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Abstract - Extensive research has been conducted in the domain of automatic grammatical error correction and detection in
English and other high-resource languages. However, research in the expanse of Grammatical Error Detection and Correction
(GEC) tasks has been very limited in Indian languages. This research uses enhanced TextGCN to perform a grammatical error
detection task in Malayalam. It is the first-ever such work in the Malayalam language. This task is evaluated by comparing the
results of improved text graph convolutional networks (Text GCN) with TextGCN, LSTM, BiLSTM and CNNLSTM. The results
of cross-validation data and unseen sample test data are presented. A training dataset of 200k sentences was created, and 20%
of the data was taken as the validation set. Improved Text GCN achieved an accuracy of 90.41% on unseen test data compared

to other architectures. This is the first attempt to create a Malayalam grammar checker. Preliminary results from this work show

that a graphical representation of text data can be used to check the grammatical correctness of Malayalam text.

Keywords - Error detection, Malayalam grammar, Malayalam corpus, Malayalam natural language processing, Text graph

convolutional networks.

1. Introduction

A language's syntactic rules and morphology are
governed by its grammar [1]. The incorrect usage of
prepositions, articles, conjunctions, tenses etc., commonly
causes syntactic errors in English. On the other hand, mistakes
in affixation, compound words, and using the plural in noun
phrases result in morphological errors. Typographical errors,
misuse of punctuation, and syntactic and morphological errors
also contribute to grammatical and syntactic errors.

A grammar checker is defined as a program that tries to
verify the grammatical correctness of a given text's
morphological, syntax and semantic correctness. Creating a
complete grammar checker is daunting since creating a
complete formal grammar for natural language is complex. A
formal grammar constructed for natural language may not be
able to represent the entire language because there will be
exceptions regarding the usage of grammar in real life
scenarios.

Automated grammar checkers are considered writing aid
for language learners. The primary function of a grammar
checker is to identify incorrect sentences from a text and
propose corrections along with a possible linguistic
explanation [2]. A grammar checker should deal with various
kinds of errors, including context-independent errors, context-
dependent errors, punctuation mistakes, style problems,

graphical problems [3] etc. Most grammar checkers designed
to date address only a subset of these errors. As explained by
Uszkoreit (quoted by Hein [4]), the development of a grammar
checker is a four-step process.

e The first step is the detection phase, which involves
identifying possible ungrammatical segments.

e The second step involves a recognition phase, where the
nature of the error is identified based on localization and
constraint violation (e.g., subject-verb disagreement).

e Next is the diagnosis step, which identifies the possible
sources of errors to form a basis for correction.

e The final step is grammar correction by finding,
constructing, ordering, or substituting alternatives.

Making rules for Malayalam is challenging because of the
language's open word order. A data-driven approach is more
suitable for performing language processing tasks in
Malayalam. The lack of Malayalam corpora for tasks hampers
the development of language processing for the Malayalam
language. Another issue that Malayalam language processing
researchers go against is a lack of standardized test data. This
work is a pioneering effort in Malayalam grammar checking.
Here, a data-driven method is applied, and the training and test
data sets were built especially for this task. By building a
corpus and a test set, this study attempts to serve as a
foundation for the Malayalam GEC tasks.
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A grammar checker for the Malayalam language using
improved Text Graph Convolutional Networks is presented in
this research. A training dataset with 200,000 sentences
labeled as grammatical or ungrammatical was created. The
trained model was tested on an unseen data set of 500
sentences. The test data was obtained by manually collecting
the sentences from language learners, translating some of the
sentences in the Corpus of Linguistic Acceptability (CoLA)
[5], and collecting various competitive exam questions. In this
paper, each Malayalam word or sentence is followed by its
pronunciation in English as well as its English meaning.

2. Related Work

In this section, the various approaches used for
grammatical error detection and correction (GEC), different
grammar checkers available for Indian languages and a bird's
eye view of Malayalam grammar and the common errors that
occur in the Malayalam language are discussed.

2.1. GEC Approaches

There are many existing approaches for developing a
grammar checker. They are broadly classified into rule-based
and data-driven approaches [6]. The earliest grammar-
checking tools, like Writer's Work Bench, were based on
string matching [7]. Later systems developed in the early
1990s involved linguistic analysis and used rule-based
parsers. The advent of the new millennium saw the emergence
of data-driven approaches for grammar checking. Data-driven
techniques use methods like classification, language models
(LM), statistical machine translation (SMT) and Web-based
techniques for error checking.

