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Abstract - Coverage extension with limited transmission power devices is one of the requirements and research challenges for 

battery-operated IoT nodes, which use a narrowband IoT wireless communication protocol. The link adaptation mechanism 

can solve this problem by selecting optimal parameters using cognitive radio. This research work proposes a context-aware 

link adaptation mechanism using a cognitive radio that uses a machine-learning algorithm. The proposed mechanism achieves 

greater coverage in the long run with lower SINR (signal-to-interference and noise ratio) and BER (bit error rate) through 

optimal selection of repetition rate, modulation, coding scheme, transmission power, number of subcarriers, and frequency 

based on the wireless channel condition and QoS requirement of the application. Here, every Narrowband Internet of Things 

(NBIoT) node is considered a cognitive radio node, which uses a frequency that is available for free. The proposed system-

generated NBIoT uplink waveform and evaluated the performance using the optimal parameter derived from the proposed 

context-aware machine learning-based link adaptation scheme. 

 

Keywords - Cognitive Radio, Link adaptation, Narrowband internet of things, SVM Regression, Decision tree Regression, 

Internet of things.   

1. Introduction  
The Internet of things (IoT) is one of the emerging 

technologies where millions of battery-operated devices are 

connected to the Internet. The wireless technology for 

connecting such a massive number of battery-operated 

devices without human intervention requires special 

consideration. The wireless technology for those applications 

needs to be energy-efficient and lightweight. There are many 

wireless standard protocols proposed for IoT applications in 

licensed bands like Narrowband Internet of Things (NBIoT), 

Extended coverage Global System for Mobile 

communications (EC-GSM), Long Term Evolution for 

Machines (LTE-M), Unlicensed band MY THINGS, Short 

for long-range (LoRa), and Sigfox. NBIoT gives good 

connectivity handling of 50k devices per cell with an 

increased level of 20dB with low power consumption, which 

may give ten years of battery life [1] [2] [3]. Each of them 

has its own pros and cons within that NBIoT gives good 

connectivity handling 50k devices per cell with an increased 

level of 20dB with low power consumption, which may give 

ten years of battery life [4] [5]. This research work focuses 

on NBIoT waveform generation and link adaptation for the 

extension of coverage. There is much literature on the 

coverage of extension and link adaptation proposed in the 

literature. 

1.1. Background 

Repeating transmission data is considered a promising 

method for enhancing coverage. It links adaptation for NB-

IoT systems with the modulation and coding scheme (MCS), 

and the repeated number is proposed by Yu, Changsheng et 

al. [6]. A theoretical framework analysis for the upper bound 

of achievable data rate with repetition factor is considered by 

Malik H et al. [7]. Maximum achievable data rates of 89.2 

Kbps and 92 Kbps are evidenced for downlink and uplink. A 

novel strategy for optimizing NB-IoT shared channels via the 

selection of link parameters like modulation and coding 

scheme and number of repetitions is proposed by Luján et al. 

[8]. These parameters are optimized through the base station 

(BS) at a target block error rate (BLERt). NB-IoT, a machine 

learning-based adaptive repetition scheme, is proposed to 

improve network transmission efficiency [9]. Many 

repetitions reduce throughput and increase energy 

consumption, thereby reducing their battery lifetime. A 

method for enhancing coverage using machine learning 

algorithms with dynamic spectrum access is proposed [10]. 

The mechanism reduces the required number of repetitions 

by increasing the coverage with less energy consumption. 

 

The NB-IoT spectrum allocation has a limitation of 180 

KHz to 200 KHz, which is insufficient for massive 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


V. Nallarasan & Kottilingam Kottursamy / IJETT, 70(12), 109-117, 2022 

 

110 

connected IoT devices. The repeated transmission 

mechanism for coverage enhancement used in NB-IoT 

results in spectrum wastage. An NB-Cognitive Radio-IoT 

(NB-CR-IoT) technique is proposed to mitigate this issue 

[31]. The mechanism provides efficient dynamic spectrum 

access for the distributed heterogeneous networks of NB-IoT. 

