the accuracy can be improved. This methodology generates 

manual minority samples with the line segments that unite 

the minority sample and its 'k' minority class nearest 

neighbour. These line segments are called line segments 

combining the minority samples. The 'k' nearest neighbours 

have their neighbours chosen randomly, and the selection 

criteria are based on the required oversampling rate. One of 

the problems with the SMOTE algorithm is that it 

overgeneralizes the space occupied by the minority classes 

without taking into account the majority classes, which can 

lead to an increase in the amount of overlap between the 

classes [15]. 

3.4.3. Adaptive Synthetic Sampling (ADASYN) Oversampling 

The methodology known as ADASYN is developed to 

produce data samples from minority groups following their 

distributions adaptively. Samples from minority classes that 

are more difficult to learn are utilised to generate additional 

synthetic data than samples from classes that are simple to 

understand. This helps to lessen the learning bias initially 

established due to an imbalance in the data distribution. The 

SMOTE approach produced the same count of synthetic 

samples for the entire minority classes. In contrast, in the 

ADASYN approach, density distribution was utilized to 

automatically decide the count of synthetic samples that need 

to be produced for all the minority classes samples. It 

contrasts with the SMOTE approach, which produces the 

exact count of synthetic samples for all the minority classes. 

The algorithm performs its primary objective, assigning 

weights for various minority classes of samples to produce 

varying quantities of synthetic data for all the samples [16]. 

3.5. Feature Selection 

The feature selection method is a preprocessing type that 

identifies a particular issue's essential characteristics. In 

medical applications, feature selection has proven to be 

effective. It not only helps to minimise the number of 

dimensions but also provides information on the factors 

contributing to developing a disease. One of the methods that 

can be utilised in the process of dimensionality reduction is 

known as feature selection. In this method, only the pertinent 

characteristics are chosen, while the unnecessary and 

redundant ones are rejected. A reduction in the 

dimensionality of the inputs can increase performance in one 

of two ways: either by reducing the learning speed and the 

complexity of the model or by boosting the capacity for 

generalisation and classification accuracy. In addition to 

lowering the total cost of the measurement, selecting 

appropriate characteristics might increase comprehension of 

the issue [26]. 
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3.5.1. Mutual Information 

MI was successfully endorsed in filter features-selection 

approaches for assessing the relevance of the feature subsets 

in the target variables prediction and the redundancy related 

to other variables. This is accomplished by comparing the 

predicted values of the target variable to the predicted values 

of the other variables. The MI is an index that measures the 

degree to which random variables statistically depend on one 

another. Intuitively, the MI quantifies the degree to which 

knowing the values of one variable decreases the amount of 

uncertainty associated with the other variable. In contrast to 

other indices, such as the Pearson correlation coefficients, the 

MI could consider both linear and non-linear dependencies 

unaffected by differentiable and invertible transformations of 

random variables. In addition, the MI is an invariant index. 

3.5.2. Analysis of Variance 

It is a method that is both very easy to use and very 

effective for determining whether or not there is a difference 

in means among groups. It has been utilized for feature 

selection since it possesses the advantages listed below. 

Initially, it can withstand significant deviations from the 

majority of its assumptions. Second, it is effective while 

performing the analysis of the relationship that exists 

between the two variables. Thirdly, it is possible to apply it 

successfully even when the number of observations in each 

group differs. Last, it is simple to generalize it to more than 

two groups while maintaining the same level of Type 1 error 

[18]. 

3.5.3. Recursive Features Elimination 

RFE is an example of the wrapper-type algorithm for 

selecting features. It represents the various ML algorithms 

presented and utilized in the model's core, that RFE wrapped 

it, and that it was used to determine characteristics. 

Contrarily to this, filter-based features selection assigns a 

score to all the features before choosing those features that 

have the higher (or lower) scores. RFE further uses filters-

based feature selection internally. It finds the features subset 

by initiating with every feature in the data set of training and 

then deleting the features until the appropriate number of 

features is left successfully [19]. 

