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Abstract - Size Estimation has always been an area of interest in the software industry. Estimating size directly could lead to 

the calculation of storage identities and costs. This paper proposes a neural network-based size estimation method which 

utilizes the architecture of Machine Learning. In this paper, the k-means algorithm is used to divide the data into multiple 

segments, which is further utilized by the Fuzzy logic-based inference engine to generate the class labels. In this model, the 

NASA-based PROMISE Dataset has been utilized, and there is no class label containing the project size. In order to validate 

the class label, the collected data is passed to a multi-class classifier which uses the Levenberg principle. The proposed model 

is evaluated using quantitative parameters, namely the class and overall class accuracy, and is compared with other 

classification architectures. The accuracy of the proposed model has been improved by 9.7% in comparison with other 

techniques and 0.7% in comparison to existing studies. 
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1. Introduction  
Size estimation has always attracted the research world 

and the real-time software industry. NASA conducted an 

experiment in which 93 projects were evaluated based on 

different aspects of development, including the 

programmer’s ability and processing knowledge, the total 

number of human resources applied to complete the project, 

etc. The aggregated data is presented in terms of a dataset 

known as the PROMISE dataset. It has been widely used in 

Software Engineering by a lot of researchers [1-3]. The 

dataset represents OOM metrics and computes the overall 

effort of the project calculated utilizing metrics. The 

categorization of the metrics has been done on the base of 

software evolution. The procedure of evolving a software 

product utilizing software engineering standards and systems 

is alluded to as software evolution. It incorporates the 

introductory improvement of software and its upkeep and 

upgrades until aved programming product is created, 

fulfilling development begins from the necessity collecting 

process. After which, engineers make a prototypical model of 

the expected software design and reveal it to the clients to get 

their input in the early phase of software product 

development. The clients recommend changes, on which a 

few sequential redesigns and upkeep also continue evolving. 

This procedure changes to the first software till the coveted 

software is succeeded [8]. The software program is 

expensive and time-consuming to develop and has a high 

cost in commercial, informational systems. The amount of 

investment in software programs is estimated to be close to 

$200 billion per annum. Boehm suggested thoroughly 

performing cost and benefit analysis before providing the 

required resources for the software project [9-10]. The 

correctness of software investment decisions is directly 

proportional to the quality of the software. If the cost and 

effort for the project are underestimated, such projects are 

liable to be abandoned mid-way. This withdrawal of the 

project is either owing to high costs which were not 

estimated at an early stage or due to the wrong estimation of 

time and related resources required. If the cost and effort for 

the project are overestimated, such overestimation may 

increase the project cost by putting less effort into 

programmers to be innovative. 

Moreover, in these cases, the potential projects will likely 

be rejected due to high costs or time. Software size 

estimation is crucial for both software designers and ends 

users [11-15]. They can be used to create requests for 

proposals, contract negotiations, planning, and management. 

Underestimating the cost and effort may result in 

management quickly approving the project, and if the budget 

is increased, the project may fail, as it has in the past, with 

underdeveloped functions and poor quality. Overestimation 

may result in various resources being dedicated to the 

project, resulting in job losses [16-20]. Moreover, research 

on machine learning and soft computing techniques with 

software effort estimation was authored until early 2007. 

Earlier, authors provided a summary of effort estimation 
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using machine learning techniques that will be useful for 

researchers in offering future direction in the field of 

machine learning adoption in software effort estimation [21-

23].  

The limitation of the current study is precise designing 

and efficient resource allocation in line with the effort 

estimation of software for different projects. However, data 

mining and ML techniques provide a way for effort 

estimation but are limited in providing the desired results due 

to problems in fine-tuning and classification errors. 

Furthermore, the main problem in conventional studies is 

the realistic estimation of cost since it is used to determine 

the resources required for the project and at what intervals 

each particular resource will be allocated to each activity, as 

well as to classify, rank, and arrange development projects in 

terms of the overall business strategy. It is simple to observe 

and evaluate the impact of changes, and it is simple to replan. 

Connecting the size to effort could be a dicey situation; 

hence, based on the evaluated effort, this paper categorizes 

the size into three categories and modifies the training 

architecture using Neural Network. 
 

