
International Journal of Engineering Trends and Technology Volume 70 Issue 12, 138-146, December 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I12P215 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimizing Design of Software Size Estimation model

using Neural Network

Manisha1, Rahul Rishi2, Sonia Sharma3, Renu4

1,2,3UIET, Maharshi Dayanand University, Rohtak, India
4Gaur Brahman Degree College, Rohtak, India

1Corresponding Author : mvmanishavatsa@gmail.com

Received: 19 August 2022 Revised: 13 November 2022 Accepted: 25 November 2022 Published: 24 December 2022

Abstract - Size Estimation has always been an area of interest in the software industry. Estimating size directly could lead to

the calculation of storage identities and costs. This paper proposes a neural network-based size estimation method which

utilizes the architecture of Machine Learning. In this paper, the k-means algorithm is used to divide the data into multiple

segments, which is further utilized by the Fuzzy logic-based inference engine to generate the class labels. In this model, the

NASA-based PROMISE Dataset has been utilized, and there is no class label containing the project size. In order to validate

the class label, the collected data is passed to a multi-class classifier which uses the Levenberg principle. The proposed model

is evaluated using quantitative parameters, namely the class and overall class accuracy, and is compared with other

classification architectures. The accuracy of the proposed model has been improved by 9.7% in comparison with other

techniques and 0.7% in comparison to existing studies.

Keywords - Class accuracy, Fuzzy logic, Machine learning, Neural network, Size estimation.

1. Introduction
Size estimation has always attracted the research world

and the real-time software industry. NASA conducted an

experiment in which 93 projects were evaluated based on

different aspects of development, including the

programmer’s ability and processing knowledge, the total

number of human resources applied to complete the project,

etc. The aggregated data is presented in terms of a dataset

known as the PROMISE dataset. It has been widely used in

Software Engineering by a lot of researchers [1-3]. The

dataset represents OOM metrics and computes the overall

effort of the project calculated utilizing metrics. The

categorization of the metrics has been done on the base of

software evolution. The procedure of evolving a software

product utilizing software engineering standards and systems

is alluded to as software evolution. It incorporates the

introductory improvement of software and its upkeep and

upgrades until aved programming product is created,

fulfilling development begins from the necessity collecting

process. After which, engineers make a prototypical model of

the expected software design and reveal it to the clients to get

their input in the early phase of software product

development. The clients recommend changes, on which a

few sequential redesigns and upkeep also continue evolving.

This procedure changes to the first software till the coveted

software is succeeded [8]. The software program is

expensive and time-consuming to develop and has a high

cost in commercial, informational systems. The amount of

investment in software programs is estimated to be close to

$200 billion per annum. Boehm suggested thoroughly

performing cost and benefit analysis before providing the

required resources for the software project [9-10]. The

correctness of software investment decisions is directly

proportional to the quality of the software. If the cost and

effort for the project are underestimated, such projects are

liable to be abandoned mid-way. This withdrawal of the

project is either owing to high costs which were not

estimated at an early stage or due to the wrong estimation of

time and related resources required. If the cost and effort for

the project are overestimated, such overestimation may

increase the project cost by putting less effort into

programmers to be innovative.

Moreover, in these cases, the potential projects will likely

be rejected due to high costs or time. Software size

estimation is crucial for both software designers and ends

users [11-15]. They can be used to create requests for

proposals, contract negotiations, planning, and management.

Underestimating the cost and effort may result in

management quickly approving the project, and if the budget

is increased, the project may fail, as it has in the past, with

underdeveloped functions and poor quality. Overestimation

may result in various resources being dedicated to the

project, resulting in job losses [16-20]. Moreover, research

on machine learning and soft computing techniques with

software effort estimation was authored until early 2007.

Earlier, authors provided a summary of effort estimation

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Manisha et al. / IJETT, 70(12), 138-146, 2022

139

using machine learning techniques that will be useful for

researchers in offering future direction in the field of

machine learning adoption in software effort estimation [21-

23].

The limitation of the current study is precise designing

and efficient resource allocation in line with the effort

estimation of software for different projects. However, data

mining and ML techniques provide a way for effort

estimation but are limited in providing the desired results due

to problems in fine-tuning and classification errors.