3.6. Feature Analysis and Cancer Identification using 

Classification Algorithms 

3.6.1. SVM 

The goal of this classifier was to create a model that 

could precisely predict the classes of validation data or 

unknown data comprising only characteristics, as shown in 

equation (2). The SVM kernels are often utilised in mapping 

non-linearly individual input into feature space instances of 

higher dimensional. These feature space instances are made 

up solely of features [25]. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖
∗𝑦𝑖 . 𝑘(𝑥𝑖 , 𝑥𝑆𝑉) + 𝑏∗𝑖∈𝑆𝑉 )   (2)

  

In this context, "kernel function" refers to 𝑘(𝑥𝑖 , 𝑥𝑆𝑉) the 

equation for the kernel k of the RBF described in Equation 3. 

𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (
‖𝑥−𝑦‖2

2𝜎2
)     (3)

 
 

3.6.2. DT 

Classifiers based on DTs are powerful, efficient, and 

widely used data mining and knowledge discovery methods. 

They are used to examine huge and complicated datasets to 

locate helpful patterns. This field is very important since it 

enables the extraction of knowledge and modelling from 

massive volumes of data. Theorists and practitioners are 

constantly searching for new ways to make the process 

simpler, less expensive, more accurate, and more efficient. 

DTs are extremely useful tools in various fields, such as data 

mining, machine learning, information extraction, text 

mining, and pattern identification. 

3.6.3. RF 

RFs are essentially an ensemble of many different DTs. 

RF is a classifier that considers the average count of DTs 

implemented for different dataset subsets provided. It 

supports increasing the dataset's predicted accuracy. The RFs 

do not rely on one DT but instead consider the prediction 

from all the trees and determine the last outcome based on 

the trees with the largest count of votes for its prediction. The 

greater the count of trees, the higher the accuracy obtained 

and the prevention of overfitting issues [22]. 

3.6.4. kNN 

kNN is an approach for ML that determines the 

proximity of two instances based on the Euclidean distance 

between them. K-NN makes predictions about the class 

labels assigned to various instances by determining their 

lowest Euclidean distances from other samples [24]. The 

Euclidean distance was determined by considering all of the 

features as dimensions and is provided in equation (4). 

𝑑(𝑥𝑖 , 𝑥𝑗
′) = ‖𝑥𝑖 − 𝑥𝑗‖

2
= ∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2𝑑
𝑘=1    (4)

 

3.6.5. LR 

LR is a supervised classification technique in ML. A 

logistic function is applied here to model the dependent 

variable. It is employed to forecast the likelihood of the 

target variables. The dependent or target variable is 

dichotomous, indicating that there are just two distinct 

categories of viable options. It is one of the simplest ML 

methods, and it could be applied to a wide variety of 

classification issues, including the detection of spam, the 

prediction of diabetes, the detection of cancer, and so on 

[20]. 

3.6.6. LGBM 

LGBM is a GB model developed on DTs. It aims to 

enhance the model's effectiveness while minimising the 
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memory volume it needs. It uses two approaches: exclusive 

feature bundling (EFB) and gradient-based one-side 

sampling, both of which fulfil the histograms-based 

algorithm's limitations, which were mainly utilised in every 

GBDT model [16]. 

3.6.7. Ridge Classifier 

This classifier approaches the problem as if it were a 

regression problem and trains itself accordingly using {-1,1} 

labels for binary data and multiple numbers for non-binary 

data. This classification algorithm depends on the subspace 

assumption, which asserts that training samples of a 

particular class fall on a linear subspace. A new test sample 

to a category will also be characterised as a linear 

combination of the relevant class training samples. 

3.6.8. NB 

This classifier is a probabilistic based on the Bayesian 

posterior probability distribution. It ensures that there is an 

independent relationship between each of the attributes by 

using conditional probability. The NB models are a set of 

classification algorithms derived from Bayes' theorem. It is 

not an algorithm but a group of algorithms where each shares 

a general premise: all pairs of classified features are 

independent of one another. Only binary data can be 

modelled successfully using the multivariate Bernoulli NB 

model. The Bernoulli model performs significantly better 

than the multinomial model in situations where the dataset 

size is limited [23]. 