LM [1] methods model the data from well-formed text
and detect errors based on this model. Classification [1,8] and
SMT [1,9] methods introduce artificial errors and use error-
annotated data and well-formed text to construct a grammar
checker. Automatically generated ungrammatical data or error
corpora are used for the training and evaluation of the system.
The availability of corpora like Cambridge Learner Corpus
(CLC), Chinese Learner English Corpus (CLEC) and similar
facilitated the development of these machine learning-based
grammatical error checkers. Data-driven approaches gained
further momentum after introducing the GEC shared task at
the Conference on Computational Natural Language Learning
(CoNLL). GEC-shared tasks aim to correct grammatical
errors instead of just detecting the grammatical errors. With
the advent of deep learning, neural machine translation (NMT)
[10,11] based GEC systems have achieved state-of-the-art
grammatical error detection and correction results. Machine
translation-based approaches need massive parallel corpora to
train the model.

Deep learning techniques have assisted in developing
generic end-to-end systems for various natural language
processing tasks. State-of-the-art results are being produced
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for NLP tasks in English [12] because of the massive
availability of English data. Grammar checkers are available
for various languages like Chinese [13,14], French [15],
Arabic [16] etc. Many of the Indian languages are free word
order languages and are morphologically rich. However,
Dravidian languages like Malayalam are highly agglutinative.
The unavailability of large datasets in Indian languages also
poses a barrier to creating tools for various NLP tasks.

2.2. Grammar Checkers in Indian Languages

A few grammar checkers have been developed for Indian
languages like Hindi, Punjabi, and Bangla. CDAC has
developed a grammar checker for Hindi that handles Noun
Phrase Concord, Verb Phrase Concord, NP - VP Concord. A
rule-based Hindi grammar checker was developed by Bopche
and Dhopavakar [36], which performs POS tagging using
morphological analysis on a Hindi text. It compares the tagged
sentence against a set of predefined grammatical patterns.
Punjabi grammar checker [18] is the first system developed
for an Indian language. This system uses rule-based methods
for part-of-speech tagging, phrase chunking, and a whole form
lexicon for morphological analysis. Using the grammatical
data displayed by POS tags as feature value pairs, agreement
checks are carried out at the phrase and clause levels. In
literary style Punjabi writings, the system can identify and
recommend corrections for various grammatical problems that
may be brought on by a lack of agreement, the wrong word
order in different phrases, etc. A hybrid grammar checker for
Punjabi, based on rules and Machine learning, is implemented
in [19].

A spell and grammar checker for Tamil is explained in
[20]. It is developed by creating a dictionary, morphological
analyser and syntactic analyser. The morphological analyser
is built using finite state automata created after a detailed
analysis of Tamil grammar. This work resulted from the UGC-
sponsored project entitled" Spell and grammar checker for
Tamil".

A Natural Language generation approach for grammar
correction has been proposed by Bibekananada Kundu [21] for
Bangla. This method uses a morphological analyser to break
down an input sentence into a series of root words, which are
then over-generated to build a trellis by a morphological
synthesiser. The search space is then reduced using a linguistic
fitness function, and the best repair is chosen using a language
model. To ensure that the correct sentence is not too far from
the ungrammatical input sentence, word error rate and BLEU
score are employed. The burdensome linguistic restrictions
are designed using an HMM-based semi-supervised POS
tagger and a rule-based mal-rule filter. These hard constraints
help in avoiding inappropriate paths in the trellis. Statistical
methods involving n-gram analysis of words and POS tags
were used to develop the Bangla grammar checker by Alam et
al. [22].
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An LSTM-based grammar checker was proposed in [37]. Here
a Word2Vec embedding of the Kannada language is generated
and then trained using the LSTM layer.

The lack of large human-labeled annotated corpora for
Indian languages hinders the development of NLP
applications using machine learning techniques. As a result,
efficient and generalized solutions for NLP tasks like POS
taggers, morphological analysers, and grammar checkers are
not available for Indian languages.

2.3. Malayalam Grammar

Malayalam is a Dravidian language spoken in the
southern state of India, Kerala. It is a highly agglutinative
language with ‘free word order' and has the following flat
clause structure [24], shown in Fig. 1.