A deep Q-learning algorithm solves the resource allocation 

problem by reducing the required number of repeated 

transmissions. Link adaptation is widely used for wireless 

resource optimization [12] [13]. For the uplink of Cognitive 

Radio (CR), a combined transmitter adaptation and power 

control with an assured aim at the signal-to-interference + 

noise ratios (SINR) are described [14]. A channel assignment 

approach with Guard-Band (GB) awareness is suggested to 

increase spectrum efficiency. Most GB-aware algorithms 

assume fixed-rate channels and allocate channels in 

sequential order. A GB-aware channel assignment is shown 

with several feasible rates at various time windows [30]. This 

method aims to increase network capacity and reduce the 

required number of channels for target rate achievement with 

interference constraints [16]. Utilizing cognitive radio (CR) 

increases energy efficiency and the efficient use of radio 

resources. However, because of the aggregated interference 

from primary base stations and cognitive base stations, 

resource allocation is complex [17] [18] [19]. To allocate 

resources, a multi-agent model-free reinforcement learning 

system called Q-Learning (Q-L) and State-Action-Reward-

Next-State-Action (SARSA) is proposed [20]. In practice, 

the system assumes that cooperation among nodes is 

conceivable, but a multi-agent system requires more memory 

and has a higher computational complexity. Soft computing 

and cognitive radio are used for link adaptation and 

interference management; this work focuses on a cognitive 

radio-based solution for coverage extension. The main 

disadvantage is that the overhead of collaboration and the 

required space is not considered [21] [22]  [23]. 

 

A set of appropriate cooperative sensing parameters for 

an NB-CR-IoT (narrowband cognitive radio Internet of 

Things) network that optimises throughput. In order to 

increase network throughput, this study proposes the network 

relay concept proposed by Srinivasa Rao et al. [27]. 

 

The EECDC clustering method uses geometry 

approaches to enhance application performance and quality 

of service (QoS). It is an energy-efficient and coverage-

aware distributed clustering protocol for wireless sensor 

networks. The major characteristics of EECDC to extend the 

life of WSN are better coverage, energy efficiency, low 

traffic from nodes to base station, and balanced energy 

consumption. Simulation results show that EECDC is 

beneficial in extending network lifespan and enhancing 

network coverage proposed by A. Maizate et al. [28]. The 

open difficulties to show the future direction of 6G wireless 

coverage expansion from the standpoint of critical elements 

influencing service coverage effectiveness, i.e., the network 

access capacity, space segment capacity, and their 

corresponding connection. In addition, Min Sheng et al. 

propose further detail about the crucial elements that 

determine how well the components, as mentioned above, 

match, enhancing service coverage potential [29]. 

 

1.2. Approaches for Improving Coverage 

Signal repetitions, additional control channels, and 

bandwidth reduction, notably for the uplink, are used in NB-

IoT to target a considerable coverage increase. A User 

Equipment (UE) transmission may be configured in various 

ways to improve its coverage. The repeats have two potential 

Redundancy Versions for the NPUSCH format 1 in charge of 

uplink data transmission (RV). The number of tones, 

subcarrier spacing, and repetitions determine repetition order. 

In addition to repeats, NB-IoT makes a variety of potential 

bandwidth allocations conceivable. Single-tone setups are 

required when signal strength is low and provide capacity. 

Higher data speeds are available for UEs with strong 

coverage via optional multi-tone setups. Keep in mind that 

the time required to complete the transfer will rise with both 

strategies. 

 

The improvement in coverage is limited by the intended 

low range of SNR, where an accurate channel estimate 

emerges as a major problem. 

 

1.3. Research Gap 

Existing methods mostly use the repetitions mechanism. 

Increased repetitions reduce the throughput and spectral 

efficiency and also increased the energy consumption; all the 

proposed mechanisms performed well only for the given 

context and performed the optimization. Even though some 

existing work uses a machine-learning tool, it is optimizing 

one or two parameters with some tradeoffs. There are 

millions of IoT devices that demand more spectrum. But the 

NB-IoT system allows only allocation spectrum from 180 

kHz to 200 kHz, which is insufficient to handle the 

exponentially increasing NB-IoT devices. 

 

1.4. Problem Statement 

This article intended to solve and develop a mechanism 

of multiple parameter optimization with the least tradeoff 

with an ability to analyze the context and perform the 

optimization. 

 

1.5. Proposed Solution  

Soft computing and cognitive radio are used for link 

adaptation and interference management [24] [25] [26]. With 

reference to that, this work focus on the cognitive radio-

based solution with machine learning for coverage extension. 

This research work has the following novelty and 

contribution. 

• Every NBIoT node is treated as cognitive radio, and 

NBIoT uplink-link adaptation cognitive engine software 
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is implemented to realize link adaptation effectively and 

to allocate the frequency subcarrier dynamically based 

on availability. 

• A multiple parameter optimization mechanisms is 

developed for NBIoT uplink-link adaption by machine 

learning with analysing the contexts of a given channel 

state and the QOS requirements of the application. 