3.6.9. Bagged DT 

DT is a method that can be used to organise difficult 

challenges into a hierarchy of more manageable challenges. 

The problem of individual DTs having the propensity to 

overfit the data is solved using bootstrap-aggregated 

(bagged) DTs, which incorporate the findings of several 

different DTs. This method was chosen because it enhances 

generalisation, lessens the impact of overfitting, and is the 

methodology utilised in this research. A bootstrap sample of 

the data is used in conjunction with an ensemble of DTs to 

generate a bagged DT. This method is similar to an RF 

algorithm since it chooses a random subset of predictors to 

apply at each decision split. 

3.6.10. Gradient Boosting Classifier (GBM) 

This approach is utilised to develop regression and 

classification models to optimise the model's learning 

process. These models were generally non-linear and more 

commonly referred to as regression or decision trees. GB is a 

technique that is used to develop these models. The process 

of modelling the group of unreliable prediction models, i.e., 

regression DTs involves gradually and sequentially 

incorporating new learners into the mix. It is composed of 

nodes and leaves that, when combined, produce results that 

are predictive according to the decision nodes. Individual 

regression trees were not very good models; however, when 

considered as the group, the accuracy of the regression trees 

significantly increased. 

3.6.11. XGB 

This model is a well-known GB technique (ensemble) 

that has boosted performance and speed in tree-based ML 

algorithms (sequential DTs). Boosting techniques are a 

subcategory of Ensemble Learning, and XGB is one of those 

techniques. Learning through ensemble includes a count of 

compiling predictors, a multiple model framework that aimed 

to increase prediction accuracy. Through the utilisation of 

boosting technique, issues caused by earlier models were 

aimed to be rectified through succeeding models using the 

integration of some weights to the frameworks. 

3.6.12. GBM 

The learning functionality in GBMs successively adapts 

newer models to provide a more accurate estimate of the 

response variable. The most important aim of this approach 

was to create the newer base learners to have the highest 

possible correlation with the negative gradients of the loss 

functions linked with the full ensemble. The loss functions 

that are utilized could be chosen randomly. Hence, to provide 

a better understanding, consider that if the error functionality 

was the common squared-error loss, then the learning 

technique will result in sequential error-fitting [21]. 

4. Experimental Results and Discussion 
In this section, the experimentation of the proposed 

models performs, and the results are carried out. 120 features 

were available from the eight classes of radiomics features 

discussed above. However, in this research, only 109 features 

are extracted using the proposed model and the remaining 

features are avoided, related to Shape-2D, 3D and boundary 

classes. These features were extracted by using the python 

PyRadiomics Library. Results were obtained in three stages 

to understand the importance and improvements in accuracy 

and ROC-AUC values as represented following. 

4.1. Stage 1: Classification on Unbalanced Feature Dataset 

and without Feature Selection 

This research model's experimentation is carried out in 

three stages. The first stage includes the performance 

analysis of the Unbalanced Feature Dataset without Feature 

Selection. The second stage comprises the performance 

analysis of the Balanced Feature Dataset without Feature 

Selection. Finally, the third stage consists of the performance 

analysis of the Balanced Feature Dataset and Feature 

Selection. 
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Table 1. Performance Analysis of Feature Classification ML Models 

Feature Classification Model Accuracy Recall Precision F1-Score ROC-AUC 

SVM 0.8077 0.81 0.65 0.72 0.5 

XGB 0.7692 0.77 0.7 0.73 0.5143 

DT 0.7692 0.77 0.77 0.77 0.6286 

RF 0.8077 0.81 0.65 0.72 0.5 

kNN 0.8077 0.81 0.65 0.72 0.5 

Ridge 0.8077 0.81 0.65 0.72 0.5 

LR 0.7885 0.79 0.65 0.71 0.4881 

LGBM 0.8824 0.88 0.88 0.88 0.8823 

NB (Bernoulli) 0.75 0.75 0.72 0.73 0.5405 

Bagged DT 0.7885 0.79 0.72 0.74 0.5 

GBC 0.8077 0.81 0.65 0.72 0.5 

GBM 0.8077 0.81 0.65 0.72 0.5 
 

 
Fig. 4 Accuracy Comparison of ML Models on Unbalanced Dataset without Feature Selection 