X X X 1%

Fig. 1 Malayalam Sentence Structure

In Malayalam, a simple sentence comprising a subject, an
object, and a verb has six possible permutations. Thus, the
potential word orders in Malayalam [24] are subject-object-
verb, subject-verb-object, verb-subject-object, verb-object-
subject, object-subject-verb, and object-verb-subject. The
verb, object, or subject may be absent from some sentences.
Examples of sentences with various word orders in Malayalam
are provided in Table 1.

Table 1. Different Word Orders in Malayalam

Word Order Malayalam Sentence English Translation
Subject- Object- |  @ROING Af)@ IS 1OQ 21N 1IN U IPTDT |Q@). He kicked his opponent
Verb [avan etiraliye cavittiyan vilttiyat.] down.
Subject- Verb- @NIM3 21015 16N o) 10983 10@ AUIPTT 1. He kicked his opponent

Object [avan cavittiyan etiraliye vilttiyat] down.
Verb- Subject- 21015 1@96n @ONUM o) 10983 10@ NPT Q. He kicked his opponent
Object [cavittiyan avan etiraliye vilttiyat.] down.
Verb- Object- 210151961 o) 100810 @MU (UIPTD 1Q®). He kicked his opponent
Subject [cavittiyan etiraliye avan vilttiyat.] down.
Object- Subject- | Q) 109816Q @RI 21N 1N AU IPTDT |Q@). He kicked his opponent
Verb [etiraliye avan cavittiyan vilttiyat.] down.
Object- Verb- af)® 1098310 210115 16N @AM (U1PTT 1@, His opponent was kicked
Subject [etiraliye cavittiyan avan vilttiyat.] down by him.
Subject- Object (OOEU@MDS OJGmO' Radha's money.
[radhayute panarh. ]
Subject- Verb (00@3 63_0.5’]' Raamu ran.
[ramu 6ti.]
- ©OWE® 6305 12)).
Object- Verb (radhaye 6¢iccu.£]53 (They)chased away Radha.

Subject and predicate can be created by compounding
multiple words. The subject can be a pronoun, a nominative
noun, a gerund, or a noun phrase. An in-depth discussion on
Malayalam grammar is given in [25]. Due to the absence of a
fixed word order, sentence components can be moved to the
beginning of the phrase or the end of the sentence. Adverbs
are usually placed before the verb and after the subject.
Sentence connectors like all&Yom [pinne] (and then),
o.Q)(TTﬂ:ng [ennittu] (and then), (GTO(SQ:IO(I’O) [appeal] (then),
@@ 1NOMD [atinal] (s0), GME® AN 2] [nere marice]
(on the other hand), ag)mﬂggo [ennitturn] (still), (Grc)(oﬂmg
al)06)A [atinu purame] (apart from that), nﬂ)(TT)O(Gﬁ [ennal]
(if s0), @06BR6YM @(0’16)096) [annane irikke] (meanwhile),
which take up the first position in a sentence are exceptions to
this rule.
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If an adverb is placed before the subject, it implies
emphasis for the adverb. In the sentence @O M3
BGlddh)o [avan nale peakurn] (He will leave tomorrow),
MIB)E3 [nale] (tomorrow) is moved to the left to obtain
MIIB @NUNG BalOdh)o [nale avan peakuri] (Tomorrow
he will leave). The second sentence emphasizes MJ6)83 [nale]

(tomorrow). The emphasis does not change when a noun or
adverbial phrase is moved to the right.

2.3.1. Malayalam Word Classes and Inflections

Malayalam has six-word classes - Nouns, Verbs,
Adjectives, Adverbs, Postpositions and Conjunctions. Nouns
are inflected for numbers. A singular noun is unmarked, while
a plural noun is marked using the suffix HHU3 [-kaL] (plural
suffix 's") or special plural marker @J6)(0 [-maare] (plural
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marker denoting belongs to) [26]. Nouns inflect for six
different cases - Nominative, Accusative, Dative, Sociative,
Locative, Instrumental and Genitive - using different bound
suffixes. Nouns do not inflect for gender except for third
person singular human pronouns and some human nouns that
may refer to male or female.

Verb morphology in Malayalam is complex. Malayalam
verbs inflect for tense, aspect, and mode. The number of finite
and non-finite grammatical word forms of a verb in
Malayalam is very large [25]. Most adverbs are
morphologically complex and derived from nouns or
adjectives.