Furthermore, the main problem in conventional studies is

the realistic estimation of cost since it is used to determine

the resources required for the project and at what intervals

each particular resource will be allocated to each activity, as

well as to classify, rank, and arrange development projects in

terms of the overall business strategy. It is simple to observe

and evaluate the impact of changes, and it is simple to replan.

Connecting the size to effort could be a dicey situation;

hence, based on the evaluated effort, this paper categorizes

the size into three categories and modifies the training

architecture using Neural Network.

2. Related Work
Machine learning-based systems are known to be

dynamically adaptable to any type of data, and researchers

are eager to estimate the effort more precisely. Numerous

strategies fail to effectively achieve the development goal for

test applications that give the quick evolution of software

products [27]. This research proposes a unique methodology

to estimate the effort based on ensemble learning and feature

reduction. The feature ranking and selecting mechanism

allows the practitioners to estimate effort using criteria like

size and cost using the suggested method [28]. Simulated

results using the suggested technique and the COCOMO II

dataset are encouraging. Much work has been discussed in

Table 1, which shows the comparative analysis of the

methodology used by different researchers from 2018 to

2022. The limitation of individual work has also been

mentioned. Various authors worked on techniques like Deep

Belief Networks (DBN), Swarm Optimization, Deep Neural

Networks, use cases and Actors, Regression, etc., to analyze

different data sets for software estimation. Different

techniques and work methodologies helped the authors attain

the research's valuable target and explain their findings in the

paper. This table presented a perspective of the use of

machine learning in software estimation utilising various

methodologies implemented by different authors, which is

highly helpful for academics to provide the future path in the

prescribed field. The comparison of different techniques,

research gaps, and limitations of these techniques is also

shown in the table below.

Table 1. Comparative Analysis of Related Work

Author Technique Work and Methodology Limitation / Research Gap

Kaushik et al. in

2022

Deep Belief Network

(DBN) along with the

swarm-based Whale

Optimization Algorithm

(WOA)

A technique for software estimation

considering the datasets COCOMO81,

MAXWELL, CHINA, and NASA93 is

discussed. Restricted Boltzmann Machine and

Deep Belied Network (DBN) have been

constructed, and DBN was estimated with

WOA for fine-tuning.

The main limitation is the

use of the traditional

dataset. Parameters need to

be optimized.

Khan et al.

(2021)

Grey Wolf Optimizer

(GWO) and Strawberry

(SB), along with the

DNN

The software error estimation was done to

solve the multi-variable problem, and nine

benchmark functions were used for

comparison. The weight function had been

levied in addition.

There is a need for

improvement in training,

and therefore research

efforts are required using

Deep Learning

architectures.

R Silhavy et al.

2021
Actors and Use cases

Estimating software system’s boundaries and

derivation of software system actors and

finding alternative use cases. The authors also

focused on stepwise regression.

Testing window functions

need to employ, and

different project sizes need

to be investigated

M Daud, and

AA Malik in

2021

Analysis-to-Design

Adjustment Factors

(ADAFs)

The practical and empirical implications

validate the applicability of determining the

different metrics related to the class diagram

along with adjustment factors.

There is a need to

investigate the impact of

frameworks designed using

ADAFs

A.Banimustafa

in 2018

Naïve Bayes, Logistic

Regression and Random

Forests.

NASA and COCOMO benchmarks that

covered 93 projects and produced models were

tested to evaluate the Precision, Recall, and

classification accuracy.

The potential of data mining

ML techniques is to be

explored, and estimation

accuracy needs to be

enhanced.

Manisha et al. / IJETT, 70(12), 138-146, 2022

140

Surendiran 2019

Development of secure

software estimation

during the software

development life cycle.

The maximum software efforts estimated to

track the design and analyzing the risk using

the different techniques

The study is limited to

identifying a secure

system's key parameters and

development.

N. Qomariah et

al. 2020

Multiple Linear

regression through

associate research

Quantitative research for statistical data

analysis and validity tests is conducted to

determine the customer satisfaction rate.

The regression coefficient

approaches 0.290 for

service quality which limits

the dependent variable.

S. Chhabra et al

2020

fuzzy logic-based

COCOMO using PSO

PSO algorithm is used to compute the

magnitude of relative error. The evaluation

using COCOMO NASA had been considered

to validate the proposed model.

The study is limited to

validating the evaluation

metrics for different

datasets.

A. Ardiansyah et

al 2022

PSO along with chaotic

inertia weight map.