 
Fig. 5 Precision Comparison of ML Models on Unbalanced Dataset without Feature Selection
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Table 1 represents the proposed classification model's 

performance analysis based on the unbalanced feature dataset 

without feature selection. For this analysis, twelve different 

ML models were used. Each model's performance was 

evaluated in terms of accuracy, precision, recall, f1-score and 

ROC-AUC. Figure 4 represents the accuracy performance of 

the ML models based on an unbalanced dataset without 

feature selection techniques. In this comparison, the LGBM 

model achieved the highest accuracy, with 88.24% accuracy 

than other ML models. Most models, like SVM, RF, kNN, 

Ridge, GBC and GBM, obtained similar accuracy with 

80.77% accuracy. NB achieved the least performance with 

75% accuracy. 

Figure 5 represents the precision performance of the ML 

models based on an unbalanced dataset without feature 

selection techniques. In this comparison, the LGBM model 

achieved the highest precision value than other ML models, 

with 88%. Most models like SVM, RF, kNN, Ridge, LR, 

GBC and GBM obtained similar precision values of 65%. 

The DT classifier obtained the next better performance than 

LGBM with 72% precision. 

The recall performance of the ML models based on an 

unbalanced dataset without feature selection techniques is 

displayed in figure 6. In this comparison, the LGBM model 

achieved the highest recall value than other ML models, with 

88%. Most models like SVM, RF, kNN, Ridge, GBC and 

GBM obtained similar precision values of 81%. The Bagged 

DT and LR classifiers obtained the next better performance 

than LGBM with 79% recall. 

 
Fig. 6 Recall Comparison of ML Models on Unbalanced Dataset without Feature Selection

 
Fig. 7 F1-score Comparison of ML Models on Unbalanced Dataset without Feature Selection
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Fig. 8 ROC-AUC Comparison of ML Models on Unbalanced Dataset without Feature Selection 

Figure 7 displays the f1-score performance of the ML 

models based on an unbalanced dataset without feature 

selection techniques. In this comparison, the LGBM model 

achieved the highest f1-score value than other ML models, 

with 88%. Most models, like SVM, RF, kNN, Ridge, GBC 

and GBM, obtained similar precision values of 72%. The 

Bagged DT classifier obtained the next better performance 

than LGBM with 74% precision, and the LR model achieved 

the least performance with 71%. 

The ROC-AUC performance of the ML models based on 

an unbalanced dataset without feature selection techniques is 

displayed in figure 8. In this comparison, the LGBM model 

achieved the highest ROC-AUC value than other ML models 

with 0.8823. Most models like SVM, RF, kNN, Ridge, 

Bagged DT, GBC and GBM obtained similar ROC-AUC 

values with 0.5. The DT classifier obtained the next better 

performance than LGBM with a ROC-AUC value of 0.6286. 

LR model achieved the least performance with a ROC-AUC 

value of 0.4881. 

4.2. Stage 2: Classification Done on Balanced Dataset but 

without Feature Selection 

In this stage 2 classification, the dataset was balanced 

using data balancing techniques like ADASYN  

oversampling, random oversampling and SMOTE. The 

performance of the ML models was evaluated based on these 

data balancing techniques applied individually to all the ML 

models. In this stage 2, only eight feature classification 

models were used, as represented in the following sections. 

4.2.1. ADASYN Over-Sampling Technique for Dataset 

Balancing 

The below steps were followed while adopting 

ADASYN over-sampling technique: 

• 167 Malignant Image Cases and 42 Benign Images 

Cases were upsampled to 173 Malignant Image Cases 

and 165 Benign Images Cases there by Balancing the 

Classification use case. 