Adjectives in Malayalam are of 5 types [27] and do not
undergo inflection. Postpositions in Malayalam are not
inflected, but their etymology is diverse. Conjunctions which
are also invariant, join a whole clause to the main clause.

2.3.2. Grammatical Errors in Malayalam
Word order has no bearing on a Malayalam sentence's
grammatical mistakes.

In Malayalam, mistakes are frequently brought on by
extraneous words, incorrect suffixes, etc. Conjugational errors
are the most common type of errors made by learners of
Malayalam. Similar terms must be conjugated in a sentence.

Another common error is the repetition of similar words
like oS [etant] (about), -630830 [olarh] (about),
M)Blo [milarh] (due to), -d»3(06IMo0O [karanarh] (due to) in
the same sentence. Such analogous words should be used only
once in a sentence. While using numerals as adjectives, plurals
of collective nouns should not be used. Collective nouns like
6)(U83630 [vellam] (water) should not be inflected with plural
suffixes.

Unnecessary usage of some terms like af)MNO@3[ennal]
(but), n@(TTﬂSJ [ennitt] (and then), ale)dhH [pakse] (but),
06:35’] [kuti] (also), 63(03 [oru] (one), (06X [tanne] (same),
6N [keant](with) etc. causes grammatical errors.
Adjectives should not be used before an adjective-noun
compound word. Table 2. lists the various types of errors and
their examples.

Table 2. Various types of grammatical errors in Malayalam

Type of Error Erroneous Sentence Corrected Sentence English translation
@pan 00116210 @an 00116210 @023 Mother came i the
Conjugational | @0(@1@1@3 @r-gJM3o M. @@ @lelo QIom). morning and father
Error [am'ma ravileyurh ratriyil acchanurh [am'ma ravileyurh acchan ratriyilum at night.
vannu.] vannu.]
aB@IENS PRMENIS0 ABOIETE MM COR)B3
Analogous word (g@gg_oe,(ﬁ 0@2@_@’]@3’](@3@3_ DO @M, About three hundred
[Etant munniiréalar alukal o _ LS people had arrived.
.. [etant munnir alukal ettiyirunnu. ]
ettiyirunnu]
@0OUUBH6) @O MIEBBH-UT @0UUBH6) @6 MI6B3 .
Numerals and She wants five
Plural Galemo. Ghuemo. mangoes.
[avalkk afic mannakal vénam.] [avalkk afic manna vénar.]
al9SI0M @ @ROUUBH60 xS | al0SIM@ @OUUBHE0
Unnecessary BBOD CBUBLD She can hear the
words ) GdHUOBE0. ) vo. singing too.
[patunnat avalkkur kiiti kélkkam.] [ patunnat avalkkurn kélkkar.]
Adjective-noun 02101Q 6)alN)dhIN Qal0)dhl0 oh
: ort story.
compound [ceriya cerukatha] [cerukatha]

3. Materials and Methods

The methodologies utilised and the implementation
details are described in this section. First, the process for
creating both the test data and the corpus is outlined. Next, the
specifics of TextGCN and improved TextGCN used from
training the Malayalam grammar checker are discussed. The
experimental setup and the training parameters employed by
the different models and cross-validation are described in
detail towards the end.

3.1. Malayalam Corpus
Developing a rule-based grammatical structure for the
language is challenging because there are no strict constraints

for word order in Malayalam. Hence, a data-driven approach
for Malayalam grammar  checking is used.
For Malayalam grammar checking, a training corpus of 200k
sentences was created. Grammatically correct sentences were
extracted from Malayalam school textbooks,
Wikipedia dump and internet archive.

Ungrammatical sentences were collected from the study
materials for students. Since the number of erroneous
sentences obtained through the manual collection was less, a
synthetic data set was generated by introducing errors to the
grammatically correct sentences. A round-trip mechanism
[28] was used to create errors in the corpus. This technique
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selected 69k grammatically correct sentences from the
Wikipedia dump and translated them into Portuguese using
Google translate. Then this Portuguese text was translated into
English and finally translated from English to Malayalam.
This mechanism created an erroneous corpus which was
further manipulated by substituting wrong suffixes to words.
Commonly occurring errors among language learners while
adding suffixes to words and making compound words were
used to create the synthetic dataset. Thirty different
substitutions were made for various suffixes to introduce
suffix errors to the corpus. The most commonly occurring
suffix errors for creating synthesized datasets are summarized
in Table 3. The maximum length of each sentence is set to 100,
and the minimum number of words in the sentence is two. The
final dataset consists of 200k sentences with 70k erroneous

sentences and a vocabulary size of 247097 words. The
average document length is 5.3.