2. Related Work 
Machine learning-based systems are known to be 

dynamically adaptable to any type of data, and researchers 

are eager to estimate the effort more precisely. Numerous 

strategies fail to effectively achieve the development goal for 

test applications that give the quick evolution of software 

products [27]. This research proposes a unique methodology 

to estimate the effort based on ensemble learning and feature 

reduction. The feature ranking and selecting mechanism 

allows the practitioners to estimate effort using criteria like 

size and cost using the suggested method [28]. Simulated 

results using the suggested technique and the COCOMO II 

dataset are encouraging. Much work has been discussed in 

Table 1, which shows the comparative analysis of the 

methodology used by different researchers from 2018 to 

2022. The limitation of individual work has also been 

mentioned. Various authors worked on techniques like Deep 

Belief Networks (DBN), Swarm Optimization, Deep Neural 

Networks, use cases and Actors, Regression, etc., to analyze 

different data sets for software estimation. Different 

techniques and work methodologies helped the authors attain 

the research's valuable target and explain their findings in the 

paper. This table presented a perspective of the use of 

machine learning in software estimation utilising various 

methodologies implemented by different authors, which is 

highly helpful for academics to provide the future path in the 

prescribed field. The comparison of different techniques, 

research gaps, and limitations of these techniques is also 

shown in the table below. 

 
Table 1. Comparative Analysis of Related Work 

Author Technique Work and Methodology Limitation / Research Gap 

Kaushik et al. in 

2022 

Deep Belief Network 

(DBN) along with the 

swarm-based Whale 

Optimization Algorithm 

(WOA) 

A technique for software estimation 

considering the datasets COCOMO81, 

MAXWELL, CHINA, and NASA93 is 

discussed. Restricted Boltzmann Machine and 

Deep Belied Network (DBN) have been 

constructed, and DBN was estimated with 

WOA for fine-tuning. 

The main limitation is the 

use of the traditional 

dataset. Parameters need to 

be optimized. 

Khan et al. 

(2021) 

Grey Wolf Optimizer 

(GWO) and Strawberry 

(SB), along with the 

DNN 

The software error estimation was done to 

solve the multi-variable problem, and nine 

benchmark functions were used for 

comparison. The weight function had been 

levied in addition. 

There is a need for 

improvement in training, 

and therefore research 

efforts are required using 

Deep Learning 

architectures. 

R Silhavy et al. 

2021 
Actors and Use cases 

Estimating software system’s boundaries and 

derivation of software system actors and 

finding alternative use cases. The authors also 

focused on stepwise regression. 

Testing window functions 

need to employ, and 

different project sizes need 

to be investigated 

M Daud, and 

AA Malik in 

2021 

Analysis-to-Design 

Adjustment Factors 

(ADAFs) 

The practical and empirical implications 

validate the applicability of determining the 

different metrics related to the class diagram 

along with adjustment factors. 

There is a need to 

investigate the impact of 

frameworks designed using 

ADAFs 

A.Banimustafa 

in 2018 

Naïve Bayes, Logistic 

Regression and Random 

Forests. 

NASA and COCOMO benchmarks that 

covered 93 projects and produced models were 

tested to evaluate the Precision, Recall, and 

classification accuracy. 

The potential of data mining 

ML techniques is to be 

explored, and estimation 

accuracy needs to be 

enhanced. 
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Surendiran 2019 

Development of secure 

software estimation 

during the software 

development life cycle. 

The maximum software efforts estimated to 

track the design and analyzing the risk using 

the different techniques 

The study is limited to 

identifying a secure 

system's key parameters and 

development. 

N. Qomariah et 

al. 2020 

Multiple Linear 

regression through 

associate research 

Quantitative research for statistical data 

analysis and validity tests is conducted to 

determine the customer satisfaction rate. 

The regression coefficient 

approaches 0.290 for 

service quality which limits 

the dependent variable. 

S. Chhabra et al 

2020 

fuzzy logic-based 

COCOMO using PSO 

PSO algorithm is used to compute the 

magnitude of relative error. The evaluation 

using COCOMO NASA had been considered 

to validate the proposed model. 

The study is limited to 

validating the evaluation 

metrics for different 

datasets. 

A. Ardiansyah et 

al 2022 

PSO along with chaotic 

inertia weight map. 

Agile and COCOMO case sets were used, and 

two PSO variants were employed for software 

estimation. The learning strategy applied was 

used to enhance the search mechanism. 

The generation numbers 

were limited, and there is a 

need to enhance the 

performance of the 

proposed system. 