• 75% of the cases were used for training, and 25% were 

used for validation. 
 

 

Table 2 represents the performance analysis comparison 

of ML models evaluated based on the balanced dataset using 

the ADASYN method without feature selection. Eight ML 

classifiers, such as SVM, XGB, DT, RF, kNN, Ridge, LR 

and LGBM, were used in this stage 2 evaluation. In this 

comparison, the RF and XGB models have performed better 

than the other models. 

 

Table 2. Performance Analysis of ML Models based on Balanced Dataset using ADASYN Over Sampling without Feature Selection 

Feature Classification Model Accuracy Recall Precision F1-Score ROC-AUC 

SVM 0.5412 0.54 0.54 0.54 0.5418 

XGB 0.8824 0.88 0.88 0.88 0.8823 

DT 0.7294 0.73 0.73 0.73 0.7287 

RF 0.8824 0.88 0.89 0.88 0.8832 

k-NN 0.6353 0.64 0.67 0.63 0.6379 

Ridge 0.8235 0.82 0.83 0.82 0.8239 

LR 0.8118 0.81 0.82 0.81 0.8126 

LGBM 0.7647 0.76 0.81 0.76 0.7625 
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Fig. 9 Performance Comparison of ML Models on Balanced Data set using ADASYN without Feature Selection 

 

Table 3. Performance Analysis of ML Models based on Balanced Dataset using Random Over Sampling without Feature Selection 

Feature Classification Model Accuracy Recall Precision F1-Score ROC-AUC 

SVM 0.9759 0.98 0.98 0.98 0.9744 

XGB 0.9398 0.94 0.94 0.94 0.9417 

DT 0.9518 0.96 0.95 0.95 0.9545 

RF 0.9398 0.95 0.94 0.94 0.9432 

kNN 0.8298 0.83 0.81 0.81 0.8191 

Ridge 0.759 0.77 0.76 0.76 0.764 

LR 0.8193 0.86 0.82 0.82 0.8281 

LGBM 0.9398 0.95 0.94 0.94 0.9432 

 

Both these RF and XGB models have similar accuracy 

values of 88.24%, recall and f1-score of 88%. Besides that, 

the RF model scores higher in precision value with 89%, 

whereas the XGB achieved 88% precision. The ROC-AUC 

value of the RF was 0.8832 and 0.8823 for XGB. The best-

performed model was RF and the XGB, and the least-

performed model was SVM, with an overall 54% score in all 

the parameters. Figure 9 indicates the graphical chart 

comparing performance analysis based on the balanced 

dataset using ADASYN without feature selection. 

4.2.2. Random Over-Sampling Technique for Dataset 

Balancing 

Below steps were followed while adopting the Random 

over-sampling technique: 

• 167 Malignant Image Cases and 42 Benign Images 

Cases were upsampled to 165 Malignant and 165 Benign 

Images Cases there by Balancing the Classification use 

case. 

• 75% of the cases were used for training, and 25% were 

used for validation. 
 

The performance analysis comparison of ML models 

evaluated based on the balanced dataset using a random 

over-sampling method without feature selection was 

presented in table 3. In this comparison, the SVM model has 

performed better in all parameters than the other models. The 

SVM model obtained 97.59% accuracy, precision, recall and 

f1-score with 98%. The ROC-AUC score of the SVM model 

was 0.9744. Compared to the SVM's performance, the 

following best performance was obtained by DT with 

95.18% accuracy and overall 95% performance in all the 

parameters. Models like XGB, RF and LGBM have obtained 

similar and close performances. 

The best-performed model was SVM, and the least-

performed model was Ridge, with an overall 76% score in all 

the parameters. Figure 10 represents the graphical plot of the 

performance analysis comparison based on the balanced 

dataset using random over-sampling without feature 

selection. 

4.2.3. Synthetic Minority Over-sampling Technique 

(SMOTE) for Dataset Balancing 

The below steps were followed while adopting SMOTE 

over-sampling technique: 

• 167 Malignant Image Cases and 42 Benign Images 

Cases were upsampled to 165 Malignant and 165 Benign 
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Images Cases there by Balancing the Classification use 

case. 