Agile and COCOMO case sets were used, and

two PSO variants were employed for software

estimation. The learning strategy applied was

used to enhance the search mechanism.

The generation numbers

were limited, and there is a

need to enhance the

performance of the

proposed system.

N. A. Zakaria et

al 2021

PSO to optimize the

cost estimation model

PSO was employed in conjunction with a

hybrid model of SVM, Linear Regression, and

Random Forest to optimize the parameters.

The study is limited to

optimize the COCOMO

parameters as there is still a

need for improvement to

evaluate all attributes

Table 2. Fuzzy Rule Set

𝑰𝒇𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝒍𝒂𝒃𝒆𝒍> 30% Margin very high software size is not beneficial as a project

Else if 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝒍𝒂𝒃𝒆𝒍10% Margin and

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅𝒍𝒂𝒃𝒆𝒍 <30% Margin

Moderate in software size and manageable if handled

carefully

If Classified Label< 10% Margin Low in computation and highly profitable as a project

Fig. 1 A Flow Chart for Proposed Architecture

Start

Upload Promise

Dataset

Total Attributes = 12 Apply K-

means to separate data into three

categories of size.

Evaluate Similarity and Calculate

COCOMO – effort estimates.
Create Rule Engine

If rule is

satisfied
Pass to training Classify and Prediction

Validate
Stop

Yes

No

Manisha et al. / IJETT, 70(12), 138-146, 2022

141

3. Proposed Technique and Methodology
The flow chart for the proposed architecture of size

estimation is depicted in Fig 1. The K-Means algorithm is

applied to a total of 12 attributes of the PROMISE dataset,

and similarity is calculated using COCOMO-2 effort. A

Fuzzy rule engine is created, as shown in Table 2, which is

further evaluated to see if the rule is satisfied or not. If the

rule is satisfied, it is passed to the training module, which

subsequently classifies and predicts. In order to validate the

class label, the collected data is passed to a multi-class

classifier, which uses the Levenberg principle to validate.

The proposed model is evaluated using quantitative

parameters, namely the class and overall class accuracy, and

is compared with other state-of-the-art classification

architectures.

The proposed methodology is divided into binary

segments Seg 0 and Seg 1. Seg 0 applied Machine Learning

(ML) for the evaluation of size labels

Labels ϵ {HighSize(0), ModerateSize(1), Lowsize(2)} (1)

The identified class is set to be (0), i.e. High Size if the

co-relation between the group elements is high and the

predicted effort is also high. In order to predict the effort of

the software project, the proposed methodology uses

COCOMO-2 Effort estimation architecture.

1. Development Effort

2. A basic version of the Basic COCOMO effort

equation is as follows:

MM = a ∗ KDSIb (2)

Which is based on MM - man-month / person-month /

staff-month is one month of effort by one person.

3. Efforts and Development Time (TDEV)

Effort = a ∗ (KLOCb) ∗ (∏ EMjj) (3)

TDEV = 2.5 ∗ MMc (4)

The coefficients a, b and c depend on the development

mode. A fuzzy inference engine is designed to separate the

class labels, as demonstrated in Fig. 2, 3, and 4. In order to

pass the data with ground truth values, the inference engine

is supplied with cosine similarity and calculated effort of the

groups. The data is separated utilizing the k-means algorithm

by passing the 12-attribute set to the separation mechanism.

The K-means is known for its placement architecture of the

objects to its related cluster based on the distance evaluated

using eq. (5) [6-8].

𝑑 = ∫ ∫ ∫ (𝑎𝑖𝑗 − 𝑎𝑖𝑘)^2
𝑎𝑡𝑐

𝑗=1

𝑛𝑟

𝑘=1

𝑛𝑟

𝑖=1
 (5)

where nr is the total number of records in the list and act

is the total number of attributes in the list viz.12. The

proposed algorithm calculates the average cosine similarity

of each cluster by using eq. (6) and passes it to the fuzzy

inference engine.

𝐶𝑜𝑠𝑠𝑖𝑚 =
𝐶𝐴𝑖.𝐶𝐵𝑖

||𝐶𝐴𝑖||×||𝐶𝐵𝑖||
 (6)

Fig. 2 Fuzzy Inference Engine

Fig. 3 The Rule Engine

Fig. 4 The Surface View

Manisha et al. / IJETT, 70(12), 138-146, 2022

142

Fig. 5 Neural Network

Fig. 6 Regression Propagation

The categorized class is passed to multi-class classifier-

based Neural Networks, which incorporate the categorization

based on the Levenberg propagation principle. The stopping

criteria for such algorithmic architecture depend on multiple

factors to attain the maximum training accuracy incorporated

against the classes.