• An optimal selection of parameters like repetition rate, 

modulation, coding scheme, number of subcarriers, 

frequency of transmission, and transmit power is 

extracted to achieve greater coverage with improved 

performance of BLER for the context of channel state 

and QoS requirement of the applications. 

 

The remaining part of the article is organized as follows: 

Section 2 deals with the link adaptation mechanism's 

methods, and Section 3 deals with the NBIoT standard 

waveform generation, link adaptation results, and analysis. 

Section 4 concludes the article with a summary of the 

research and future work. 

 

2. Method  
Spectrum scarcity may be resolved by merging 

cognitive radio with NB-IoT using a machine learning-based 

link adaption model that simulates the relationship between 

channel state information and BER via empirical observation 

of channel realization. 

 

2.1. System Model for Link Adaptation Mechanism 

The coverage is classified into three groups according to 

the NBIoT standard and 3GPP LTE advance pro release 13. 

1. Coverage Extension level 0: standard coverage with a 15 

kHz sub-carrier spacing and an MCL value of roughly 144 

dB. 2. Coverage Extension level 1: a strong coverage class 

with an MCL VALUE of around 154 dB and a sub-carrier 

spacing of 15 kHz. 3. Coverage Extension level 2: extreme 

coverage class, with an MCL of about 164 dB and a 3.75 

kHz sub-carrier spacing. 

 

The choice of the coverage class to be selected for the 

given user depends on the particular user's channel 

conditions. The extreme coverage class can be used for the 

user with a low power received power, i.e., worst channel 

experiencing user, and a normal coverage class is used for 

the user with high received power, i.e., best channel 

condition having user. Each selected coverage class will use 

some set of the transmission parameters like the number of 

repetitions. This form of class-based radio parameter link 

adaption system allows varying coverage to be delivered to 

UEs depending on their path loss. By analyzing the channel 

condition of individual user equipment, the cellular base 

station assigns a class of coverage and the number of 

repetitions from the set {1, 2, 4, 8, 16, 32, 64, 128} by the 

same transmission power or different transmits power on the 

repetition. 

Fig.1 shows the system model of the proposed CR 

machine learning algorithm-based link adaptation for the 

coverage extension. There is n number of CR NBIoT nodes 

communicating via uplink to the CR base station.CR base 

station applies a machine learning mechanism to predict the 

channel response of individual CR UE nodes and uses that 

channel to make link adaptations. The results of the link 

adaption, including the number of repeats, the number of 

subcarriers, the modulation and coding scheme, the transmit 

power, and the ideal channel frequency, are conveyed to the 

CR UE for usage. It is assumed here in such a way that 

spectrum sensing is already done and free frequency to use 

available readily available. All CR UE uses the optimal 

parameter that the base station communicates. 

 
Fig. 1 System Model of CR NB-IoT with Machine Learning-Based Link 

Adaptation 

 
Fig. 2 Proposed CR Machine Learning-Based link Adaptation Mechanism 
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2.2. Proposed Model for Link Adaptation Mechanism and 

Algorithm 

       Fig.2 shows the CR machine learning-based link 

adaptation. The CR base station receives the signal from CR 

UE and then extracts the parameter required for the link 

adaptation. Here instead of doing a channel estimate, channel 

prediction is used. When a massive number of CR NBIoT 

nodes are present, channel estimation on all the nodes is 

difficult; instead, channel prediction is carried out. Initially, 

offline for 3 different channel realization training data sets 

are created and used to transmit the signal using NBIoT 

signal format. The received signal and the realized signal are 

used to train the SVM regression, which learns to predict the 

N user channel. The predicted channel and the input 

parameter for the link adaptation block are the SINR 

parameter and target QoS (SNR, BER, coverage range). The 

link adaptation block uses a Decision tree regression 

algorithm and gives which optimal parameters are to be used 

by the user.  
 

To test the proposed link adaption mechanism for the 

NBIoT standard, the simulation signal waveform must be 

generated per the standard of NBIoT. There is a standard 

algorithm or step define to generate a standard of NBIoT 

waveform for testing any research methodology for NBIoT 

standard. 
 

2.3. The standard Waveform Generation Steps 

1. Find a resource grid and apply it to NPUSCH symbols 

2. Simulate and generate the baseband waveform using 

single carrier frequency division multiple access 

modulations  

3. Transmit the NPUSCH symbols waveform on an 

AWGN noisy and frequency-selective fading channel 

4. Perform channel estimation 

5. Do channel equalization 

6. Do SC-FDMA demodulation 

7. Get the block CRC after decoding the symbol 

8. Use the block CRC for calculating block error  

From step 1, give the standard waveform generation 

steps, procedures, and operations as per the NBIoT system 

standard, where the first step would be finding a resource 

grid and applying it for NPUSCH symbols, where 

appropriate resource grids are identified and applied. The 

second step would be to simulate and create the baseband 

waveform using the NBIoT-adopted single carrier frequency 

division multiple access modulation standards. The third step 

involves adding AWGN noise and transmitting it on a 

frequency selective fading channel based on the waveform 

needs of SDMA, which is the standard adopted for NBIoT, 

an increased concern of this study to analyze the 

performance.  