Table 3. A few of the suffix errors used for creating the synthesized

dataset
Original Replacement Correct usage —
suffix Suffix incorrect usage
IS HOOMNIE)D
-AQ06)(0 -dH6)63 [kiittukaranmare] (friends)
[-mare] [-kalLe] — BH)SIBHIVEHES
[kuttukarankale]
HYSIHID1QIOS
Q)RS -Me0 [kiittukariyute] (friend’s)
[-yuTe] [-inte] — BHGYHIO M0
[kuttukarinte]
ISIBHIOMEN
-Me0 -MOS [kiittukarante] (friend’s)
[-inte] [nuTe] — dHSIHI0MS
[kattukaranute]
)SIBH00M 1@3
-6D(00 - 100 [kattukaranil] (in friend)
[-il] [kil] — PGB8 103
[ktittukarankil]
GBS
-5 -Me0 [kaittukarute] (of friends)
[-RuTe] [-inte] — 3HISIHIO1MEN
[kittukarinte]

3.2. Text Graph Convolutional Network (TextGCN)

A convolutional graph network generates embedding
vectors based on the properties of neighborhood nodes on a
graph [38]. Seq2Seq models and CNN models used for
language processing tasks better represent the semantic and
syntactic information of local consecutive word sequences.
TextGCN [30] models a heterogenous graph from the corpus
and uses graph convolutional networks to train the classifier.
The graph generated uses words and documents as nodes, and
the word co-occurrence matrix creates edges between two-
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word nodes. The word frequency and the word's document
frequency are used to build an edge between a word node and
a document node. The number of words gives the total number
of nodes in the vocabulary and the number of documents in
the corpus.

The word-word edge weights are determined using the
pointwise mutual information (PMI) of words. The term
frequency-inverse document frequency (TF-IDF) between
words and documents forms the word-document edge
weights. These global word co-occurrence statistics is
collected using a fixed-size sliding window.

Thus, the adjacency matrix of the graph is defined as

PMI(i,j) i,jarewords.PMI(i,j) >0
4y = TF —1IDFl-j iis docun?eilt.,] is word (1)
t=]
0 otherwise
The PMI value is given by
PMI(i, ) = 22 )

p(Op()

The probability p(i,j) is the probability of a word pair (i,j)
occurring in a sliding window, and p(i) is the probability of a
word i occurring in a sliding window. A positive PMI
indicates a high semantic correlation between words as
opposed to a negative PMI. So positive PMI is used for
obtaining the features, which can be seen in Equation 1. The
text classification problem can now be modelled as a node
classification problem. The graph generated is given as an
input to a two-layered GCN [38], and the convoluted output is
given by Equation 3,

Z = softmax( A ReLu(A XW,W )W) (3)

where

- 1 1
A= DzAD™2 4)

A is the normalized symmetric adjacency matrix, D is the
degree matrix of the graph, Wy is the weight of the first layer
of GCN and W, is the weight of the second GCN layer. The
input feature matrix given by X is a one-hot encoding of each
graph node. The output is obtained using a SoftMax classifier
with a cross-entropy loss function.

TextGCN records document-word and global word-word
relationships. New features are calculated as the weighted sum
of itself and its second-order neighbors. In all the evaluated
datasets, Text GCN performs better than all baseline models
[31].
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3.3. Improved TextGCN

In this work, an improved TextGCN is used to train the
Malayalam grammar checker. The adjacency matrix for
constructing the graph is obtained by calculating the PMI,
BM25 (Best Match 25) and cosine similarity measure of word
vectors.

BM25 [39] is an upgrade of TF-IDF where term
frequency (TF) and inverse document frequency (IDF)
components are refined. TF is refined to become responsive to
term saturation and document length. Term frequency in
BM25 is calculated using Equation 5.

TF
dl

TF+(k«(1-b+bs—= )

TFBM = ©)

Where k is the parameter controlling the term saturation
curve, and b controls the importance of document length. The
values of k and b are set to the default values of 1.2 and 0.75,
respectively. The term dl is the document length, and avdl is
the average document length.