1PC. Pseudo Code: Neural Training Engine

2PC. Inputs: Separated Data (Sd), Attribute Set (As) ∶ Outputs: Trained architecture, Classification Metric

3PC. TrainingData = []// Initialize a training data metric to empty //

4PC. TrainingGroup = [] // Initialize training group //

5PC. For each class is Sd // Extract the total classes separated by fuzzy inference engine //

6PC. TrainingData. Append(As. class. data) // Append data values of the selected class //

7PC. TrainingGroup. Append(class) // Append Class value

8PC. End For

9PC. Initiate Neural Engine

10PC. Total Epochs = 100;

11PC. Training. validation = Mean Squared Error(MSE) // The training engine will be validated by MSE

12PC. Propagationtype = Levenberg;

13PC. Validationratio = .70 // Pick only 70 % data for the training to check result//

14PC. PropagationLayer = 10 // Pick 10 layers of propagation network //

15PC. Start Training() // Initiate Training //

16PC. Validate(TestData, TrainedData);

17PC. Stop;

18PC. Return validation

Manisha et al. / IJETT, 70(12), 138-146, 2022

143

Table 3. Regression values for proposed work based on multiple layers

'TOTAL NUMBER OF LAYERS' 'R TRAINING' 'R VALIDATION' 'R TEST' 'OVERALL R'

3 0.07456009 0.1745015 0.10126737 0.11677632

5 0.19420026 0.1820251 0.41423499 0.26348678

8 0.09513968 0.35115863 0.25978745 0.23536192

10 0.28017973 0.47102497 0.44884813 0.40001761

13 0.2976054 0.75503402 0.6566659 0.56976844

15 0.72530482 0.14197195 0.70718684 0.5248212

18 0.1582384 0.01500296 0.78464565 0.31929567

20 0.03594338 0.80671423 0.65133264 0.49799675

23 0.38844263 0.61567457 0.69300804 0.56570841

25 0.56002239 0.76794695 0.18561648 0.50452861

Table 4. Class Accuracy

Total number of

objects/software

projects

Class accuracy

proposed

c1

Class Accuracy

proposed

c2

Class accuracy

proposed

c3

Class accuracy

c1

Naïve Bayes

Class accuracy

c2

Naïve Bayes

Class accuracy

c3

Naïve Bayes

92 91.1033852 91.6599947 90.5565415 89.233 89.553 89.665

150 92.6702589 93.6214411 91.6810141 90.7424692 90.0874233 90.4895898

300 92.8118828 94.3605123 92.5298893 91.8233403 90.7516069 90.9717328

500 93.7541031 94.591133 94.0890525 92.644946 92.7131661 91.1343712

1000 94.3853899 95.2952678 96.0301499 94.2547288 94.1665498 91.4408218

2000 96.3630656 97.1531224 97.3409622 95.0891116 96.1162956 92.739186

3000 96.6751047 98.1890338 98.7075347 95.3610846 97.2650536 94.1458567

The proposed methodology illustrates the working and

training mechanism of Neural Networks based on the

architecture that is proposed. The input layer contains 12

feature vector values that have been propagated under

various layers of propagation. As shown in Figure 5, the

neural network propagates for 10 layers producing one

output architecture. In order to validate the propagation,

regression is analyzed to finally sum up and check what layer

count satisfies the overall training architecture. The

regression is divided into three segments: the R-value for

training, validation and testing. The analysis regression value

is computed by performing the mean of all the regression

values, as shown in Fig 6. The regression values for the

propagation are demonstrated in Table 3. The propagation

network has been supplied with a total of 1000 epochs. The

network does not need to run for all provided epochs; if the

gradient of the data satisfaction is attained before it reaches

the maximum supplied epochs, it will stop the training. The

network propagation stopped at 8 iterations as validation

checks were completed. After the 8th iteration, it will

propagate backwards to check the best possible regression

value. As illustrated in Table 4, the proposed training for

supplied data input values gains a maximum R value with 13

layers; hence, the training architecture generated at the 13th

layer will be used for classification.