This study is intended to analyze the performance of the 

proposed system in frequency selective fading channels. Step 

four consists of receiver-side operation, which includes 

channel estimation. To help with the link adaptation 

procedure. Step five involves channel equalization. Channel 

estimation values from step 4 are utilized to equalize and 

remove the channel effect so that decoding of the waveform 

can be done successfully. Step six involves demodulation 

after the equalization of the symbols. Step 7 involves the 

CRC procedure to check whether some errors are there in the 

receiving symbols. For applying CRC check on block error 

on using the CRC check, the calculation of block error rate is 

calculated, and it is used for performance measure under step 

8. 

 

3. Results and Discussion  
The NBIoT uplink standard waveform is utilized to 

study the connection between the block error rate and the 

number of repetitions using the Monte Carlo simulation. The 

simulation setup parameters given in Table 1. were used to 

generate the uplink standard waveform. 

 

Table 1. Simulation Setup 

S.no Parameter Value 

1 Waveform Channel realization Narrowband Physical Uplink Shared Channel (NPUSCH) 

2 Physical channel frequency-selective fading and Additive White Gaussian Noise 

3 Number of UL-SCH transport blocks 5 

4 Repetitions 1,2,4,8,16,32,64 and 128 

5 SNR -20 to 10 Db 

6 Subcarrier Spacing 15khz and 3.75kHz 

7 Subcarrier Set 11for 15khz and 47 for 3.75kHz 

8 Modulation QPSK 

9 Number of resource units 1 

10 Transport block length 136 

11 MIMO configuration 2X2 

12 channel Delay profile Extended Typical Urban model (ETU) 

13 Doppler frequency 1Hz 

14 Fading model type Generalized Method of Exact Doppler Spread with Rayleigh Fading (GMEDS) 
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        Fig. 3 SNR analysis for various repetition and Modulation schemes 

Comparison performance 

 
Fig. 4 SNR performance comparison with repetition 

Outage probability analysis 

 

 
Fig. 5 Outage Probability analysis with SNR performance 

 

Fig.3 shows the dependency of SNR and repetition rate, 

which is evaluated for NBIoT waveform for various 

modulation and coding schemes (MCS). The findings 

demonstrate that using a higher number of repetitions allows 

us to successfully decode the message even when the channel 

conditions are poor. Furthermore, when employing a wider 

number of modulation and coding schemes, one may 

effectively send a message even when the channel conditions 

are poor. 

      Fig 4 compares the proposed work's performance and 

the existing work. [6] and plotted in figure 5. It is evident 

that the proposed method is performance compared to the 

existing method. For every repetition value, the proposed 

method requires less SNR for the targeted BLER compared 

to that of the existing one. For example, for repetition 60, the 

proposed method requires -12 dB, but the existing method 

requires -11 dB, so the proposed method achieves a 1 dB 

gain. The proposed method achieves this performance gain 

by employing multi-parameter optimization with machine 

learning. The proposed method predicts the channel before 

communication and adjusts the multiple parameters 

accordingly, whereas the existing method does not.  

Fig.5 shows the outage probability vs SNR evaluated. 

The graph suggests that the likelihood of an outage decreases 

as the signal-to-noise ratio increases. At a lower SNR of -15 

dB, the outage probability is 0.7, and at a mid-SNR of 0 dB, 

it is 0.4. The outage probability is zero at a high SNR of 20 

dB. So, from that graph, conclude that after 20 dB of SNR, 

that system has zero outage probability, which means its 

outage is 100 percent successful. When SNR is increased by 

5 dB, performance improves by 0.1 probability for every 5 

dB increase in SNR.  

 Fig.6 shows the outage probability in relation to the 

number of users evaluated. It is clear from the graph that if 

the amount of users increases, the outage probability is also 

increased. So, from this, there is an idea for 10 users; the 

outage probability is 0.98, which means the system outage is 

98 percent. If the amount of a user is increased by 6 to 8 

users, the 40% probability of an outage increases. 