• 75% of the cases were used to train, and 25% were used 

to Validate. 
 

Table 4 represents the performance analysis comparison 

of ML models evaluated based on the balanced data set using 

SMOTE method without feature selection. In this 

comparison, the XGB model has performed better in all 

parameters than the other models. The XGB model has 

obtained 89.16% accuracy, 90% precision, recall and f1-

score with 89%. The ROC-AUC score of the XGB model 

was 0.8963. Compared to the XGB's performance, the 

following best performance was obtained by LGBM with 

87.95% accuracy and, overall, 88% performance in all the 

parameters. The RF model has obtained close performance 

correlated to LGBM. The best-performed model was XGB, 

and the least-performed model was SVM, with 61% scores in 

all the parameters. Figure 11 indicates the graphical chart 

comparing performance analysis based on a balanced dataset 

using SMOTE without feature selection. 

4.3. Stage 3: Classification of Balanced Feature Dataset 

and with Feature Selection 

In this final stage of classification, the feature analysis 

and cancer identification were performed using the feature 

classification ML models like SVM, XGB, DT, RF, kNN, 

Ridge, LR and LGBM. The following table represents the 

performance analysis of these eight ML models after 

balancing the dataset and feature selection. 

 
Fig. 10 Performance Comparison of ML Models on Balanced Data set using Random Oversampling without Feature Selection 

 

 
Fig. 11 Performance Comparison of ML Models on Balanced Data set using SMOTE without Feature Selection 
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Table 4. Performance Analysis of ML Models based on Balanced Dataset using SMOTE without Feature Selection 

Feature Classification Model Accuracy Recall Precision F1-Score ROC-AUC 

SVM 0.6145 0.61 0.64 0.61 0.6233 

XGB 0.8916 0.89 0.9 0.89 0.8963 

DT 0.8313 0.83 0.84 0.83 0.8351 

RF 0.8675 0.86 0.86 0.86 0.8552 

kNN 0.6747 0.67 0.69 0.67 0.6815 

Ridge 0.8193 0.82 0.83 0.82 0.8223 

LR 0.8313 0.83 0.84 0.83 0.8276 

LGBM 0.8795 0.88 0.88 0.88 0.882 

 
Table 5. Performance Analysis of ML Models after Balancing the Dataset and Features Selection 