4. Result and Discussion
The evaluation of the proposed technique is done by

comparing the performance with the state of art technique

classifiers, namely Neural Network, Naïve Bayes and multi-

class SVM.

 The trained architecture is classified and evaluated for

two parameters, namely class accuracy and overall

Classification Accuracy, by using (7) and (8).

Classification Accuracy =
No of identified objects in classi

Total number of objects in classi
 (7)

Overall Accuracy
∑ Classification Accuracy.

cs
i=1

cs
 (8)

It is evident from Figure 1 that the proposed algorithm

outcasts the existing architecture by a significant margin.

Ninety-two records have been utilized from the NASA

dataset, and the rest have been generated through the Monte

Carlo simulation. As the training data increases, the

classification rate increases due to more availability of the

records to the training mechanism. Though the comparative

algorithms also perform well over newly simulated and

PROMISE data, they are significantly behind by a maximum

margin of 6% in the overall accuracy comparison. The

maximum attained overall accuracy through the proposed

algorithm is 98%. The validation for a number of layers has

been evaluated using the regression value R, which has been

evaluated for all aspects, including training, validation and

testing. For the supplied data set, the best regression value

was attained on the 13th layer; hence, the architecture

generated at the 13th layer has been utilized for training and

classification. A bifurcation of 70-30 in training and test data

is insulated to further check the overall classification

accuracy. The obtained overall accuracy is shown in Fig. 7.

The overall evaluated accuracy of the proposed model is

98% for a set of 3000 records in the list.

Manisha et al. / IJETT, 70(12), 138-146, 2022

144

Fig. 7 Overall Accuracy vs total number of projects

Fig. 8 Comparative Analysis of Accuracy with the existing Techniques

The minimum attained accuracy is 91% for the proposed

algorithm system, whereas the other state of art techniques,

including Neural Network, Naïve Bayes and multi-class

SVM, remain under 95% even for the highest amount of

training data. The classification accuracy has been compared

with the existing techniques for validation, as shown in Fig

8. The proposed model's outcomes show an improvement of

about 13% and 9.7% compared to Naïve Bayes [18] and

Random Forest [18]. However, the proposed approach

compared to Naïve Bayes improves by 3%. However, the

existing technique [28] proposed ensemble learning for

software test effort estimation but was limited to providing

the desired results with an accuracy of about 95.31%.

82

84

86

88

90

92

94

96

98

92 150 300 500 1000 2000 3000

O
v

er
a

ll
 A

cc
u

ra
cy

Total Number of Projects

Overall Accuracy Proposed Overall Accuracy Naïve Bayes Overall Accuracy SVM

75

80

85

90

95

100

Proposed

Technique

Proposed using

Naïve Bayes

Naïve Bayes Random Forest Existing technique

[28]

Accuracy (%)

Manisha et al. / IJETT, 70(12), 138-146, 2022

145

Thus, consistent and prominent results have been

obtained. The proposed technique is improved by 0.7% from

the existing studies. Future work on this subject may focus

on the possibility of using ML techniques and refining the

model and drivers of the COCOMO model, both of which

could improve the model's predictive performance and lower

the error rate for its prediction.

5. Conclusion
The paper presents a machine learning-oriented solution

to the size estimation utilizing a k-means algorithm

supported by a fuzzy inference engine. The separated data is

passed to a multi-class classifier model, illustrated based on

the Levenberg propagation model, which propagates the data

into multiple layers against the size labels. The sizes have

been evaluated using two propagation parameters, namely,

class accuracy and overall accuracy. The overall accuracy is

the arithmetic mean of the class accuracies. The propagation

architecture utilized the PROMISE dataset and extended the

dataset using Monte Carlo simulation. The proposed work

used Levenberg-oriented training and classification

mechanism as the primary classifier; hence the illustration of

the selection has been provided in the proposed work section.

The validation for a number of layers has been evaluated

using the regression value R, which has been evaluated for

all aspects, including training, validation and testing. For the

supplied data set, the best regression value has been attained

on the 13th layer; hence, the architecture generated at the

13th layer has been utilized for training and classification. A

bifurcation of 70-30 in training and test data has been

insulated to check the overall classification accuracy further.