N. A. Zakaria et 

al 2021   

PSO to optimize the 

cost estimation model 

PSO was employed in conjunction with a 

hybrid model of SVM, Linear Regression, and 

Random Forest to optimize the parameters. 

The study is limited to 

optimize the COCOMO 

parameters as there is still a 

need for improvement to 

evaluate all attributes 
 

Table 2. Fuzzy Rule Set 

𝑰𝒇𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝒍𝒂𝒃𝒆𝒍> 30% Margin very high software size is not beneficial as a project 

Else if 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝒍𝒂𝒃𝒆𝒍10% Margin and 

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝒍𝒂𝒃𝒆𝒍 <30% Margin 

Moderate in software size and manageable if handled 

carefully 

If Classified Label< 10% Margin Low in computation and highly profitable as a project 

 
Fig. 1 A Flow Chart for Proposed Architecture 

Start 

Upload Promise 

Dataset 

Total Attributes = 12 Apply K-

means to separate data into three 

categories of size. 

Evaluate Similarity and Calculate 

COCOMO – effort estimates. 
Create Rule Engine 

If rule is 

satisfied 
Pass to training Classify and Prediction 

Validate 
Stop 

Yes 

No 
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3. Proposed Technique and Methodology 
The flow chart for the proposed architecture of size 

estimation is depicted in Fig 1. The K-Means algorithm is 

applied to a total of 12 attributes of the PROMISE dataset, 

and similarity is calculated using COCOMO-2 effort. A 

Fuzzy rule engine is created, as shown in Table 2, which is 

further evaluated to see if the rule is satisfied or not. If the 

rule is satisfied, it is passed to the training module, which 

subsequently classifies and predicts. In order to validate the 

class label, the collected data is passed to a multi-class 

classifier, which uses the Levenberg principle to validate. 

The proposed model is evaluated using quantitative 

parameters, namely the class and overall class accuracy, and 

is compared with other state-of-the-art classification 

architectures. 

The proposed methodology is divided into binary 

segments Seg 0 and Seg 1. Seg 0 applied Machine Learning 

(ML) for the evaluation of size labels 

 

Labels ϵ {HighSize(0), ModerateSize(1), Lowsize(2)}      (1) 

 

The identified class is set to be (0), i.e. High Size if the 

co-relation between the group elements is high and the 

predicted effort is also high. In order to predict the effort of 

the software project, the proposed methodology uses 

COCOMO-2 Effort estimation architecture. 
 

1. Development Effort 

2. A basic version of the Basic COCOMO effort 

equation is as follows: 

 

MM = a ∗ KDSIb                                                  (2) 

 

Which is based on MM - man-month / person-month / 

staff-month is one month of effort by one person. 

 

3. Efforts and Development Time (TDEV) 

 

Effort = a ∗ (KLOCb) ∗ (∏ EMjj )                      (3) 

 

TDEV = 2.5 ∗ MMc                                    (4) 

 

The coefficients a, b and c depend on the development 

mode. A fuzzy inference engine is designed to separate the 

class labels, as demonstrated in Fig. 2, 3, and 4. In order to 

pass the data with ground truth values, the inference engine 

is supplied with cosine similarity and calculated effort of the 

groups. The data is separated utilizing the k-means algorithm 

by passing the 12-attribute set to the separation mechanism. 

The K-means is known for its placement architecture of the 

objects to its related cluster based on the distance evaluated 

using eq. (5) [6-8]. 

 

𝑑 = ∫ ∫ ∫ (𝑎𝑖𝑗 − 𝑎𝑖𝑘)^2  
𝑎𝑡𝑐

𝑗=1

𝑛𝑟

𝑘=1

𝑛𝑟

𝑖=1
                              (5) 

where nr is the total number of records in the list and act 

is the total number of attributes in the list viz.12. The 

proposed algorithm calculates the average cosine similarity 

of each cluster by using eq. (6) and passes it to the fuzzy 

inference engine. 

 

𝐶𝑜𝑠𝑠𝑖𝑚 =  
𝐶𝐴𝑖.𝐶𝐵𝑖

||𝐶𝐴𝑖||×||𝐶𝐵𝑖||
                                           (6) 

 
Fig. 2 Fuzzy Inference Engine 

 

 
Fig. 3 The Rule Engine 

 

 
Fig. 4 The Surface View 
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Fig. 5 Neural Network 

 
Fig. 6 Regression Propagation 

The categorized class is passed to multi-class classifier-

based Neural Networks, which incorporate the categorization 

based on the Levenberg propagation principle. The stopping 

criteria for such algorithmic architecture depend on multiple 

factors to attain the maximum training accuracy incorporated 

against the classes.  