The probabilistic IDF drops sharply for highly frequent
terms. The IDF value is negative for words appearing in more
than half of the corpus. In order to prevent negative values,
BM25 adds a 1 to the IDF calculation. Thus, in BM25 IDF
value is given by Equation 6.

N-DF+.5
DF+.5

IDFBM = ]og ( +1) (6)

where N is the length of the document and DF is the word
document frequency. BM25 takes term frequency saturation
and document length into account and removes negative

values for words which occur in more than half the documents
in the corpus.

Cosine similarity [33] between word vectors is also taken
as a feature while constructing the adjacency matrix. Cosine
similarity expresses the similarity between two different texts.
For calculating the cosine similarity, construct a word vector
map for every word in the corpus. Cosine similarity between
two vectors, A and B, is then calculated as

Similarity = lANBI Y

If the similarity measure is more than 0.95, add the
similarity value to the adjacency matrix resulting in an edge
between most similar terms. Thus, the adjacency matrix for
improved TextGCN is given by

( PMI(,j)) i,j are words. PMI(i,j) >0
I TFEM « IDFEM s document, j is word
Ay = Similarity If Similarity > 0.95 (8)
1 i=j
0 otherwise
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In the improved version of TextGCN, the mish activation
function [34] is used instead of ReLu. The Mish activation
function is given by
flx) = xtanh(softplus(x)) = xtanh(In(1 + e*)) 9)

Mish activation function is continuously differentiable
with infinite order, self-regularized, non-monotonic and self-
gated. It is unbounded above and bounded below. Compared
to ReLU, Mish [34] offers significantly higher accuracy,

overall lower loss, and a smoother and easy-to-optimize loss
landscape.

3.4. Experimental Setup

A labeled training set of 200k sentences of Malayalam
text was used for performing the grammar-checking task. The
input sentences were pre-processed by removing unwanted
symbols and punctuation. The corpus was then tokenized and
padded. The maximum number of words in a sentence was set
to 25, and the text length was restricted to 100.

The dataset was split into training and validation sets with
a validation split of 0.2. A comparison of the Malayalam
grammar checker using improved TextGCN and the baseline
models is made. The baseline models used were TextGCN,
LSTM, Stacked LSTM, BIiLSTM, CNNLSTM and
CNNBILSTM. The parameters used for training these models
are given in Table 4.

Table 4. Parameters used for training the baseline models and improved

TextGCN
Model Loss function Actlva_t lon
function
LSTM,
BiLSTM, .
Stacked Binary Cross Entropy RelLu
LSTM
CNNLSTM, .
CNNBILSTM Binary Cross Entropy RelLu
TextGCN Categorical Cross ReLu
Entropy
Improved Categorical Cross Mish
TextGCN Entropy

TextGCN consists of two layers of graph convolutional
network and uses a sliding window of size 20 while
calculating the adjacency matrix. The embedding dimension
of 300 is used for TextGCN and improved TextGCN. LSTM
was also trained using pretrained FastText embeddings of
dimension 300. The FastText pretrained Malayalam
embedding was used because an evaluation of various word
embeddings for the Malayalam corpus gave better results for
FastText [35].

The pretrained embeddings were obtained from a
Malayalam corpus of 3.8 million unique words. LSTM,
BiLSTM and Stacked LSTM were also trained with a dropout
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value of 0.2 and without dropout. CNNLSTM and
CNNBILSTM were trained using a kernel size 3, filter size
128 and a max-pooling layer.

The test dataset comprised 500 unseen sentences
collected from language learners and the CoLA [5] corpus.
The evaluation metrics used for the classification task are
accuracy, the weighted average of precision, recall and F-
score.

4. Results and Discussion

The trained model is tested on unseen test data of 500
sentences. The result obtained for each model is given in Table
5. Grammar checkers using improved TextGCN gave the best
results for the Malayalam grammar-checking task. An
accuracy of 90.41%was obtained using improved TextGCN,
while TextGCN gave an accuracy of 87.67%. The model's
training and validation accuracies are 96.67 and 96.32%,
respectively.