The overall evaluated accuracy of the proposed model is

98% for a set of 3000 records in the list. The minimum

attained accuracy is 91% for the proposed algorithm system,

whereas the other state of art techniques, including Neural

Network, Naïve Bayes and multi-class SVM, remain under

95% even for the highest amount of training data. The

accuracy of the proposed model has been improved by 9.7%

compared to the state-of-the-art techniques.

References
[1] Anupama Kaushik, Niyati Singal, and Malvika Prasad, “Incorporating Whale Optimization Algorithm with Deep Belief Network for

Software Development Effort Estimation,” International Journal of System Assurance Engineering and Management, pp. 1637–1651,

2022. Crossref, https://doi.org/10.1007/s13198-021-01519-8

[2] Noor Azura Zakaria et al., “Optimization of COCOMO Model using Particle Swarm Optimization,” International Journal of Advances

in Intelligent Informatics, vol. 7, no. 2, pp. 177-187, 2021. Crossref, https://doi.org/10.26555/ijain.v7i2.583

[3] BaniMustafa A, “Predicting Software Effort Estimation using Machine Learning Techniques,” 2018 8th International Conference on

Computer Science and Information Technology (CSIT), IEEE, pp. 249-256, 2018. Crossref,
https://doi.org/10.1109/CSIT.2018.8486222

[4] Giuliano Antoniol, R. Fiutem, and Chris Lokan, “Object-Oriented Function Points: An Empirical Validation,” Empirical Software

Engineering, vol. 8, no. 3, pp. 225-254, 2003. Crossref, https://doi.org/10.1023/A:1024472727275

[5] Ashman R, “Project Estimation: A Simple Use-Case-Based Model,” IT professional, vol. 6, no. 4, pp. 40-44, 2004. Crossref,
https://doi.org/10.1109/MITP.2004.41

[6] Shashank Mouli Satapathy, Barada Prasanna Acharya, and Santanu Kumar Rath, “Early Stage Software Effort Estimation Using

Random Forest Technique Based on Use Case Points,” IET Software, vol. 10, no. 1, pp. 10-17, 2016. Crossref,

https://doi.org/10.1049/iet-sen.2014.0122

[7] Radek Silhavy, Petr Silhavy, and Zdenka Prokopova, “Using Actors and Use Cases for Software Size Estimation,” Electronics, vol. 10,

no. 5, p. 592, 2021. Crossref, https://doi.org/10.3390/electronics10050592

[8] Marriam Daud, and Ali Afzal Malik, “Improving the Accuracy of Early Software Size Estimation Using Analysis-to-Design

Adjustment Factors (ADAFs),” IEEE Access, vol. 9, pp. 81986-81999, 2021. Crossref,

https://doi.org/10.1109/ACCESS.2021.3085752

[9] Sonia Chhabra, and Harvir Singh, “Optimizing Design of Fuzzy Model for Software Cost Estimation using Particle Swarm

Optimization Algorithm,” International Journal of Computational Intelligence and Applications, vol. 19, no. 1, p. 2050005, 2020.
Crossref, https://doi.org/10.1142/S1469026820500054

[10] Barry Boehm, Chris Abts, and Sunita Chulani, “Software Development Cost Estimation Approaches—A Survey,” Annals of Software

Engineering, vol. 10, no. 1, pp. 177-205, 2000.

[11] Pinkashia Sharma, and Jaiteg Singh, “Systematic Literature Review on Software Effort Estimation using Machine Learning

Approaches,” 2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS), IEEE, pp. 43-47,

2017. Crossref, https://doi.org/10.1109/ICNGCIS.2017.33

[12] Wasiur Rhmann, Babita Pandey, and Gufran Ahmad Ansari, “Software Effort Estimation using Ensemble of Hybrid Search-Based

Algorithms Based on Metaheuristic Algorithms,” Innovations in Systems and Software Engineering, vol. 18, no. 2, pp. 309-319, 2022.
Crossref, https://doi.org/10.1007/s11334-020-00377-0

Manisha et al. / IJETT, 70(12), 138-146, 2022

146

[13] Manisha, Rahul Rishi, and Sonia Sharma, “Improved Data Segmentation Architecture for Early Size Estimation using Machine

Learning,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 738-747, 2022. Crossref,

https://doi.org/10.14569/IJACSA.2022.0130687

[14] Omar Hidmi, and Betul Erdogdu Sakar, “Software Development Effort Estimation Using Ensemble Machine Learning,” International