1PC. Pseudo Code: Neural Training Engine 

2PC. Inputs: Separated Data (Sd), Attribute Set (As) ∶  Outputs: Trained architecture, Classification Metric 

3PC. TrainingData =  [ ]// Initialize a training data metric to empty // 

4PC. TrainingGroup = [ ] // Initialize training group // 

5PC. For each class is Sd  // Extract the total classes separated by fuzzy inference engine // 

6PC. TrainingData. Append(As. class. data) // Append data values of the selected class // 

7PC. TrainingGroup. Append(class) // Append Class value 

8PC. End For 

9PC. Initiate Neural Engine 

10PC. Total Epochs = 100; 

11PC. Training. validation = Mean Squared Error(MSE) // The training engine will be validated by MSE 

12PC. Propagationtype = Levenberg; 

13PC. Validationratio = .70 // Pick only 70 % data for the training to check result// 

14PC. PropagationLayer = 10 // Pick 10 layers of propagation network // 

15PC. Start Training( ) // Initiate Training // 

16PC. Validate(TestData, TrainedData); 

17PC. Stop; 

18PC. Return validation 
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Table 3. Regression values for proposed work based on multiple layers 

'TOTAL NUMBER OF LAYERS' 'R TRAINING' 'R VALIDATION' 'R TEST' 'OVERALL R' 

3 0.07456009 0.1745015 0.10126737 0.11677632 

5 0.19420026 0.1820251 0.41423499 0.26348678 

8 0.09513968 0.35115863 0.25978745 0.23536192 

10 0.28017973 0.47102497 0.44884813 0.40001761 

13 0.2976054 0.75503402 0.6566659 0.56976844 

15 0.72530482 0.14197195 0.70718684 0.5248212 

18 0.1582384 0.01500296 0.78464565 0.31929567 

20 0.03594338 0.80671423 0.65133264 0.49799675 

23 0.38844263 0.61567457 0.69300804 0.56570841 

25 0.56002239 0.76794695 0.18561648 0.50452861 

Table 4. Class Accuracy 

Total number of 

objects/software 

projects 

Class accuracy 

proposed  

c1 

Class Accuracy 

proposed  

c2 

Class accuracy 

proposed  

c3 

Class accuracy 

c1 

Naïve Bayes 

Class accuracy 

c2 

Naïve Bayes 

Class accuracy 

c3 

Naïve Bayes 

92 91.1033852 91.6599947 90.5565415 89.233 89.553 89.665 

150 92.6702589 93.6214411 91.6810141 90.7424692 90.0874233 90.4895898 

300 92.8118828 94.3605123 92.5298893 91.8233403 90.7516069 90.9717328 

500 93.7541031 94.591133 94.0890525 92.644946 92.7131661 91.1343712 

1000 94.3853899 95.2952678 96.0301499 94.2547288 94.1665498 91.4408218 

2000 96.3630656 97.1531224 97.3409622 95.0891116 96.1162956 92.739186 

3000 96.6751047 98.1890338 98.7075347 95.3610846 97.2650536 94.1458567 
  

The proposed methodology illustrates the working and 

training mechanism of Neural Networks based on the 

architecture that is proposed. The input layer contains 12 

feature vector values that have been propagated under 

various layers of propagation. As shown in Figure 5, the 

neural network propagates for 10 layers producing one 

output architecture. In order to validate the propagation, 

regression is analyzed to finally sum up and check what layer 

count satisfies the overall training architecture. The 

regression is divided into three segments: the R-value for 

training, validation and testing. The analysis regression value 

is computed by performing the mean of all the regression 

values, as shown in Fig 6. The regression values for the 

propagation are demonstrated in Table 3. The propagation 

network has been supplied with a total of 1000 epochs. The 

network does not need to run for all provided epochs; if the 

gradient of the data satisfaction is attained before it reaches 

the maximum supplied epochs, it will stop the training. The 

network propagation stopped at 8 iterations as validation 

checks were completed. After the 8th iteration, it will 

propagate backwards to check the best possible regression 

value. As illustrated in Table 4, the proposed training for 

supplied data input values gains a maximum R value with 13 

layers; hence, the training architecture generated at the 13th 

layer will be used for classification. 