Table 5. Summary of the results obtained for various models

Model Testing Precision | Recall | F1- Score Training | Validation

Accuracy Accuracy | Accuracy
LSTM 55.87% 28.00% 50.00% 36.00% 96.65% 90.69%
Stacked LSTM 56.00% 28.00% 50.00% 36.00% 96.50% 90.97%
LSTMoroputo.2 56.00% 28.10% 50.30% 36.05% 96.68% 90.60%
Stacked LSTMoproputo.2 56.00% 28.67% 50.87% 36.67% 96.86% 95.39%
LSTM with pre-trained embeddings 56.50% 29.00% 50.9% 36.94% 95.20% 93.10%
BILSTM 57.12% 29.10% 51.20% 37.10% 98.51% 94.64%
Stacked BiLSTM 57.82% 29.80% 51.90% 37.86% 98.90% 95.10%
BiLSTMoroputo.2 57.60% 29.50% 51.70% 37.56% 96.88% 93.97%
BiLSTM with pre-trained embeddings 57.80% 29.80% 52.10% 37.91% 95.6% 93.40%
CNNLSTM 56.00% 28.00% 50.00% 36.00% 98.6% 93.94%
CNNBILSTM 56.00% 28.00% 50.00% 36.00% 95.04% 94.90%
TextGCN 87.67% 99.30% 87.67% 92.91% 97.03% 96.20%
Improved TextGCN 90.41% 99.28% 90.42% 94.45% 96.67% 95.49%

Table 6. Test Sentences and classification outcomes

Sentence

Classification outcome

[pani tutanniyitt &tant rantalccayayi.]

ol SRS aBmIaNS @6N30P 2O .

(It's been almost two weeks since the fever started.)

True Positive

af)&ld UD(TﬂCQ)Oﬁ(%(OUOOgo oQ:NO(TUgm%U.
[ella $aniyalcateéarum klasunt.]
(There is a class every Saturday.)

True Negative: Analogous word error

[bahirakasavahanarh bhiimiyine currunnu]
(A spacecraft orbits the Earth)

6NIaN1IBHIUNUIaNMo R TQIHM 2NGIOM)

False Positive: Incorrect suffix used for @Y
[bhiimi] (earth)

[fian addéhattinre miinn pustakannal vayiccu]
(I have read three of his books)

aMIN3 @RGEGaNOD 1O MM) alMYH-68303 UIW 12)).

False Negative: al}("Qd-0 [pustakar]
(book) is not a collective noun.
So, itis not a numeral-plural error.

Sequence to Sequence networks like LSTM and BiLSTM
gave poor results. These sequence-to-sequence networks
could not correctly model the relation between words. As a
result, when unseen data was received, it could not perform
the classification accuracy. A larger dataset for training the
sequence-to-sequence network might improve the accuracy,
as this will add more terms to the vocabulary. Including
pretrained embeddings obtained by training a larger corpus did
not improve the results. It is because the pretrained
embeddings were generated using grammatically correct
sentences. The testing accuracy was only about 55%, even
though all the sequence-to-sequence networks displayed a
validation accuracy of about 90%.

It was seen that the true negative values were less than
that of true positives and false positive values were less than
that of false negatives. Table 6 lists some of the test sentences
along with the classification outcomes. Conjugational errors
were a substantial contributor to the false positives. Although
sentences with conjugation errors appear grammatically
correct, the placement of related words must be conjugated.
False negatives were primarily the result of numeral-plural
errors and conjugational errors. The training dataset was
unable to represent all the collective nouns. As a result, even
though the numeral does not modify a collective noun,
sentences with numerals and plurals are regarded as erroneous
statements. Precision values for TextGCN and Improved
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TextGCN were quite similar. However, upgraded TextGCN
demonstrated a recall improvement of around 3% over
conventional TextGCN. A comparison of the evaluation
metrics for conventional TextGCN and improved TextGCN is
given in Figure 3.

80.00% 85.00% 90.00% 95.00% 100.00%

Testing Accuracy P

ici I
Precision

I
Recall

F1- Score N

Training Accuracy I
Validation Accuracy I

m TextGCN Improved TextGCN

Fig. 3 Comparison of conventional TextGCN and Improved TextGCN

The accuracy and overall loss have been lowered by the
adoption of BM25, cosine similarity measure, and mish
activation function in enhanced TextGCN as opposed to TF-
IDF and ReL.u activation function in conventional TextGCN.
During testing, the proposed model was able to lower the
number of false negatives.
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