New Name Accuracy Recall Precision F1-Score ROC-AUC 

SVM-RoS-A 0.9759 0.98 0.98 0.98 0.9744 

SVM-RoS-MI 0.9759 0.98 0.98 0.98 0.9744 

LGBM-RoS-RFE 0.9639 0.96 0.96 0.96 0.9645 

DT-RoS-A 0.9518 0.95 0.96 0.95 0.9545 

DT-RoS-MI 0.9518 0.95 0.96 0.95 0.9545 

RF-RoS-A 0.9518 0.95 0.95 0.95 0.9531 

XGB-RoS-A 0.9398 0.94 0.95 0.94 0.9432 

XGB-RoS-MI 0.9277 0.93 0.94 0.93 0.9318 

DT-RoS-RFE 0.9277 0.93 0.94 0.93 0.9318 

LGBM-RoS-MI 0.9157 0.92 0.93 0.92 0.9205 

LGBM-RoS-A 0.9157 0.92 0.92 0.92 0.919 

RF-AoS-RFE 0.9176 0.92 0.92 0.92 0.9175 

XGB-RoS-RFE 0.9157 0.92 0.92 0.92 0.9161 

RF-RoS-MI 0.8916 0.89 0.9 0.89 0.8963 

RF-RoS-RFE 0.8916 0.89 0.9 0.89 0.8963 

LGBM-AoS-A 0.8941 0.89 0.9 0.89 0.8948 

XGB-SoS-MI 0.8916 0.89 0.89 0.89 0.8919 

RF-AoS-A 0.8824 0.88 0.89 0.88 0.8832 

RF-SoS-RFE 0.8795 0.88 0.89 0.88 0.882 

RF-SoS-MI 0.8795 0.88 0.88 0.88 0.8794 

XGB-SoS-RFE 0.8675 0.87 0.87 0.87 0.8648 

LGBM-SoS-RFE 0.8434 0.84 0.85 0.84 0.8479 

XGB-AoS-RFE 0.8471 0.85 0.85 0.85 0.8477 

RF-SoS-A 0.8434 0.84 0.84 0.84 0.8427 

kNN-RoS-A 0.8313 0.83 0.88 0.83 0.8409 

kNN-RoS-MI 0.8313 0.83 0.88 0.83 0.8409 

LGBM-AoS-MI 0.8353 0.84 0.84 0.83 0.8361 

LGBM-AoS-RFE 0.8353 0.84 0.84 0.84 0.8358 

DT-AoS-MI 0.8353 0.84 0.84 0.84 0.8353 

DT-SoS-RFE 0.8313 0.83 0.84 0.83 0.8351 

XGB-SoS-A 0.8313 0.83 0.84 0.83 0.8336 

LGBM-SoS-MI 0.8313 0.83 0.83 0.83 0.8322 

DT-AoS-RFE 0.8235 0.82 0.83 0.82 0.8242 

DT-AoS-A 0.8235 0.82 0.83 0.82 0.8239 

SVM-SvSoS-MI 0.8209 0.82 0.83 0.82 0.8236 

RF-AoS-MI 0.8235 0.82 0.82 0.82 0.8236 

DT-SoS-A 0.8072 0.81 0.82 0.81 0.8138 

XGB-AoS-A 0.8118 0.81 0.82 0.81 0.8128 

DT-SoS-MI 0.7952 0.8 0.82 0.79 0.8024 

XGB-AoS-MI 0.8 0.8 0.8 0.8 0.8004 

SVM-AoS-MI 0.7882 0.79 0.79 0.79 0.7882 
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Ridge-AoS-A 0.7529 0.75 0.76 0.75 0.7536 

LGBM-SoS-A 0.747 0.75 0.75 0.75 0.7497 

Ridge-SoS-RFE 0.747 0.75 0.75 0.75 0.7453 

kNN-AoS-MI 0.7412 0.74 0.77 0.73 0.7431 

kNN-SoS-A 0.7108 0.71 0.73 0.71 0.7171 

Ridge-SoS-A 0.6988 0.7 0.71 0.7 0.7028 

LR-RoS-A 0.6867 0.68 0.72 0.69 0.6958 

LR-RoS-MI 0.6867 0.69 0.72 0.68 0.6958 

LR-AoS-A 0.6941 0.69 0.7 0.69 0.6946 

LR-AoS-MI 0.6941 0.69 0.69 0.69 0.6941 

LR-AoS-RFE 0.6941 0.68 0.68 0.68 0.6941 

LR-RoS-RFE 0.6747 0.67 0.71 0.67 0.6844 

Ridge-AoS-RFE 0.6824 0.68 0.68 0.68 0.6819 

Ridge-RoS-A 0.6627 0.66 0.63 0.66 0.6629 

LR-SoS-A 0.6627 0.66 0.66 0.66 0.6613 

Ridge-RoS-RFE 0.6506 0.64 0.66 0.63 0.6559 

SVM-SoS-MI 0.6506 0.65 0.65 0.65 0.6486 

Ridge-AoS-MI 0.6353 0.6 0.65 0.6 0.637 

LR-SoS-RFE 0.6386 0.64 0.64 0.64 0.6363 

Ridge-RoS-MI 0.6145 0.61 0.61 0.61 0.6131 

kNN-SoS-MI 0.6024 0.6 0.62 0.6 0.609 

LR-SoS-MI 0.6024 0.6 0.6 0.6 0.6006 

SVM-SoS-A 0.5783 0.58 0.59 0.58 0.5833 

kNN-AoS-A 0.5765 0.58 0.58 0.57 0.5781 

Ridge-SoS-MI 0.5663 0.57 0.57 0.56 0.5705 

SVM-AoS-A 0.5529 0.55 0.56 0.55 0.554 

SVM-SvSoS-A 0.6418 0.64 0.41 0.5 0.5 

 