4. Result and Discussion  
The evaluation of the proposed technique is done by 

comparing the performance with the state of art technique 

classifiers, namely Neural Network, Naïve Bayes and multi-

class SVM. 

 The trained architecture is classified and evaluated for 

two parameters, namely class accuracy and overall 

Classification Accuracy, by using (7) and (8). 

 

Classification Accuracy =
No of identified objects in classi

Total number of objects in classi
    (7) 

 

Overall Accuracy
∑ Classification Accuracy.

cs
i=1

cs
     (8)      

 

It is evident from Figure 1 that the proposed algorithm 

outcasts the existing architecture by a significant margin. 

Ninety-two records have been utilized from the NASA 

dataset, and the rest have been generated through the Monte 

Carlo simulation. As the training data increases, the 

classification rate increases due to more availability of the 

records to the training mechanism. Though the comparative 

algorithms also perform well over newly simulated and 

PROMISE data, they are significantly behind by a maximum 

margin of 6% in the overall accuracy comparison. The 

maximum attained overall accuracy through the proposed 

algorithm is 98%. The validation for a number of layers has 

been evaluated using the regression value R, which has been 

evaluated for all aspects, including training, validation and 

testing. For the supplied data set, the best regression value 

was attained on the 13th layer; hence, the architecture 

generated at the 13th layer has been utilized for training and 

classification. A bifurcation of 70-30 in training and test data 

is insulated to further check the overall classification 

accuracy. The obtained overall accuracy is shown in Fig. 7. 

The overall evaluated accuracy of the proposed model is 

98% for a set of 3000 records in the list.  
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Fig. 7 Overall Accuracy vs total number of projects 
 

Fig. 8 Comparative Analysis of Accuracy with the existing Techniques 

The minimum attained accuracy is 91% for the proposed 

algorithm system, whereas the other state of art techniques, 

including Neural Network, Naïve Bayes and multi-class 

SVM, remain under 95% even for the highest amount of 

training data. The classification accuracy has been compared 

with the existing techniques for validation, as shown in Fig 

8. The proposed model's outcomes show an improvement of 

about 13% and 9.7% compared to Naïve Bayes [18] and 

Random Forest [18]. However, the proposed approach 

compared to Naïve Bayes improves by 3%. However, the 

existing technique [28] proposed ensemble learning for 

software test effort estimation but was limited to providing 

the desired results with an accuracy of about 95.31%.  
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Thus, consistent and prominent results have been 

obtained. The proposed technique is improved by 0.7% from 

the existing studies. Future work on this subject may focus 

on the possibility of using ML techniques and refining the 

model and drivers of the COCOMO model, both of which 

could improve the model's predictive performance and lower 

the error rate for its prediction. 

5. Conclusion  
The paper presents a machine learning-oriented solution 

to the size estimation utilizing a k-means algorithm 

supported by a fuzzy inference engine. The separated data is 

passed to a multi-class classifier model, illustrated based on 

the Levenberg propagation model, which propagates the data 

into multiple layers against the size labels. The sizes have  

been evaluated using two propagation parameters, namely, 

class accuracy and overall accuracy. The overall accuracy is 

the arithmetic mean of the class accuracies. The propagation 

architecture utilized the PROMISE dataset and extended the 

dataset using Monte Carlo simulation. The proposed work 

used Levenberg-oriented training and classification 

mechanism as the primary classifier; hence the illustration of 

the selection has been provided in the proposed work section. 

The validation for a number of layers has been evaluated 

using the regression value R, which has been evaluated for 

all aspects, including training, validation and testing. For the 

supplied data set, the best regression value has been attained 

on the 13th layer; hence, the architecture generated at the 

13th layer has been utilized for training and classification. A 

bifurcation of 70-30 in training and test data has been 

insulated to check the overall classification accuracy further. 

The overall evaluated accuracy of the proposed model is 

98% for a set of 3000 records in the list. The minimum 

attained accuracy is 91% for the proposed algorithm system, 

whereas the other state of art techniques, including Neural 

Network, Naïve Bayes and multi-class SVM, remain under 

95% even for the highest amount of training data. The 

accuracy of the proposed model has been improved by 9.7% 

compared to the state-of-the-art techniques. 
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