Journal of Computing Communications and Instrumentation Engineering, vol. 4, no. 1, pp. 143-147, 2017. Crossref,

https://doi.org/10.15242/IJCCIE.E0317026

[15] Siti Hajar Arbain, Nor Azizah Ali, and Noorfa Haszlinna Mustaffa, “Adoption of Machine Learning Techniques in Software Effort

Estimation: An Overview,” IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 551, no. 1, p. 012074,

2019. Crossref, https://doi.org/10.1088/1757-899X/551/1/012074

[16] Manisha, and Rahul Rishi, “An Enhanced Metaheuristic Based Cuckoo Search Algorithm for Software Size Estimation,” 2021 4th

International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), IEEE, pp. 526-520,

2021. Crossref, https://doi.org/10.1109/RDCAPE52977.2021.9633575

[17] Luigi Lavazza, and Sandro Morasca, “Empirical Evaluation and Proposals for Bands-Based COSMIC Early Estimation

Methods,” Information and Software Technology, vol. 109, pp. 108-125, 2019. Crossref, https://doi.org/10.1016/j.infsof.2019.02.002

[18] Muhammad Sufyan Khan et al., “Metaheuristic Algorithms in Optimizing Deep Neural Network Model for Software Effort

Estimation,” IEEE Access, vol. 9, pp. 60309-60327, 2021. Crossref, 10.1109/ACCESS.2021.3072380

[19] Ardiansyah Ardiansyah, Ridi Ferdiana, and Adhistya Erna Permanasari, “MUCPSO: A Modified Chaotic Particle Swarm Optimization

with Uniform Initialization for Optimizing Software Effort Estimation,” Applied Sciences, vol. 12, no. 3, p. 1081, 2022. Crossref,

https://doi.org/10.3390/app12031081

[20] Pandey Prateek, and Litoriya Ratnesh, “Fuzzy AHP-Based Identification Model for Efficient Application Development,” Journal of

Intelligent & Fuzzy Systems, vol. 38, no. 3, pp. 3359-3370, 2020. Crossref, https://doi.org/10.3233/JIFS-190508

[21] Akanksha Baghel, Meemansa Rathod, and Pradeep Singh, “Software Effort Estimation using Parameter-Tuned Models,” arXiv

preprint arXiv:2009.01660, 2020. Crossref, https://doi.org/10.48550/arXiv.2009.01660

[22] Vahid Khatibi Bardsiri, and Mahboubeh Dorosti, “An Improved COCOMO-based Model to Estimate the Effort of Software Projects,”

Journal of Advances in Computer Engineering and Technology, vol. 2, no. 2, 2016.

[23] Manisha, and Rahul Rishi, “Early Size Estimation using Machine Learning,” 2021 8th International Conference on Computing for

Sustainable Global Development (INDIACom), IEEE, pp. 757-762, 2021.

[24] Daniel Spikol, et al., “Supervised Machine Learning in Multimodal Learning Analytics for Estimating Success in Project-Based

Learning,” Journal of Computer Assisted Learning, vol. 34, no. 4, pp. 366-377, 2018. Crossref, https://doi.org/10.1111/jcal.12263

[25] Nurul Qomariah, Achmad Fahrurrozi, and Yusron Rozzaid, “Efforts to Increase Retail Customer Satisfaction,” SSRG International

Journal of Economics and Management Studies, vol. 7, no. 7, pp. 23-29, 2020. Crossref,

https://doi.org/10.14445/23939125/IJEMS-V7I7P105

[26] R. Surendiran, “Secure Software Framework for Process Improvement,” SSRG International Journal of Computer Science and

Engineering, vol. 3, no. 1, pp. 19-25, 2016. Crossref, https://doi.org/10.14445/23488387/IJCSE-V3I12P105

[27] Hanan Qassim Jaleel, “Testing Web Applications,” SSRG International Journal of Computer Science and Engineering, vol. 6, no. 12,

pp. 1-9, 2019. Crossref, https://doi.org/10.14445/23488387/IJCSE-V6I12P101

[28] K. Eswara Rao, and G. Appa Rao, “Ensemble Learning with Recursive Feature Elimination Integrated Software Effort Estimation: A

Novel Approach,” Evolutionary Intelligence, vol. 14, no. 1, pp. 151-162, 2021. Crossref, https://doi.org/10.1007/s12065-020-00360-5

https://www.scopus.com/sourceid/21100867241