 
Fig. 12 Performance Comparison of ML Models on Balanced and Features Selected Dataset
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Table 6. Comparison of Performance Analysis of ML Models with Existing Models 

Feature Classification Model Accuracy Recall ROC-AUC 

GBT-HO-BFE [7] 0.767 0.435 0.774 

RF-HO-BFE [7] 0.822 0.391 0.730 

LR-LASSO [13] 0.90 0.86 0.93 

SVM-LASSO [13] 0.82 0.86 0.90 

DT-RoS-A [Proposed] 0.9518 0.95 0.9545 

LGBM-RoS-RFE [Proposed] 0.9639 0.96 0.9645 

SVM-RoS-A/MI [Proposed] 0.9759 0.98 0.9744 

 

 
Fig. 13 Performance Comparison of Proposed ML Models with Existing Models 

 

In the table 5, the performance analysis was ordered and 

arranged based on the models that obtained the scores higher 

to lower. Figure 12 was plotted based on the top 20 results 

obtained from the different ML models evaluated on the 

balanced dataset with features selection. Based on these top 

20 results, the SVM model achieved the highest performance 

with random oversampling using ANOVA and MI feature 

selection methods, which obtained 97.59% accuracy, 98% 

precision, recall and f1-score and ROC-AUC value of 

0.9744. The LGBM model with random oversampling and 

RFE has obtained 96.39% accuracy and 96% overall 

performance. The top 20 results include the models like 

SVM, LGBM, DT, and RF. 

4.5. Performance Analysis Comparison 

The performance of the proposed models was compared 

with the existing techniques derived from the literature 

survey for validation. 

As shown in table 6, the proposed model's performance 

was compared with the existing models related to the PCa 

classification. The compared models are derived from the 

related works discussed in the literature. According to the 

comparison, the top three performed proposed research 

models are used in this comparison, which is better in terms 

of accuracy, recall and ROC-AUC parameters compared to 

the other models like Gradient Boosted Tree using hold-out 

(HO) and backward feature elimination (BFE) (GBT-HO-

BFE) & RF-HO-BFE [7] and LR-LASSO & SVM-LASSO 

[13]. Based on the obtained results, it is clear that the SVM is 

the best ML model, Random sampling is the best data 

balancing model, and ANOVA and MI are the best feature 

selection models in this research. 

5. Conclusion  
A feature analysis model was proposed in this research 

for the classification of Radiomics features based on PCa 

MR Images. These MRI images comprise 76 patients of 

about 207 from the HCG, Bangalore. Onco-Radiologists 

from HCG Bangalore were involved in identifying the ROI 

that is by marking prostate lesions on the Original MR 

Image. The image masks were created based on the marking 
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provided on the Original Images. These image masks and the 

original images were used to extract features. The proposed 

model's workflow includes the following stages: image 

acquisition, ROI delineation, feature extraction, data 

balancing, selection of features, and analysis of features. 

ADASYN, SMOTE and random over-sampling methods 

were used for data balancing. For feature selection, ANOVA, 

MI and RFE methods were used to select the Radiomics 

features extracted from PCa MRI images. Different ML 

models such as SVM, XGB, DT, RF, kNN, Ridge, LR, 

LGBM, NB, Bagged DT, GBC and GBM were used for 

feature analysis. The performance analysis was carried out in 

three different stages. The feature analysis was performed on 

an unbalanced dataset without feature selection, a balanced 

dataset without feature selection and a balanced dataset with 

feature selection using the ML models. Based on the 

obtained results, the SVM ML model implemented with 

random oversampling and ANOVA and MI was the best 

feature analysis model in this research. In future, the 

limitation of this research can be solved by experimenting 

with more data samples for improved performance. Some 

conventional models should be included to validate the 

performance of the proposed model. 
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