 

 
Fig. 6 Number of users vs Outage probability 
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Fig. 7 TBS vs Spectral efficiency analysis 

 

Fig.7 shows the TBS vs Spectral efficiency evaluated for 

different repetition rates from the graph; it can be observed 

that when R1, R2, and R3 represent repetition rate, Where 

R1>R2>R3, Here R1 is the highest repetition rate, R2 is the 

next highest Repetition rate, R3 is the lowest Repetition rate. 

Spectral efficiency is increased. From the graph, get an idea 

of the target transport block size and what could be the 

repetition rate. The concept of many repeats is used to obtain 

extended coverage. Without a doubt, this would improve Tx 

Reliability, but at the expense of spectral efficiency. 

Fig.8 shows the SNR vs block Error rate evaluated for 

different repetition rates. It is clear from the graph that the 

BLER is reduced with an increased repetition rate. From the 

graph, get an idea of the target BLER, which could be the 

repetition rate. NBIoT, 700MHz, and 800MHz support three 

frequency bands and 900MHz.cognitive radio can work on 

those bands based on available free spectrum or interference 

level. Inferring from the graph, if the repetition rate is equal 

to 1, i.e., (NRep=1), only get 0 BLER after 2dbm SNR. For 

example, it cannot decode the signal if SNR is 0 since it can 

only receive one repetition. Signal decoding is done if SNR 

is higher than 2. That is a disadvantage. If raised NRep=8, 

will be able to decode the signal within correctly -10dbm, 

since -10dbm is bitter, became zero. The highest Nrep=128 

will be increased even further. It would be capable of 

decoding at an SNR of -17.5dBm. Since the repetition rate is 

greater, it could accurately decode the signal even at low 

SNR. 

Fig.9 shows that the SVM machine learning model is 

used for the wireless channel prediction, which is used as 

input for the adaptive parameter selection model. SVM is 

used in the regression model to predict the channel. The 

wireless channel is assumed to be exponentially distributed, 

and the channel training data are generated from the 

exponential distribution. Fig.9 shows the prediction or 

regression outcome of the SVM model for the three kernel 

types RBF kernel, linear kernel, and polynomial kernel. Only 

anticipated accuracy is used in the prediction channel and 

appropriately implements the connection, necessitating good 

channel prediction. As a result, this graph depicts how 

successfully the suggested model inaccurately predicts the 

channel. So, except for some higher levels of repetition at 5 

and 6, this RBF kernel exactly predicts the channel. 

However, there is a slight variance in the linear model 

prediction. A non-linear model is a polynomial model. It can 

accurately detect and forecast channel changes. The figure 

shows that the polynomial and RBF kernel-based SVM 

model can track and model exactly the exponential 

distributed channel model compared to the linear kernel. 

 

The performance of the SVM regression is evaluated in 

terms of error values and tabulated in table 2. The parameter 

selection is carried out using regression-based prediction. 

Decision tree regression is used to predict optimal parameters 

for the given context. Random training data sets are 

generated and applied to train the decision tree regression. 

After training, a random combination of the feature set is 

used, and the optimal sample values are obtained as Decision 

Tree Regressor [ 27.08806043 -17.48976917  10.25530971]. 

Here the first value indicates repetition rate; the second value 

shows optimal transmit power; the third value shows the 

subcarrier selection .those values stated in floating-point 

numbers will be rounded off to the nearest integer value of 

the possibility of the given parameter after taking the 

absolute value. 

 
Fig. 8 Signal-to-noise ratio comparison with a block error rate 

 
Table 2. Performance of SVM regression with different kernel                           

Model 

Mean 

absolute 

error 

Mean 

squared 

error 

Median 

absolute 

error 

SVM regression 

with linear kernel 
27.69 1896.53 12.31 

SVM regression 

with RBF kernel 
23.19 1623.1 5.08 

SVM regression 

with polynomial 

kernel 

17.52 485.28 12.55 
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Fig. 9 Channel Prediction Using SVM Regression 

 

4. Conclusion  
 Coverage extension is one of the main issues in 

narrowband IoT. This article solves the coverage extension 

problem with the cognitive radio approach. The machine 

learning approach of decision tree regression efficiently 

handles the tradeoff between the repetition rate and the 

coverage extension. Channel estimation is the critical factor 

that influences the optimal parameter selection, which is 

dealt with by the SVM regression mechanism that could 

predict the channel. The proposed methodology provides 

optimal parameter selection (link adaptation ) for the given 

context on an ad-hoc basis through the cognitive process of 

the cognitive radio with the help of a machine learning 

algorithm of SVM regression and decision tree regression. 

Future work will address both this constraint and the security 

concerns.
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